Supplementary Material

Metal-free synthesis of α,α-difluorocyclopentanone derivatives via regioselective difluorocyclopropanation/VCP rearrangement of silyl dienol ethers

Ryo Takayama, Kohei Fuchibe, Junji Ichikawa*

Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8571, Japan
Email: junji@chem.tsukuba.ac.jp

Table of Contents

Figure S1. 1H NMR spectrum of cyclopentenyl silyl ether 3e (400 MHz, CDCl$_3$) S2
Figure S2. 13C NMR spectrum of cyclopentenyl silyl ether 3e (100 MHz, CDCl$_3$) S3
Figure S3. 19F NMR spectrum of cyclopentenyl silyl ether 3e (376 MHz, CDCl$_3$) S4
Figure S4. 1H NMR spectrum of cyclopentenyl silyl ether 6g (500 MHz, CDCl$_3$) S5
Figure S5. 13C NMR spectrum of cyclopentenyl silyl ether 6g (126 MHz, CDCl$_3$) S6
Figure S6. 19F NMR spectrum of cyclopentenyl silyl ether 6g (470 MHz, CDCl$_3$) S7
Figure S7. 1H NMR spectrum of cyclopentenyl silyl ether 3i and siloxydiene 7i (400 MHz, CDCl$_3$) S8
Figure S8. 13C NMR spectrum of cyclopentenyl silyl ether 3i and siloxydiene 7i (126 MHz, CDCl$_3$) S9
Figure S9. 19F NMR spectrum of cyclopentenyl silyl ether 3i and siloxydiene 7i (376 MHz, CDCl$_3$) S10
Figure S10. NOE spectrum I of cyclopentenyl silyl ether 3i (400 MHz, CDCl$_3$) S11
Figure S11. NOE spectrum II of cyclopentenyl silyl ether 3i (400 MHz, CDCl$_3$) S12
Figure S12. 1H NMR spectrum of cyclopentenyl silyl ether 3j and siloxydiene 7j (400 MHz, CDCl$_3$) S13
Figure S13. 13C NMR spectrum of cyclopentenyl silyl ether 3j and siloxydiene 7j (100 MHz, CDCl$_3$) S14
Figure S14. 19F NMR spectrum of cyclopentenyl silyl ether 3j and siloxydiene 7j (376 MHz, CDCl$_3$) S15
Figure S1. 1H NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-(4-trifluoromethylphenyl)cyclopent-1-ene (3e).
Figure S2. 13C NMR of 1-(tert-Butyl(dimethyl)silyloxy)-5,5-difluoro-3-(4-trifluoromethylphenyl)cyclopent-1-ene (3e).
Figure S3. 19F NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-(4-trifluoromethylphenyl)cyclopent-1-ene (3e).
\(^1\)H NMR of 2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene (6g)

Figure S4. \(^1\)H NMR of 2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene (6g).
13C NMR of 2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene (6g)

Figure S5. 13C NMR of 2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene (6g).
19F NMR of 2-Bromo-1-[tert-butyldimethylsilyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene (6g)
Figure S7. 1H NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-isopropyl-4-phenylcyclopent-1-ene (3i) and 3-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-6-methyl-1-phenylhepta-2,5-diene (7i).
13C NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-isopropyl-4-phenylcyclopent-1-ene (3i) and 3-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-6-methyl-1-phenylhepta-2,5-diene (7i).

Figure S8. 13C NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-isopropyl-4-phenylcyclopent-1-ene (3i) and 3-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-6-methyl-1-phenylhepta-2,5-diene (7i).
Figure S9. 19F NMR of 1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-isopropyl-4-phenylcyclopent-1-ene (3i) and 3-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-6-methyl-1-phenylhepta-2,5-diene (7i).
Figure S10. NOE spectrum 1 of 5,5-difluorocyclopent-1-en-1-yl silyl ether 3i.
Figure S11. NOE spectrum II of 5,5-difluorocyclopent-1-en-1-yl silyl ether 3i.
Figure S12. 1H NMR of 3,4-Dibutyl-1-[tert-butyl(dimethyl)silyloxy]-5,5-difluorocyclopent-1-ene (3j) and 7-[tert-Butyl(dimethyl)silyloxy]-6,6-difluorotrideca-4,7-diene (7j).
Figure S13. 13C NMR of 3,4-Dibutyl-1-[tert-butyldimethylsilyloxy]-5,5-difluorocyclopent-1-ene (3j) and 7-[tert-Butyldimethylsilyloxy]-6,6-difluorotrideca-4,7-diene (7j).
19F NMR of 3,4-Dibutyl-1-[tert-butyl(dimethyl)silyloxy]-5,5-difluorocyclopent-1-ene (3j) and 7-[tert-Butyl(dimethyl)silyloxy]-6,6-difluorotrideca-4,7-diene (7j)