Novel L-threonine-based ionic liquid supported organocatalyst for asymmetric syn-aldol reactions: activity and recyclability design

Vasiliy V. Gerasimchuk, a Roman R. Romanov, b Gladys H.-T. Woo, c Igor A. Dmitriev, a Alexander S. Kucherenko, a and Sergei G. Zlotin* a

a Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119 991, Moscow, Russia
b Moscow Chemical Lyceum, Tamogeny proezd 4, 111 033, Moscow, Russia
c National Junior College, 37 Hillcrest Road, 288 913, Singapore
Email: zlotin@ioc.ac.ru

Dedicated to Professor Oleg A. Rakitin on the occasion of his 65th anniversary

Received 04-25-2017 Accepted 07-04-2017 Published on line 07-29-2017

Abstract
A novel recyclable threonine-derived ionic-liquid-supported organocatalyst of asymmetric cross-aldol reactions has been developed. In its presence, aromatic aldehydes react with hydroxyacetone, methoxyacetone and 2-butanone to afford the corresponding syn-aldol products in moderate to high yields with excellent diastereo- (syn/anti up to 96:4) and enantio-selectivity (up to 95 % ee), which was retained over five recycling experiments.

Keywords: Aldol reaction; asymmetric catalysis; organocatalysis; recyclable catalysts

DOI: https://doi.org/10.24820/ark.5550190.p010.149
Introduction

Asymmetric organocatalysis is an intensively developing area of modern organic chemistry. One of the most important organocatalytic reactions is the asymmetric aldol reaction, which occur in Nature and is widely used in chemical research for enantioselective formation of the carbon-carbon bonds in organic compounds. As a rule, major products of aldol reactions catalyzed by secondary amines have anti-configuration whereas syn-aldols, which are key structural fragments of carbohydrates, are formed in aldolase-catalyzed enzymatic aldol reactions. Some of these native catalysts (aldolases of type II) have a peptide structure with primary amino acid fragments as active sites. Over the past decade, a number of similar syn-aldol reactions have been realized in laboratory (though, with a somewhat lower stereoselectivity) in the presence of properly designed primary aminocatalysts. Among them, O-protected serine or threonine amino acids, their amides, valine, leucine, iso-leucine or tert-leucine derivatives and some primary–tertiary 1,2-diamine organocatalysts exhibited promising catalytic performance. However, unlike enzymes, these valuable catalysts could be used just once and until recently no information on their recovery and reuse in the catalytic process has been available.

A few years ago we presented the first “conditionally” recyclable catalyst 1a of syn-aldol reactions, an ionic-liquid-supported (S)-threonine amide bearing an α,α-diphenylvalinol structural unit (Scheme 1). Unfortunately, the catalytic activity of compound 1a became lower after the first recovery and after the third one it became nearly inactive. Very recently, we discovered that main reason for this deactivation is the undesirable intramolecular O-N migration of the acyl fragment attached to ionic group which resulted in the amidation of the primary amino group which is key for the enamine catalysis. To make the migration thermodynamically unfavorable, we designed catalyst 1b, in which the acyl linker is located distantly from the amino group. Indeed, catalyst 1b appeared much more sustainable and could be recycled 7 times with complete retention of stereoselectivity and only a slight conversion decrease.

Scheme 1. Research strategy.
We hypothesized that the parasitic rearrangement may also be suppressed by a Brønsted-acidic group, which being incorporated into the catalyst would reduce nucleophilicity of the threonine amino group via the protonation. Furthermore, we expected that a remote carboxyl group in catalyst 1c would simultaneously act as an acidic co-catalyst and reduce catalyst leaching during workup. A number of catalytic aldol reactions are known to proceed with a higher rate and better enantioselectivity in the presence of acidic additives. A few examples of favorable impact of the incorporated carboxy group on the catalytic performance and recyclability of ionic-liquid-supported primary-amine-based chiral organocatalysts in asymmetric Michael and anti-aldol reactions have also been reported. However, to the best of our knowledge, this approach has never been used to improve the catalytic performance of primary amino acid-derived supported organocatalysts in asymmetric syn-aldol reactions.

Results and Discussion

To verify this hypothesis, we synthesized the carboxylated analog 1c, in which the imidazolium cation is attached to a carboxylic group. The synthetic scheme included alkylation of O-protected 1-(4-benzoxycarbonylbutyl)-imidazole 3 with bromoester 2 followed by the conversion of the imidazolium bromide 4 into the carboxylated IL-supported catalyst 1c via a sequence of anion exchange and catalytic hydrogenation (5% Pd/C) reactions (Scheme 2).

![Scheme 2. Synthesis of carboxylated catalyst 1c.](image)

Having catalyst 1c in hand, we at first optimized reaction conditions using hydroxyacetone 5a and 4-nitrobenzaldehyde 6a as model substrates (Table 1). It was found that in nonpolar aprotic solvent (e.g. toluene) product 7a was generated with higher selectivity and conversion of 6a than in other solvents.

Under optimal conditions, hydroxyacetone (5a) reacted with benzaldehyde derivatives (6a-i) bearing acceptor or donor substituents in the aromatic ring to afford corresponding syn-aldols 7a-i with high conversion and with good to excellent diastereo- and enantio-selectivity (for compounds 7a-h, the dr and ee values were similar or even higher that reported with catalyst 1a) (Scheme 3). The methoxyacetone (5b) also appeared a suitable ketone-donor for the catalytic syn-aldol reactions with aldehydes 6a and 6d to give corresponding aldols 7j and 7k with reasonably high diastereo- and enantio-selectively. In case of 2-butanone (5c) the conversion and dr and ee values of generated aldol 7l were significantly lower.
Table 1. Optimization of reaction conditions \(^{a}\)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Conv., % (^{b,d})</th>
<th>dr (syn/anti) (^{b,d})</th>
<th>ee (syn), % (^{c,d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>88 (83)</td>
<td>70:30 (70:30)</td>
<td>79 (68)</td>
</tr>
<tr>
<td>NMP</td>
<td>14 (39)</td>
<td>90:10 (70:30)</td>
<td>90 (90)</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)</td>
<td>53 (91)</td>
<td>94:6 (80:20)</td>
<td>92 (88)</td>
</tr>
<tr>
<td>Toluene</td>
<td>99 (99)</td>
<td>93:7 (92/8)</td>
<td>95 (94)</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>90</td>
<td>90/10</td>
<td>88</td>
</tr>
</tbody>
</table>

\(^{a}\) Unless otherwise specified, all reactions were carried out with 5a (15 mg, 14 µL, 0.2 mmol), 6a (0.066 mmol), 1c (6.5 mg, 0.01 mmol), and solvent (90 µL). \(^{b}\) \(^{1}\)H NMR spectroscopic data (\(J_{3-4}^{\text{syn}} = 1.8-4.2\) Hz, \(J_{3-4}^{\text{anti}} = 6.1-8.8\) Hz); \(^{c}\) HPLC data (Daicel Chiralpak AD-H) for crude compound 7a. \(^{d}\) Corresponding data for catalyst 1a are given in parentheses.

Scheme 3. The reaction scope.
It is worthy of note that the previously unknown compound 7i is a close structural analog of flavanonol – an inhibitor of nitric oxide (NO) production in inflammatory cells (Figure 1).32

![Figure 1. Biologically active flavanonol – a structural analog of 7i.](image)

Finally, we examined the recyclability of catalyst 1c in the asymmetric syn-aldol reaction between compounds 5a and 6d (Table 2). After completion of the reaction, the solvent was evaporated under reduced pressure, aldol product 7d was extracted with Et₂O, and a fresh solution of the starting compounds in toluene was added to the remaining catalyst. In this manner, catalyst 1c was successfully recycled five times without any reduction of the dr and ee values, though, with a slight conversion decrease. These data are in agreement with a favorable impact of the carboxy group in catalyst 1c on its sustainability and recyclability under proposed conditions as compared with catalyst 1a.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Conv., %</th>
<th>dr, syn/anti, %</th>
<th>ee, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>95/5</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>95/5</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>95/5</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>95/5</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>95/5</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 2. Recyclability of catalyst 1c in the model reaction between 5a and 6d

Conclusions

The obtained results show that simple modification with the carboxylic group may be considered as a promising approach to improve sustainability of IL-supported primary amino acid derived organocatalysts in asymmetric syn-aldol reactions. Based on this approach, a novel carboxylated threonine amide derived IL-tagged catalyst of asymmetric aldol reactions between aromatic aldehydes and linear ketones has been
developed which exhibited improved catalytic activity and good diastereo- (syn/anti up to 96/4) and enantioselectivity (up to 95% ee) over five recycling experiments.

Experimental Section

General. 1H and 13C NMR spectra were recorded with a Bruker AM 300 spectrometer in CDCl$_3$ and DMSO-d_6. The chemical shifts of 1H and 13C signals were measured relative to Me$_4$Si or CDCl$_3$, respectively. The high-resolution mass spectra (HRMS) were measured with a Bruker microTOF II spectrometer using electrospray ionization (ESI). The measurements were taken either in the positive ion mode (interface capillary voltage 4500 V) or in the negative ion mode (3200 V) in a mass range $m/z = 50$–3000 Da; external or internal calibration was done with electrospray calibrant solution (Fluka). Syringe injection was used for solution in MeCN/H$_2$O (1:1, v/v) (flow rate 3 μL/min). Nitrogen was applied as a dry gas, and the interface temperature was set at 180 °C. Silica gel 0.060–0.200 μm (Acros) was used for column chromatography. Threonineamide (2) and benzyl 5-(1H-imidazol-1-yl)pentanoate (3) were synthesized according to known methods. Compounds 5 and 6 were purchased from Aldrich and used without purification. The solvents were purified by standard procedures. For experimental details and spectral or HPLC data see Supporting Information.

3-[5-(Benzyloxy)-5-oxopentyl]-1-[(2R,3S)-3-[[benzyloxy carbonyl]amino]-4-[[[(S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl]amino]-4-oxobutan-2-yl]oxy]-5-oxopentyl]-1H-imidazol-3-ium hexafluorophosphate (4). Benzyl 5-(1H-imidazol-1-yl)pentanoate (3) (0.22 g, 0.83 mmol) was gradually added to a solution of (2R,3S)-3-[[benzyloxy carbonyl]amino]-4-[[[(S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl]amino]-4-oxobutan-2-yl] pentanoate (2) (0.45 g, 0.69 mmol) in CH$_3$OH (2 mL). The reaction mixture was kept at ambient temperature for 10 min and evaporated under reduced pressure (20 Torr) at 40 °C. The residue was heated at the same pressure (rotary evaporator, 80 °C) for 5 min, cooled to ambient temperature and diluted with distilled water (3.0 mL). A solution of KPF$_6$ (128 mg, 0.69 mmol) in distilled water (1.5 mL) was added to the resulting aqueous solution and the reaction mixture was stirred for 1 h at ambient temperature. The precipitate was filtered, washed successively with distilled water (3 x 3 mL) and Et$_2$O (2 x 1 mL), and dried in air to afford 4 (0.612 g, 90%). White powder, mp 97–100 °C. 1H NMR (600 MHz, DMSO-d_6): 0.65 (d, J 6.5 Hz, 3H, CH$_3$); 0.70 (d, J 6.5 Hz, 3H, CH$_3$); 0.87 (d, J 6.5 Hz, 3H, CH$_3$); 1.38-1.45 (m, 2H, CH$_2$); 1.48-1.55 (m, 2H, CH$_2$); 1.69-1.78 (m, 3H, CH$_2$ + CH(CH$_3$)$_2$); 1.78-1.85 (m, 2H, CH$_2$); 2.13-2.24 (m, 2H, CH$_2$); 2.40 (t, J 7.3 Hz, 2H, CH$_2$); 3.99 (t, J 8.2 Hz, 1H, CH); 4.11 (t, J 6.9 Hz, 2H, CH$_2$); 4.18 (t, J 6.9 Hz, 2H, CH$_2$); 4.84 (m, 1H, CH); 4.89 (d, J 9.5 Hz, 1H, CH); 5.04 (2H, CH$_2$ AB system, J_{HH} 12.66 Hz); 5.10 (s, 2H, CH$_2$); 5.64 (s, 1H, OH); 7.08 (t, J 7.2 Hz, 1H, CH); 7.13-7.21 (m, 3H, CH); 7.26-7.41 (m, 12H, CH); 7.46-7.55 (m, 4H, CH); 7.60 (d, J 10.0 Hz, 1H, NH); 7.71 (d, J 8.9 Hz, 1H, NH); 7.79 (d, J 5.0 Hz, 2H, NCHCHN); 9.15-9.24 (m, 1H, NCHN); 13C NMR (125.76 MHz, DMSO-d_6): 16.6, 18.2, 21.3, 21.4, 23.2, 29.05, 29.15, 33.1, 33.2, 48.9, 58.2, 59.2, 65.9, 65.9, 69.8, 81.3, 122.9, 125.7, 125.8, 126.6, 128.0, 128.1, 128.3, 128.4, 128.5, 128.8, 128.9, 136.4, 136.6, 137.5, 146.5, 147.7, 156.5, 169.3, 172.1, 172.9. Elemental analysis: calcd for C$_{69}$H$_{59}$F$_5$N$_4$O$_8$P: C, 60.24; H, 6.09; N, 5.73; found: C, 60.06; H, 6.14, N, 5.79%.

1-[(2R,3S)-3-Amino-4-[[[(S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl]amino]-4-oxobutan-2-yl]oxy]-5-oxopentyl]-1-(4-carboxybutyl)-1H-imidazol-3-ium hexafluorophosphate (1c). 5% Pd/C (50 mg) was added to a solution of 4 (120 mg, 0.12 mmol) in freshly distilled methanol (3 mL) and the reaction mixture was vigorously stirred under H$_2$ atmosphere (~1 bar) for 5 h at ambient temperature. The reaction mixture was filtered and evaporated under reduced pressure (20 Torr). The residue was dried in vacuo (2 Torr) at 40 °C for 1 h to afford 1c (89 mg, 96%). A yellow powder, mp 89-91 °C. 1H NMR (600 MHz, DMSO-d_6): 0.58 (d, J 3.2 Hz,
3H, CH$_3$); 0.68-0.73 (m, 3H, CH$_3$); 0.80-0.90 (m, 3H, CH$_3$); 1.40-1.53 (m, 4H, 2xCH$_2$); 1.62-1.74 (m, 1H, CH i-Pr); 1.71-1.87 (m, 4H, 2xCH$_2$); 2.18 (t, J 7.1 Hz, 2H, CH$_2$); 2.28 (t, J 7.2 Hz, 2H, CH$_2$); 3.64-3.72 (m, 1H, CH$_3$C$_2$H$_5$O); 0.80-0.90 (m, 3H, CH$_3$); 1.40-1.53 (m, 4H, 2xCH$_2$); 1.62-1.74 (m, 1H, CH$_2$CHOH); 3.98 (t, J 7.4 Hz, 1H, CH(NH)CONH); 4.13-4.24 (m, 4H, 2xCH$_2$); 4.50-4.62 (m, 1H, CH(i-Pr)NH); 4.87 (d, J 9.5 Hz, 1H, OH); 5.67 (s, 1H, OH); 7.06-7.23 (m, 4H, CH); 7.29 (t, J 7.7 Hz, 2H, CH); 7.42 (d, J 10.1 Hz, 1H, NH); 7.49 (t, J 6.7 Hz, 4H, CH); 7.81 (d, J 11.7 Hz, 2H, NCHCHN); 7.94 (d, J 8.4 Hz, 1H, NH); 9.24 (s, 1H, COOH); 13C NMR (125.76 MHz, DMSO-d$_6$): 18.2, 19.9, 21.5, 22.2, 23.3, 28.9, 29.1, 29.3, 29.6, 33.3, 34.6, 49.0, 49.1, 57.9, 59.4, 66.1, 81.3, 122.9, 125.6, 126.0, 126.6, 128.1, 128.5, 136.4, 146.7, 170.8, 172.1, 174.5; HRMS (ESI): m/z calcd. for C$_{34}$H$_{47}$N$_4$O$_6$+: 607.3490, found: 607.3493.

General procedure for syn-aldol reactions. Aldehyde 6a-i (0.066 mmol) and catalyst 1c (7.5 mg, 0.01 mmol) were dissolved in dry toluene (90 µL). Then, ketone 5a-c (0.2 mmol) was added to the resulting solution. The reaction mixture was stirred at ambient temperature for 24-48 h (TLC-monitoring), filtered through a silica gel pad and evaporated (40 °C, 8 mbar). Conversions and dr values of aldol products 7a-l were measured by 1H NMR spectroscopy. The ee values of aldol products 7a-l were determined by chiral HPLC column (Daicel Chiralpak AD-H).

(3R,4S)-4-(2,4-Dimethoxyphenyl)-3,4-dihydroxybutan-2-one (7i). Pale yellow oil. 1H NMR (500 MHz, CDCl$_3$): 2.27 (s, 3H, CH$_3$), 3.82 (d, 6H, (OCH$_3$)$_2$), 4.41 (s, 1H), 5.31 (s, 1H), 6.42-6.60 (m, 2H, Ar), 7.31 (m, 1H, Ar); 13C NMR (125 MHz, CDCl$_3$): 26.4, 55.8, 56.0, 69.5, 71.5, 80.2, 80.4, 99.0, 104.8, 104.9, 121.5, 128.1, 129.0, 157.3, 161.13, 208.86; HRMS (ESI) m/z calcd. for [C$_{12}$H$_{16}$O$_5$+Na]: 263.0890; found: 263.0890.

General procedure for catalyst 1c recycling. After 24 h, the mixture of hydroxyacetone (5a) (74 mg, 70µl, 1 mmol), 2-chlorobenzaldehyde (6d) (46.8 mg, 0.33 mmol), catalyst 1c (37.5 mg, 0.05 mmol) and toluene (0.45 mL) was gently evaporated (40 °C, 8 mbar). Product 7d and unchanged starting compounds were carefully extracted from the residue by Et$_2$O (3 x 0.7mL). Fresh portions of reagents and toluene were added to the remaining catalyst 1c and the catalytic procedure was performed again as described.

Acknowledgements

This research was supported by the President of the Russian Federation (Grant for young PhDs No. 7441.2016.3), by the Russian Foundation of Basic Research (project 16-03-00767), and by the Scientific Research Program No. III.5.1 of the Department of Chemistry and Material Sciences of the Russian Academy of Sciences.

Supplementary Material

1H, 13C, 1H-13C HSQC, 1H-13C HMBC and ESI-MS spectra for compounds 4 and 1c. HPLC traces for compounds 7.

References

 http://doi.org/10.1155/2014/402860
 http://doi.org/10.1021/cr0684016
 http://doi.org/10.1070/RC2009v078n08ABEH004040
 http://doi.org/10.1039/B923537J
 http://doi.org/10.1038/35051706
 http://doi.org/10.1002/adsc.200700115
 http://doi.org/10.1021/ja0677012
 http://doi.org/10.1021/ol701467s
 http://doi.org/10.1016/j.tetlet.2009.06.037
 http://doi.org/10.1021/ja907054y
 http://doi.org/10.1246/cl.2010.490
 http://doi.org/10.1002/adsc.201400033
 http://doi.org/10.1021/jo201584w
 http://doi.org/10.1016/j.tetasy.2011.05.021
 http://doi.org/10.1002/ejoc.201201413
 http://doi.org/10.1039/C0OB00898B
 http://doi.org/10.1002/adsc.200900122
 http://doi.org/10.1021/ol703023t
 http://doi.org/10.1021/ol800471b
 http://doi.org/10.1021/jo802557p
 http://doi.org/10.1021/ja069372j
 http://doi.org/10.1002/adsc.201000419
 http://doi.org/10.1016/j.tet.2011.01.017
 http://doi.org/10.1002/ejoc.201700166
 http://doi.org/10.1002/ejoc.201400045
 http://doi.org/10.1002/ejoc.201500775
 http://doi.org/10.1016/j.bmc.2015.09.042