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Abstract 

N-Sulfonyl-N'-benzimidazol-2-yl acetamidines have been designed as CK1 inhibitors. Binding modes in the ATP 

pocket of CK1 were determined by molecular modeling. The synthetic approach involves sequential acylation 

of 2-aminobenzimidazoles followed by reaction of amides with Lawesson’s reagent and iminosulfonylation of 

thioamides with sulfonyl azides. The iminosulfonylation was carried out in boiling ethanol with an equivalent 

ratio of azides and thioamides. The synthesized compounds were tested for their ability to inhibit CK1 

isoforms in vitro and to inhibit the growth of tumor cell lines. Among the synthesized compounds, two 

products showed inhibitory abilities towards CK1δ and CK1ε. 
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Introduction 
 

The benzimidazole nucleus is a constituent of numerous therapeutic agents, and its derivatives exhibit various 

types of bioactivity including anticancer, antimicrobial, antiviral, anti-inflammatory, antiparasitic, antioxidant, 

proton pump inhibiting, antihypertensive, etc.1 Modification by an amino group, nitrogen atoms of imidazole 

ring, and CH bonds of benzene ring also results in formation of biologically active compounds.1 Richter et al. 

have found that N-aminoacylated benzimidazoles inhibit сasein kinase 1 (CK1) and exhibit nanomolar 

anticancer activity.2 On the other hand, N-sulfonyl amidines have been introduced as osteoclast differentiation 

inhibitors, anti-resorptive agents3, and dopamine transport inhibitors.4 It is therefore a worthwhile challenge 

to develop previously unknown hybrid molecules containing both a benzimidazole and an N-sulfonylamidine 

group, with the aim of finding new biologically active compounds. 

 

Results and Discussion 
 

Herein, we report a novel synthetic approach to new benzimidazole derivatives bearing N-sulfonyl 

acetamidine groups, and preliminary data on their inhibition of casein kinases. The design of the structures 

planned for the CK1 inhibition activity testing, along with the plan to synthesize the desired compounds, are 

shown in Scheme 1. A series of 2-aminobenzimidazoles bearing various substituents including a dioxole ring, 

the use of acetic anhydride, acetyl chloride and trifluoroacetic anhydride as acylating reagents, and the use of 

mesyl azide and various other sulfonyl azides demonstrated the variety of the structures of the planned 

compounds. Acylation (A), thionation (T) and iminosulfonylation (IS) were steps applied for the retrosynthesis 

of target molecules. 

 

 
 

Scheme 1.  Retrosynthetic design of N-benzimidazol-2-yl-N'-sulfonyl acetamidines. 

 

Reactions corresponding to transformation A are widely used in the synthesis of various acylamido 

derivatives of benzimidazoles.5-8 To introduce R4 of a small size acetic anhydride and trifluoroacetic anhydride 

were selected. Reactions corresponding to step T involve Lawesson’s reagent. They have been applied for the 

synthesis of 2-thiocarbamoyl benzimidazoles in which R4 is only aryl.9 The general method for the synthesis of 

N-sulfonylamidines involves alkylation followed by treatment of alkyl thioimidates with amines10 and then 

with sulfonyl chlorides (step IS). However, the low yield of the target compounds forced us to rule out this 

method from consideration. Recently a N-sulfonylamidines synthesis based on a Cu catalyzed three 

component reaction11 was  developed and applied to the synthesis of benzimidazol-2-yl-N-sulfonylamidines 

bearing R4 aryl and long alkyl groups12 but cannot be used for the synthesis of amidines of acetic acid (R4 = Me) 

designed for testing of biological activity. We turned our attention to a one-step synthesis of sulfonylamidines 

involving the reaction of enamines and thiomides with sulfonyl azides.4,13-18 This approach has successfully 
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been applied to the synthesis of N-sulfonyl amidines from cyclic thioamides13 and active methylene 

thioamides,4,14 and therefore it was selected as the method of choice for the synthesis of the target 

compounds. 

The starting amides 1a-h were prepared in high yields in the reaction of commercially available 2-

aminobenzimidazoles with acetyl chloride (or acetic anhydride) and trifluoroacetic anhydride for the synthesis 

of acetamido (1a-f) and trifluoroacetamido (1g,h) benzimidazoles, respectively. The novel thioamides 2a-h 

were prepared by treatment of amides 1a-h in boiling 1,4-dioxane with Lawesson’s reagent, which was found 

earlier to be efficient for the synthesis of various types of thioamide.19-21 

To prepare the targeted sulfonyl amidines 4 we have studied reactions of thioamides 2a-h with a variety 

of sulfonyl azides 3a-g bearing methyl, aryl, or heteroaryl moieties in various reaction conditions. First we tried 

to avoid any solvent. The corresponding protocol was successfully used earlier to prepare sulfonylamidines 

from methylene active thioamides.4,14 However we were not able to isolate any new compounds apart from 

the initial reagents and some sort of tar. The darkening of the reaction mass took place while no nitrogen 

evolution being a characteristic feature of azidation of thioamide4,14 was fixed. The adding a few drops of DMF 

did not improve the situation. Thioamides 2c,d did not react with sulfonyl azides 1a,b in water, though this 

solvent was successfully used to prepare other types of amidine.14,16 The reason may involve the very low 

solubility of thioamides 2 in water. Luckily, the reaction of (benzimidazol-2-yl)ethanethioamides 2a-h with 

azides 3a-g occurred when the mixture of thioamides 2 and sulfonyl azides 3 in equivalent ratio (for the 

reaction of thioamide 2f with azide 3c 5.0 equiv. of the azide was used) was heated in boiling ethanol for 2-10 

h. We have also found that thioamides of trifluoroacetic acid 2g,h did not react with sulfonyl azides under any 

conditions. (Scheme 2; Figure 1) 

The structures of all new compounds were reliably confirmed by the combination of 1H and 13C NMR 

spectroscopy including 2D HMBC and HSQC experiments, as well as mass spectrometry. Thus, 1H NMR spectra 

of amides 1d,f, thioamides 2a-h, and amidines 4a-o display methyl group singlets and benzene ring protons at 

2.16-2.71 and 7.04-8.10 ppm, respectively. The characteristic signals in the 13C NMR spectra at 201.3–203.7 

ppm of the thioamides 2a-h, corresponding to carbons of the thioamide group, were observed. Signals of 

carbons of amidine groups of compounds 4a-o appear at 163.3-167.5 ppm, i.e. close to signals for methylene 

active N-sulfonyl amidines.4,14 

 

 

Scheme 2.  Synthesis of (benzimidazol-2-yl)ethanethioamides 2a-h and (benzimidazol-2-yl)acetamidines 4a-o. 
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Figure 1.  Structures of N-sulfonylacetamidines 4a-o prepared according to Scheme 2. 

 
Additional proof for the proposed structures of compounds 4a-o was achieved by X-ray analysis of a single 

crystal of 4o which was successfully obtained by crystallization from ethyl acetate (Figure 2). The compound 
crystallized in the centrosymmetric space group of the triclinic system. The molecule has a Г-like configuration. 
The bonds lengths and interatomic angles in the molecules do not show any significant deviations from 
standard. The amidine moiety is fixed in the plane of the heterocycle in the limits 0.1 Å by intramolecular H-
bonds, the C-atom of CF2-group deviated from the least-squares plane of the heterocycle by 0.2 Å. The 
fluorophenyl substituent deviated from the plane of the heterocycle, the dihedral angle between the planes of 
the rings is 72о and the interatomic angle N(2)–S(1)–C(8) is 102.55(15)о. In the crystal the molecules form 

dimeric intermolecular H-bonds NH...N with participation of the amidine NH-group and N-atom of the 

imidazole, and NH...O H-bonds between imidazole and O-atom of the SO2-group. 
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Figure 2.  Compound 4o according to XRD data in the thermal ellipsoids of the 50% probability level. 

 

A plausible mechanism of the formation of amidines 4 is depicted in Scheme 3. We propose the formation 

of intermediate thiatriazolines A via 1,3-dipolar cycloaddition with inverse electron demand of the azido group 

of sulfonyl azides to the C=S bond of thioamides 2. The fact that thioamides 2g,h bearing electron withdrawing 

CF3 group does not react with sulfonyl azides is in accord with this interpretation. The elimination of 

dinitrogen and sulfur from thiatriazoline A finalizes the formation of amidines 4. 

 

 
 

Scheme 3.  Plausible mechanism of formation of N-sulfonyl amidines 4. 

 

Molecular Modeling 

Energetically minimized ligand conformations were docked (see Experimental part) into the active site of CK1 

and CK1, respectively. Binding poses were determined and subsequently ranked based on their calculated 

binding affinities. While we did not obtain a plausible binding mode for CK1, the top ranked binding poses 

and the corresponding 2D ligand interaction diagrams for CK1 are shown in Figure 3. Consistent with the 

binding mode of benzimidazole inhibitors in CK1 determined by X-ray crystallography in our study a highly 

similar situation could be obtained for 2c. Herein, the 2-amino-benzimidazole core is involved in key H-bonds 

towards the hinge motif Leu85. The CF3 motif occupies the hydrophic pocket surrounded by Ile148/23, Met80, 

Tyr56, and Pro66. On the other site, the thioacetate moiety is oriented towards the hydrophobic region which 

opens to the solvent exposed area. Thus, based on the binding mode of hit fragment 2c, a structure based 

optimization approach towards more potent CK1 inhibitors will be developed. 
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Figure 3. Modeled binding modes of 2c in the ATP-binding pocket of CK1δ (pdb 4TWC). Key amino acid 

residues and ligand-active site interactions are shown (left). Right: corresponding 2D ligand interaction 

diagram. 

 

Inhibitory effects of selected compounds on the kinase activity of CK1 isoforms 

Selected compounds were initially screened for their activity against different CK1 isoforms against a 

concentration of 10 µM ATP. Under these conditions, the synthesized compounds did not show activities on 

CK1α and CK1γ3. Modest activities were found for 2c and 4l which slightly inhibit CK1δ and CK1ε respectively.  

Hit compound 2c showed an IC50 value of approximately 7 µM for CK1δ and 4l an IC50 of 4.86 µM for CK1ε 

(Figure 4). Although these values are significantly weaker than IC50 values of known highly potent CK1-specific 

inhibitors,22 our results suggest that our scaffolds might be improved for further development of potent CK1 

isoform kinase inhibitors. 

 

 
 

Figure 4.  IC50 curves of relevant compounds against CK1δ and CK1ε. Curve A: 2c; curve B: 4l. 
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Conclusions 
 

We have demonstrated a simple, efficient and convenient three-step synthesis of N-benzimidazol-2-yl-N'-

sulfonyl amidines of acetic acid from commercially available reagents. Fifteen compounds were successfully 

obtained and tested for inhibition of casein kinases. Among the synthesized compounds, two products showed 

inhibitory abilities towards CK1δ and CK1ε. The search for more active compounds using the developed 

synthetic approach is in progress in our laboratories. 

 

 

Experimental Section 
 

General. 1H and 13C NMR spectra (including 2D HMBS and HSQC) were recorded with Bruker Avance II 

spectrometer in DMSO-d6 at 50 oC (400 and 100 MHz, respectively) using Me4Si as an internal standard. Mass 

spectra were recorded with Shimadzu GCMS-QP2010 Ultra instrument in electron ionization (EI) mode. 

Electron energy - 70eV. IR spectra were obtained with Bruker Alpha (NPVO, ZnSe) IR-Fur spectrometer. 

Microanalyses were performed with PerkinElmer Series II CHNS/O 2400 elemental analyzer. Melting points 

were determined using a Stuart SMP 3 apparatus. The progress of the reactions and the purity of the 

compounds were monitored by TLC on TLC Silica gel 60 F245 aluminum sheets (Merck KGaA) in EtOAc-PE 

system. 

 

X-Ray analysis. The single-crystal X-ray diffraction data for 4o were collected with a "Xcalibur 3" 

diffractometer (Oxford Diffraction) with CCD detector applying the standard procedure (CuKα-irradiation (λ = 

1.54184 Å), graphite monochromator, ω-scans with step 1о at T = 295(2) K). Empirical absorption correction 

was applied. The structure was solved by direct method with SHELX97 and was refined by full-matrix least 

squares on F2 using SHELX97.23 

Synthesis. The amides 1a-с,e,g were synthesized by known procedures.5-7,24 

Ethyl 2-acetamido-1H-benzimidazole-5-carboxylate (1d). A solution of ethyl 2-amino-1H-benzimidazole-5-

carboxylate (1.20 g, 5.85 mmol) in excess of acetic anhydride (5 mL) was refluxed for 1 h. Water (30 mL) was 

added to the cooled reaction mixture and the resulting suspension was stirred for 30 min. The formed 

precipitate was filtered off, washed with water, dried and crystallized from ethyl acetate. Colorless powder, 

yield 1.02 g (70%), mp 293-295 oС. 1H NMR (400 MHz, DMSO-d6) δ 1.33 (t, J 8.0 Hz, 3H, CH3CH2O), 2.18 (s, 3Н, 

СН3), 4.31 (q, J 8.0 Hz, 2H, CH3CH2O), 7.50 (d, J 8.0 Hz, 1H, CHarom.), 7.76 (d, J 8.0 Hz, 1H, CHarom.), 8.10 (s, 1H, 

CHarom.), 11. 58 (br. s, 1H, NH), 12. 19 (br. s, 1H, NH). 13С (100 MHz, DMSO-d6) δ 14.1 (CH3CH2O), 23.0 (CH3), 

60.0 (CH3CH2O), 114.0 (C-7), 115.2 (C-4), 122.3 (C-6), 122.5 (C-5), 134.9 (C-3a), 140.4 (C-7a), 148.6 (C-2), 168.2 

(C-5'), 169.7 (C-2'). MS m/z EI (70 eV), (I,%): 247 [M+] (50), 205 (100), 177 (30), 160 (80), 132 (30), 105 (29). IR 

(ATR, ZnSe): νmax (cm-1) 1470, 1509, 1585, 1620, 1684, 1724, 3210, 3303. Anal. Calcd for C12H13N3O3 (247.25): 

C, 58.29; H, 5.30; N, 17.00. Found: C, 58.58; H, 5.49; N, 16.85. 

N-(2,2-Difluoro-5H-[1,3]dioxolo[4,5-e]benzimidazol-6-yl)acetamide (1f). To 2,2-difluoro-5H-[1,3]dioxolo[4,5-

e]benzimidazol-6-amine hydrobromide (1.46 g, 4.96 mmol, 1.0 equiv.) in anhydrous DCM (6 mL) DIPEA (0.77 g, 

0.98 mL, 5.95 mmol, 1.2 equiv.) was added. The resulting solution was stirred at room temperature for 10 min 

and then cooled to 10 oС. Then acetyl chloride (0.467 g, 0.42 mL, 5.95 mmol, 1.2 equiv.) was added to the 

solution. The resulting suspension was stirred for 5 h. The formed precipitate was filtered off. The filtrate was 

evaporated to dryness and water was added to the residue. An additional portion of crude acetamide 1f was 

filtered off. The combined precipitates were transferred to a glass beaker and saturated aq. NaHCO3 (25 mL) 
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was added. The resulting suspension was stirred for 20 min and the precipitate was filtered off, washed with 

water and dried. The crude product was crystallized from ethanol. Colorless powder, yield 0.98 g (77%), mp > 

300 oС. 1H NMR (400 MHz, DMSO-d6) δ 2.16 (s, 3Н, СН3), 7.40 (s, 2Н, Нarom.), 11.53 (br. s, 1Н, NH), 12.12 (br. s, 

1Н, NH). 13С (100 MHz, DMSO-d6) δ 23.0 (С-10), 94.1 (С-7), 98.3 (С-4), 128.0 (С-3а), 131.2 (t, J 250.0 Hz, С-8), 

135.9 (С-7а), 138.3 (2C, С-5, С-6), 146.9 (С-2), 169.5 (С=О). MS EI (70 eV), m/z (I,%): 255 [M]+ (38), 213 (100), 

147 (25), 119 (40), 43 (42). IR (ATR, ZnSe): νmax (cm-1) 1129, 1213, 1245, 1463, 1604, 1650, 1683, 2943, 3331. 

Anal. Calcd for C10H7F2N3O3 (255.18): C, 47.07; H, 2.77; N, 16.47. Found: C, 47.38; H, 2.52; N, 16.60%. 

2,2,2-Trifluoro-N-(5-methyl-1H-benzimidazol-2-yl)acetamide (1h). Trifluoroacetic anhydride (6.0 mmol, 1.26 

g, 0.77 mL, 2.0 equiv.) was added to a solution of 5-methyl-1H-benzimidazol-2-amine (3.0 mmol, 0.44 g, 1.0 

equiv.) in anhydrous 1,4-dioxane (15 mL) at 10 oC. The reaction mixture was stirred at room temperature for 4 

h. After reaction completion, the mixture was concentrated to dryness under vacuum and water (20 mL) was 

added to the solid residue. The resulting mixture was stirred for 20 min. The precipitate was filtered off, 

washed with water, ethanol, dried at 60 oC and used in the next stage without further purification. Colorless 

precipitate, mp 275-279 oС, yield 80% (0.58 g). 1H NMR (400 MHz, DMSO-d6) δ 2.38 (s, 3Н, СН3), 7.08 (d, J 8.0 

Hz, 1Н, СНarom.), 7.25 (s, 1Н, СНarom.), 7.33 (d, J 8.0 Hz, 1Н, СНarom.), 12.83 (br. s, 2Н, NH). 13С NMR (100 MHz, 

DMSO-d6) δ 21.0 (CH3), 111.7 (C-7), 111.8 (C-4), 117.3 (q, J 286.3 Hz, СF3), 124.5 (C-6), 126.8 (C-7a), 129.0 (C-

3a), 133.0 (C-5), 152.2 (C-2), 163.1 (q, J 33.6 Hz, C=O). MS m/z EI (70 eV), (I,%): 243 [M+] (52), 174 (100), 146 

(20). IR (ATR, ZnSe): νmax (cm-1) 1131, 1195, 1573, 1587, 1620, 1636. Anal. Calcd for C10H8F3N3O (243.19): C, 

49.39; H, 3.32; N, 17.28. Found: C, 49.75; H, 3.62; N, 17.50%. 

General procedure for the synthesis of (benzimidazol-2-yl)ethanethioamides 2a-f. A mixture of the 

corresponding amide 1 (3.20 mmol, 1.0 equiv.) and Lawesson’s reagent (1.76 mmol, 0.55 equiv.) was refluxed 

in anhydrous 1,4-dioxane (20 mL) for 6 h. After completion, the reaction mixture was concentrated under 

vacuum to dryness. The crude product was purified by silica gel column chromatography (EtOAc/PE) to afford 

the corresponding thioamide 2. 

N-(1H-Benzimidazol-2-yl)ethanethioamide (2a). Yellow powder, mp 203-205 oС, yield 51% (0.31 g), eluent: 

EtOAc/PE (1:2). 1H NMR (400 MHz, DMSO-d6) δ 2.67 (s, 3H, CH3), 7.20-7.22 (m, 2H, CHarom.), 7.55-7.58 (m, 2H, 

CHarom.), 12.92 (br. s, 2H, NH2). 13С (100 MHz, DMSO-d6) δ 35.9 (СН3), 113.9 (2C, C-4, C-7), 122.2 (2C, C-5, C-6), 

133.4 (2C, C-3a, C-7a), 148.6 (C-2), 203.7 (C=S). MS m/z EI (70 eV), (I, %): 191 [M]+ (47), 176 (20), 150 (30), 133 

(100), 105 (25), 59 (45). IR (ATR, ZnSe): νmax (cm-1) 1258, 1360, 1441, 1527, 1583, 1630, 1690, 2829, 2930, 

3331. Anal. Calcd for C9H9N3S (191.25): C, 56.52; H, 4.74; N, 21.97. Found: C, 56.74; H, 4.57; N, 21.83 %. 

N-(5-Methyl-1H-benzimidazol-2-yl)ethanethioamide (2b). Light yellow powder, mp 201-203 oС, yield 64% 

(0.42 g), eluent EtOAc/PE (1:4). 1H NMR (400 MHz, DMSO-d6) δ 2.39 (s, 3H, CH3), 2.64 (s, 3H, CH3), 7.03 (d, J 8.0 

Hz, 1H, CHarom.), 7.35 (s, 1Н, СНarom.), 7.44 (d, J 8.0 Hz, 1H, CHarom.), 12.96 (br. s, 2H, NH2). 13С (100 MHz, DMSO-

d6) δ 21.2 (C-8), 36.3 (C-10), 113.7 (2C, C-4, C-7), 131.0 (C-7a), 131.8 (C-5), 133.1 (C-3a), 148.9 (C-2), 203.6 (C-

9). MS EI (70 eV), m/z (I,%): 205 [M]+ (72), 190 (42), 164 (46), 146 (100), 77 (29), 59 (57). IR (ATR, ZnSe): νmax 

(cm-1) 1303, 1326, 1350, 1436, 1478, 1581, 1600, 1635. Anal. Calcd for C10H11N3S (205.28): C, 58.51; H, 5.40; N, 

20.47. Found: C, 58.32; H, 5.68; N, 20.27%. 

N-(5-(Trifluoromethyl)-1H-benzimidazol-2-yl)ethanethioamide (2c). Yellow powder, mp 225-227 oС, yield 40% 

(0.33 g), eluent EtOAc/PE (1:7). 1H NMR (400 MHz, DMSO-d6) δ 2.73 (s, 3H, CH3), 7.50 (d, J 8.0 Hz, 1H, CHarom.), 

7.76 (d, J 8.0 Hz, 1H, CHarom.), 7.94 (br. s, 1H, CHarom.), 13.10 (br. s, 2H, NH2). 13С NMR(100 MHz, DMSO-d6) δ 

35.1 (CH3), 112.1 (C-4), 115.1 (C-7), 118.5 (d, J 3.0 Hz, C-6), 122.2 (q, J 32.0 Hz, C-5), 124.8 (q, J 270.0 Hz, C-11), 

134.7 (C-3a), 137.1 (C-7a), 149.3 (C-2), 202.7 (C=S). MS EI (70 eV), m/z (I,%): 259 [M]+ (63), 218 (22), 59 (100). 

IR (ATR, ZnSe): νmax (cm-1) 1102, 1329, 1528, 1606, 1640, 2824, 3184. Anal. Calcd for C10H8F3N3S (259.25): C, 

46.33; H, 3.11; N, 16.21. Found: C, 46.50; H, 2.89; N, 16.05%. 
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Ethyl 2-(ethanethioamido)-1H-benzimidazole-5-carboxylate (2d). Yellow powder, mp 198-200 oС, yield 70% 

(0.59 g), eluent EtOAc/PE (1:2). 1H NMR (400 MHz, DMSO-d6) δ 1.40 (t, J 8.0 Hz, 3H, CH3CH2O), 2.71 (s, 3H, 

CH3), 4.34 (q, J 8.0 Hz, 2H, CH3CH2O), 7.58-7.60 (m, 1H, Harom.), 7.81-7.84 (m, 1H, Harom.), 8.17-8.20 (m, 1H, 

Harom.), 13.08 (br. s, 2H, NH2). 13С (100 MHz, DMSO-d6) δ 14.2 (C-10), 35.4 (C-12), 60.3 (C-9), 114.5 (C-7), 116.2 

(C-4), 123.3 (C-6), 123.9 (C-5), 133.2 (C-3a), 139.1 (C-7a), 149.6 (C-2), 166.1 (C-11), 203.3 (C=O). MS EI (70 eV), 

m/z (I, %): 263 [M+] (100), 248 (36), 222 (46), 205 (47), 160 (68), 59 (81). IR (ATR, ZnSe): νmax (cm-1) 1254, 1361, 

1518, 1576, 1597, 1637, 1694, 2931, 3079, 3205. Anal. Calcd for C12H13N3O2S (263.31): C, 54.74; H, 4.98; N, 

15.96. Found: C, 55.03; H, 5.13; N, 15.85%. 

N-(1-Methyl-1H-benzimidazol-2-yl)ethanethioamide (2e). Beige powder, mp 119-122 oС, yield 57% (0.38 g), 

eluent EtOAc/PE (1:4). 1H NMR (400 MHz, DMSO-d6) δ 2.62 (s, 3H, CH3), 3.68 (s, 3H, CH3), 7.31-7.35 (m, 2Н, 

Нarom.), 7.58 (d, J 8.0 Hz, 1H, CHarom.), 7.70 (d, J 8.0 Hz, 1H, CHarom.), 13.51 (br. s, 1H, NH). 13С (100 MHz, DMSO-

d6) δ 28.7 (C-10), 38.4 (C-9), 110.0 (C-7), 113.9 (C-4), 123.1 (C-5), 123.3 (C-6), 129.4 (C-3a), 130.4 (C-7a), 150.9 

(C-2), 208.8 (C-8). MS EI (70 eV), m/z (I,%): 205 [M]+ (70), 190 (100), 172 (25), 164 (30), 132 (45), 77 (28), 59 

(26). IR (ATR, ZnSe): νmax (cm-1) 1395, 1542, 1614, 2934. Anal. Calcd for C10H11N3S (205.28): C, 58.51; H, 5.40; N, 

20.47. Found: C, 58.83; H, 5.58; N, 20.56%. 

N-(2,2-Difluoro-5H-[1,3]dioxolo[4,5-e]benzimidazol-6-yl)ethanethioamide (2f). Light yellow powder, mp 152-

154 oС, yield 51% (0.44 g), eluent EtOAc/PE (1:3). 1H NMR (400 MHz, DMSO-d6) δ 2.69 (s, 3H, CH3), 7.55 (s, 2H, 

СНarom.), 12.92 (br. s, 2Н, NH). 13С (100 MHz, DMSO-d6) δ 34.9 (СН3), 96.8 (2C, C-4, C-7), 130.9 (2C, C-3a, C-7a), 

131.2 (t, J 253.0 Hz, С-8), 139.1 (2С, С-5, С-6), 147.5 (С-2), 201.3 (С=S). MS EI (70 eV), m/z (I,%): 271 [M]+ (82), 

230 (54), 213 (83), 147 (24), 119 (55), 59 (100). IR (ATR, ZnSe): νmax (cm-1) 1140, 1246, 1460, 1610, 1647, 1692, 

2938, 3327. Anal. Calcd for C10H7F2N3O2S (271.24): C, 44.28; H, 2.60; N, 15.49. Found: C, 44.11; H, 2.85; N, 

15.65%. 

N-(1H-Benzimidazol-2-yl)-2,2,2-trifluoroethanethioamide (2g). Bright yellow powder, mp 183-187 oС, yield 

66% (0.52 g), eluent EtOAc/PE (1:8). 1H NMR (400 MHz, DMSO-d6) δ 7.37-7.41 (m, 2Н, Нarom.), 7.63-7.66 (m, 2Н, 

Нarom.), 13.64 (br. s, 2Н, NH). 13С (100 MHz, DMSO-d6) δ 112.7 (2C, C-4, C-7), 118.4 (q, J 278.0 Hz, C-9), 124.3 

(2C, C-5, C-6), 128.4 (2C, C-3a, C-7a), 151.6 (C-2), 187.5 (q, J 34.0 Hz, C-8). MS EI (70 eV), m/z (I,%): 245 [M]+ 

(49), 176 (100), 149 (28), 118 (24), 88 (16). IR (ATR, ZnSe): νmax (cm-1) 973, 1131, 1267, 1430, 1553, 1614, 3022, 

3351. Anal. Calcd for C9H6F3N3S (245.22): C, 44.08; H, 2.47; N, 17.14. Found: C, 43.90; H, 2.60; N, 17.25 %. 

2,2,2-Trifluoro-N-(5-methyl-1H-benzimidazol-2-yl)ethanethioamide (2h). Bright yellow powder, mp 226-239 
oС, yield 57% (0.47 g), eluent EtOAc/PE (1:4→1:2). 1H NMR (400 MHz, DMSO-d6) δ 2.44 (s, 3H, CH3), 7.22 (d, J 

8.0 Hz, 1H, СНarom.), 7.43 (s, 1Н, СНarom.), 7.54 (d, J 8.0 Hz, 1H, СНarom.), 13.62 (br. s, 2Н, NH). MS EI (70 eV), m/z 

(I, %): 259 [M]+ (40), 190 (100), 95 (30), 77 (20). IR (ATR, ZnSe): νmax (cm-1) 1117, 1182, 1270, 1452, 1563, 1610, 

2923, 3096. Anal. Calc for C10H8F3N3S (259.25): C, 46.33; H, 3.11; N, 16.21. Found: C, 46.68; H, 3.39; N, 16.04%. 

General procedure for the synthesis of (E)-N-(1H-benzimidazol-2-yl)-N'-sulfonylacetimidamides 4a-o.A 

solution of thioamide 2 (1.3 mmol, 1.0 equiv.) and sulfonyl azide 3 (1.3 mmol, 1.0 equiv.) in anhydrous EtOH (8 

mL) was refluxed for 2-10 h. After completion, the reaction mixture was concentrated under vacuum to 

dryness, and the residue was purified by flash chromatography over silica gel (60−120) using EtOAc/PE 

mixtures or crystallized from EtOH. 

(E)-N-(1H-Benzimidazol-2-yl)-N'-(methylsulfonyl)acetimidamide (4a). Reaction time 5 h. Colorless powder, 

mp 285-287 oС (from EtOH), yield 82% (0.27 g). 1H NMR (400 MHz, DMSO-d6) δ 2.53 (s, 3H, CH3), 3.22 (s, 3H, 

SO2CH3), 7.15-7.17 (m, 2H, CHarom.), 7.48-7.50 (m, 2H, CHarom.), 11.83 (br. s, 2H, NH). 13C NMR (100 MHz, 

DMSO-d6): δ 20.9 (C9), 42.8 (C-10), 113.9 (2C, C-4, C-9), 121.8 (2C, C-5, C-6), 134.9 (2C, C-3a, C-7a), 146.5 (C-2), 

165.0 (C-8). MS EI (70 eV), m/z (I, %): 252 [M+] (25), 132 (100), 105 (42). IR (ATR, ZnSe): νmax (cm-1) 1061, 1285, 
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1455, 1514, 1565, 1618, 2815, 3360. Anal. Calcd for C10H12N4O2S (252.29): C, 47.61; H, 4.79; N, 22.21. Found: 

C, 47.83; H, 4.95; N, 22.09%. 

(E)-N-(1H-Benzimidazol-2-yl)-N'-tosylacetimidamide (4b). Reaction time 5 h. Colorless powder, mp 243-245 oС 

(from EtOH), yield 66% (0.28 g). 1H NMR (400 MHz, DMSO-d6): δ 2.37 (s, 3H, 4-CH3C6H4), 2.41 (s, 3H, CH3), 

7.19-7.21 (m, 2H, CHarom.), 7.35 (d, J 8.0 Hz, 2H, CHarom.), 7.51-7.53 (m, 2H, CHarom.), 7.86 (d, J 8.0 Hz, 2H, 

CHarom.), 12.03 (br. s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 20.9 (C-10), 21.4 (C-9), 113.8 (2C, C-4, C-9), 

122.3 (2C, C-5, C-6), 126.3 (2C-o), 129.3 (2C-m), 133.8 (2C, C-3a, C-7a), 140.2 (C-i), 142.2 (C-p), 147.1 (C-2), 

167.5 (C-8). MS EI (70 eV), m/z (I, %): 328 [M+] (20), 223 (38), 155 (22), 132 (100), 105 (38), 91 (83). IR (ATR, 

ZnSe): νmax (cm-1) 1093, 1143, 1271, 1454, 1517, 1645, 2897, 3032, 3329. Anal. Calcd for C16H16N4O2S (328.39): 

C, 58.52; H, 4.91; N, 17.06. Found: C, 58.32; H, 5.10; N, 17.14%. 

(E)-N'-[(4-Fluorophenyl)sulfonyl]-N-(5-methyl-1H-benzimidazol-2-yl)acetimidamide (4c). Reaction time 2 h. 

Colorless powder, mp 254-257 oС (from EtOH), yield 67% (0.26 g). 1H NMR (400 MHz, DMSO-d6): δ 2.40 (s, 6H, 

2CH3), 7.03 (d, J 8.0 Hz, 1H, CHarom.), 7.29 (s, 1H, CHarom.), 7.37-7.39 (m, 3H, CHarom.), 8.00-8.04 (m, 2H, CHarom.), 

12.02 (br. s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 21.1 (C-8), 22.1 (C-10), 113.2 (2C, C-4, C-7), 115.9 (d, J 

22.5 Hz, C-m), 123.8 (C-6), 129.2 (d, J 9.2 Hz, C-o), 130.8 (C-7a), 131.9 (C-5), 132.9 (C-3a), 139.9 (d, J 29.0, C-i), 

147.7 (C-2), 163.8 (d, J 248.6 Hz, C-p), 168.3 (C-9). MS EI (70 eV), m/z (I, %): 346 [M+] (18), 159 (18), 146 (100), 

95 (50). IR (ATR, ZnSe): νmax (cm-1) 1025, 1089, 1148, 1236, 1281, 1345, 1472, 1542, 2886, 3037, 3324. Anal. 

Calcd for C16H15FN4O2S (346.38): C, 55.48; H, 4.37; N, 16.18. Found: C, 55.78; H, 4.04; N, 16.07%. 

(E)-N'-Tosyl-N-[5-(trifluoromethyl)-1H-benzimidazol-2-yl]acetimidamide (4d). Reaction time 3 h. Colorless 

powder, mp 213-216 oС (from EtOH), yield 67% (0.40 g). 1H NMR (400 MHz, DMSO-d6): δ 2.37 (s, 3H, 

4-CH3C6H4), 2.47 (s, 3H, CH3), 7.38 (d, J 8.0 Hz, 2H, CHarom.), 7.49 (t, J 8.0 Hz, 1H, CHarom.), 7.71 (d, J 8.0 Hz, 1H, 

CHarom.), 7.78-7.94 (m, 3H, CHarom.), 12.22 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 20.2 (C-10), 20.9 (C-

17), 112.1 (C-4), 115.2 (C-7), 118.6 (C-6), 122.3 (q, J 31.0 Hz, C-5), 125.1 (q, J 270.0 Hz, CF3), 126.4 (C-16), 126.5 

(C-12), 129.5 (2C, C-13, C-15), 135.3 (C-3a), 138.1 (C-7a), 139.4 (C-11), 142.7 (C-14), 147.7 (C-2), 166.0 (C-9). 

MS EI (70 eV), m/z (I,%): 396 [M+] (16), 291 (40), 200 (20), 155 (36), 91 (100). IR (ATR, ZnSe): νmax (cm-1) 1032, 

1092, 1110, 1150, 1275, 1333, 1526, 1632, 1650, 2920, 3017, 3300. Anal. Calcd for C17H15F3N4O2S (396.39): C, 

51.51; H, 3.81; N, 14.13. Found: C, 51.80; H, 3.98; N, 14.04%. 

(E)-N'-[(4-Fluorophenyl)sulfonyl]-N-[5-(trifluoromethyl)-1H-benzimidazol-2-yl]acetimidamide (4e). Reaction 

time 5 h. Colorless powder, mp 255-258 oС (fashed with EtOH), yield 96% (0.51 g). 1H NMR (400 MHz, DMSO-

d6): δ 2.52 (s, 3H, CH3), 7.40 (t, J 8.0 Hz, 2H, CHarom.), 7.48 (d, J 8.0 Hz, 1H, CHarom.), 7.70 (d, J 8.0 Hz, 1H, CHarom.), 

7.89 (s, 1H, CHarom.), 8.05-8.08 (m, 2H, CHarom.), 12.08 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 20.4 (C-

10), 112.0 (C-4), 115.5 (C-7), 116.1 (d, J 22.6 Hz, C-m), 118.6 (C-6), 122.6 (q, J 31.4 Hz, C-5), 125.0 (q, J 269.9 Hz, 

C-8), 129.4 (d, J 9.3 Hz, C-o), 136.0 (C-3a), 138.4 (C-7a), 138.9 (C-11), 147.8 (C-2), 163.1 (d, J 49.2 Hz, C-p), 

163.4 (C-9). MS EI (70 eV), m/z (I, %): 400 [M+] (19), 295 (36), 200 (44), 173 (16), 159 (53), 95 (100). IR (ATR, 

ZnSe): νmax (cm-1) 1029, 1087, 1144, 1274, 1331, 1484, 1525, 1630, 1649, 2863, 3013, 3311. Anal. Calcd for 

C16H12F4N4O2S (400.35): C, 48.00; H, 3.02; N, 13.99. Found: C, 47.82; H, 3.25; N, 13.83%. 

Ethyl (E)-2-[N'-(methylsulfonyl)acetimidamido]-1H-benzimidazole-5-carboxylate (4f). Reaction time 7 h. 

Colorless powder, mp 276-279 oС (for purification the crude product was refluxed in ethanol (5 mL) for 5 min 

and filtered off), yield 72% (0.30 g). 1H NMR (400 MHz, DMSO-d6): δ 1.34 (t, J 8.0 Hz, 3H, CH3CH2O), 2.50, (s, 

3H, CH3), 3.25 (s, 3H, CH3SO2), 4.33 (qv, J 8.0 Hz, 2H, CH3CH2O), 7.57 (d, J 8.0 Hz, 2H, Harom.), 7.82 (d, J 8.0 

Hz,1H, Harom.), 8.18 (s, 1H, Harom.), 11.94 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.1 (C-7'), 20.2 (C-

3'), 42.7 (C-4'), 60.2 (C-6'), 114.5 (C-7), 115.3 (C-4), 122.9 (-C6), 123.2 (C-5), 134.9 (C-3a), 140.0 (C-7a), 147.9 

(C-2), 164.3 (C-2'), 166.0 (C=O). MS EI (70 eV), m/z (I,%): 324 (M+, 58), 283 (18), 245 (16), 204 (100), 176 (24), 
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160 (30), 131 (31), 104 (23), 79 (37). IR (ATR, ZnSe): νmax (cm-1) 1132, 1232, 1254, 1286, 1521, 1556, 1698, 

2960, 3243. Anal. Calc for C19H20N4O4S (324.36): C, 48.14; H, 4.97; N, 17.27. Found: C, 47.90; H, 4.83; N, 17.40%. 

Ethyl (E)-2-(N'-tosylacetimidamido)-1H-benzimidazole-5-carboxylate (4g). Reaction time 4 h. Colorless 

powder, mp 224-227 oС (from EtOH), yield 70% (0.36 g). 1H NMR (400 MHz, DMSO-d6): δ 1.34 (t, J 8.0 Hz, 3H, 

CH3CH2O), 2.37, (s, 3H, CH3), 2.48 (s, 3H, 4-CH3C6H4), 4.33 (q, J 8.0 Hz, 2H, CH3CH2O), 7.38 (d, J 8.0 Hz, 2H, 

Harom), 7.58 (d, J 8.0 Hz, 1H, Harom.), 7.82 (d, J 8.0 Hz, 1H, Harom.), 7.88 (d, J 8.0 Hz, 2H, Harom.), 8.18 (s, 1H, Harom.), 

12.04 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.0 (C-7'), 20.3 (C-3'), 20.7 (C-4'), 60.2 (C-6'), 114.2 (C-

7), 115.6 (C-4), 123.1 (C-5), 123.4 (C-6), 126.3 (2C-o), 129.2 (2C-m), 134.6 (C-3a), 139.4 (C-7a), 139.6 (2C-i), 

142.3 (C-p), 147.8 (C-2), 165.9 (C=O), 166.2 (C-2'). MS EI (70 eV), m/z (I,%): 400 [M+] (18), 295 (54), 204 (43), 

155 (36), 91 (100). IR (ATR, ZnSe): νmax (cm-1) 1154, 1307, 1521, 1701, 2984, 3280. Anal. Calcd for C19H20N4O4S 

(400.45): C, 56.99; H, 5.03; N, 13.99. Found: C, 57.29; H, 5.09; N, 13.75%. 

Ethyl (E)-2-{N'-[(4-methoxyphenyl)sulfonyl]acetimidamido}-1H-benzimidazole-5-carboxylate (4h). Reaction 

time 10 h. Colorless powder, mp 240-244 oС (from EtOH), yield 69% (0.37 g). 1H NMR (400 MHz, DMSO-d6): δ 

1.35 (t, J 8.0 Hz, 3H, CH3CH2O), 2.48, (s, 3H, CH3), 3.83 (s, 3H, 4-CH3OC6H4), 4.33 (q, J 8.0 Hz, 2H, CH3CH2O), 7.09 

(d, J 8.0 Hz, 2H, Harom.), 7.58 (d, J 8.0 Hz, 1H, Harom.), 7.82 (d, J 8.0 Hz, 1H, Harom.), 7.94 (d, J 8.0 Hz, 2H, Harom.), 

8.18 (s, 1H, Harom.), 12.04 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.0 (C-7'), 20.1 (C-3'), 55.4 (C-4'), 

60.2 (C-6'), 114.0 (2C-m), 114.2 (C-7), 115.2 (C-4), 123.0 (C-6), 123.4 (C-5), 128.4 (2C-o), 134.2 (2C-i), 135.2 (C-

3a), 139.9 (C-7a), 147.9 (C-2), 162.0 (C-i), 165.8 (C-2'), 166.0 (C=O). MS EI (70 eV), m/z (I,%): 416 [M]+ (13), 311 

(100), 204 (35), 171 (59), 107 (62), 77 (59). IR (ATR, ZnSe): νmax (cm-1) 1158, 1315, 1529, 1700, 2989, 3283. 

Anal. Calcd for C19H20N4O4S (416.45): C, 54.80; H, 4.84; N, 13.45. Found: C, 55.14; H, 5.05; N, 13.26%. 

Ethyl (E)-2-{N'-[(4-fluorophenyl)sulfonyl]acetimidamido}-1H-benzimidazole-5-carboxylate (4i). Reaction time 

2 h. Colorless crystals, mp 259-262 oС (from EtOH), yield 73% (0.38 g). 1H NMR (400 MHz, DMSO-d6): δ 1.33 (t, 

J 8.0 Hz, 3H, CH3CH2O), 2.50, (s, 3H, CH3), 4.32 (qv, J 8.0 Hz, 2H, CH3CH2O), 7.42 (t, J 8.0 Hz, 2H, Harom.), 7.59 (d, 

J 8.0 Hz, 1H, Harom.), 7.83 (dd, J 4.0 Hz, J 8.0 Hz, 1H, Harom.), 8.08-8.11 (m, 2H, Harom.), 8.20 (s, 1H, Harom.), 12.21 

(br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.2 (C-7'), 20.7 (C-3'), 60.5 (C-6'), 114.5 (C-7), 115.7 (C-4), 

116.1 (d, J 22.0 Hz, C-m), 123.3 (C-5), 123.5 (C-6), 129.6 (d, J 9.0 Hz, C-o), 134.5 (C-3a), 138.9 (d, J 3.0 Hz, C-i), 

139.4 (C-7a), 147.9 (C-2), 164.06 (d, J 249.0 Hz, C-p), 166.1 (C=O), 166.7 (C-2'). MS EI (70 eV), m/z (I,%): 404 

[M+] (27), 299 (46), 204 (100), 159 (68), 95 (75). IR (ATR, ZnSe): νmax (cm-1) 1153, 1309, 1521, 1701, 2997, 3297. 

Anal. Calcd for C18H17FN4O4S (404.42): C, 53.46; H, 4.24; N, 13.85. Found: C, 53.62; H, 3.97; N, 13.98%. 

Ethyl (E)-2-(N'-{[2-(methoxycarbonyl)thien-3-yl]sulfonyl}acetimidamido)-1H-benzimidazole-5-carboxylate (4j). 

Reaction time 6 h. Colorless crystals, mp 234-236 oС (from EtOH), yield 68% (0.40 g). 1H NMR (400 MHz, 

DMSO-d6): δ 1.34 (t, J 8.0 Hz, 3H, CH3CH2O), 2.58, (s, 3H, CH3), 3.87 (s, 3H, CH3OCO), 4.32 (q, J 8.0 Hz, 2H, 

CH3CH2O), 7.57 (d, J 8.0 Hz, 1H, Harom.), 7.62 (d, J 8.0 Hz, 1H, Harom.), 7.83 (d, J 8.0 Hz, 1H, Harom.), 7.96 (d, J 8.0 

Hz, 2H, Harom.), 8.13 (s, 1H, Harom.), 12.32 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.0 (C-7'), 20.9 (C-

3'), 52.8 (C-8’), 60.3 (C-6'), 113.9 (C-7), 115.1 (C-4), 123.3 (C-6), 123.6 (C-5), 129.6 (C-12), 131.2 (C-11), 131.3 

(C-13), 133.9 (C-3a), 138.6 (C-7a), 145.5 (C-10), 148.3 (C-2), 160.4 (C-9'), 165.8 (C-5'), 166.3 (C-2'). MS EI (70 

eV), m/z (I,%): 450 [M+] (11), 345 (100), 313 (82), 285 (85), 268 (47), 240 (39), 205 (49), 134 (30), 64 (35). IR 

(ATR, ZnSe): νmax (cm-1) 1142, 1248, 1310, 1519, 1538, 1706, 2915, 3233. Anal. Calcd for C18H18N4O6S2 (450.48): 

C, 47.99; H, 4.03; N, 12.44. Found: C, 48.20; H, 4.25; N, 12.55%. 

Ethyl (E)-2-{N'-[(3,1,2-benzothiadiazol-4-yl)sulfonyl]acetimidamido}-1H-benzimidazole-5-carboxylate (4k). 

Reaction time 5 h. Colorless crystals, mp 185-187 oС (from EtOH), yield 71% (0.41 g). 1H NMR (400 MHz, 

DMSO-d6): δ 1.34 (t, J 8.0 Hz, 3H, CH3CH2O), 2.71, (s, 3H, CH3), 4.32 (qv, J 8.0 Hz, 2H, CH3CH2O), 7.53 (d, J 8.0 

Hz, 1H, Harom.), 7.80 (d, J 8.0 Hz, 1H, Harom.), 7.88-7.92 (m, 1H, Harom.), 8.05 (s, 1H, Harom.), 8.36-8.39 (m, 2H, 

Harom.), 12.14 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.0 (C-7'), 21.1 (C-3'), 60.2 (C-6'), 113.9 (C-7), 
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115.4 (C-4), 123.2 (C-6), 123.6 (C-5), 125.9 (C-o), 128.6 (C-m), 129.4 (C-p), 133.5 (C-i), 134.4 (C-3a), 138.7 (C-

7a), 148.0 (C-2), 148.9 (C-4'), 155.1 (C-8'), 165.8 (C=O), 166.5 (C-2'). MS EI (70 eV), m/z (I,%): 444 [M+] (18), 339 

(100), 204 (34), 176 (20), 135 (60). IR (ATR, ZnSe): νmax (cm-1) 1138, 1259, 1318, 1528, 1530, 1703, 2925, 3230. 

Anal. Calcd for C18H16N6O4S2 (444.48): C, 48.64; H, 3.63; N, 18.91. Found: C, 48.97; H, 3.45; N, 18.97%. 

Ethyl (E)-2-{N'-[(3,1,2-benzoxadiazol-4-yl)sulfonyl]acetimidamido}-1H-benzimidazole-5-carboxylate (4l). 

Reaction time 4 h. Colorless powder, mp 215-218 oС, yield 73% (0.41 g). 1H NMR (400 MHz, DMSO-d6): δ 1.34 

(t, J 8.0 Hz, 3H, CH3CH2O), 2.68, (s, 3H, CH3), 4.33 (qv, J 8.0 Hz, 2H, CH3CH2O), 7.51 (d, J 4.0 Hz, 1H, Harom.), 7.76-

7.80 (m, 1H, Harom.), 7.83 (d, J 4.0 Hz, 1H, Harom.), 8.06 (s, 1H, Harom.), 8.22 (d, J 8.0 Hz, 1H, Harom.), 8.34 (d, J 8.0 

Hz, 1H, Harom.), 12.24 (br. s, 2H, 2NH). 13C NMR (100 MHz, DMSO-d6): δ 14.0 (C-7'), 21.8 (C-3'), 60.3 (C-6'), 113.6 

(C-7), 115.0 (C-4), 120.7 (C-o), 123.4 (C-6), 123.9 (C-5), 130.4 (C-i), 131.5 (C-m), 132.3 (C-p), 133.6 (C-3a), 137.9 

(C-7a), 144.6 (C-4'), 148.2 (C-2), 149.5 (C-8'), 165.7 (C=O), 167.4 (C-2'). MS EI (70 eV), m/z (I,%): 428 [M+] (10), 

323 (100), 278 (20), 206 (33), 178 (20), 64 (29). IR (ATR, ZnSe): νmax (cm-1) 1035, 1139, 1283, 1316, 1429, 1516, 

1556, 1624, 1708, 2813, 3074, 3327. Anal. Calcd for C18H16N6O5S (428.42): C, 50.46; H, 3.76; N, 19.62. Found: 

C, 50.30; H, 3.57; N, 19.82%. 

(E)-N-(1-Methyl-1H-benzimidazol-2-yl)-N'-tosylacetimidamide (4m). Reaction time 4 h. Colorless powder, mp 

206-210 oС (from EtOH), yield 66% (0.29 g). 1H NMR (400 MHz, DMSO-d6): δ 2.37 (s, 3H, CH3), 3.60 (s, 3H, 

N‒CH3), 7.29-7.35 (m, 4H, CHarom.), 7.53 (d, J 8.0 Hz, 1H, CHarom.), 7.61 (d, J 8.0 Hz, 1H, CHarom.), 7.78 (d, J 8.0 Hz, 

1H, CHarom.), 12.30 (br. s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 20.9 (C-17), 28.8 (C-8), 113.6 (C-4), 123.2 

(3C, C-3a, C-5, C-6), 126.3 (2C, C-m), 129.2 (2C, C-o), 130.7 (C-7a), 141.0 (C-i), 141.7 (C-p), 148.7 (C-2), 166.1 (C-

9). MS EI (70 eV), m/z (I,%): 342 [M]+ (20), 237 (38), 146 (100), 119 (43), 91 (68). IR (ATR, ZnSe): νmax (cm-1) 

1004, 1079, 1139, 1270, 1329, 1364, 1399, 1553, 3254. Anal. Calcd for C17H18N4O2S (342.42): C, 59.63; H, 5.30; 

N, 16.36. Found: C, 59.87; H, 5.44; N, 16.23%. 

(E)-N'-((4-Fluorophenyl)sulfonyl)-N-(1-methyl-1H-benzimidazol-2-yl)acetimidamide (4n). Reaction time 4 h. 

Colorless powder, mp 209-211 oС (from EtOH), yield 73% (0.33 g). 1H NMR (400 MHz, DMSO-d6): δ 2.35 (s, 3H, 

CH3), 2.61 (s, 3H, NCH3), 7.28-7.37 (m, 4H, CHarom.), 7.54 (d, J 8.0 Hz, 1H, CHarom.), 7.60 (d, J 8.0 Hz, 1H, CHarom.), 

7.94-7.98 (m, 2H, CHarom.), 12.28 (br. s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 24.0 (C-10), 28.8 (C-8), 110.3 

(C-7), 113.3 (C-4), 115.6 (C-3a), 115.8 (d, J 21.0 Hz, C-m), 123.3 (2C, C-5, C-6), 129.2 (d, J 9.0 Hz, C-o), 130.5 (C-

7a), 140.3 (d, J 3.0 Hz, C-i), 148.8 (C-2), 163.6 (d, J 248.0 Hz, C-p), 170.9 (C-9). MS EI (70 eV): m/z (I, %): 346 

[M+] (20), 241 (19), 146 (100), 119 (45), 95 (53). IR (ATR, ZnSe): νmax (cm-1) 1000, 1080, 1139 1228, 1272, 1327, 

1466, 1555, 3251. Anal. Calcd for C16H15FN4O2S (346.38): C, 55.48; H, 4.37; N, 16.18. Found: C, 55.63; H, 4.06; 

N, 16.30%. 

(E)-N-(2,2-Difluoro-5H-[1,3]dioxolo[4,5-e]benzimidazol-6-yl)-N'-[(4-fluorophenyl)sulfonyl]acetimidamide 

(4o). Reaction time 9 h (6.6 mmol (5.0 equiv) of azide 3c were used), light yellow crystals (column, eluent 

EtOAc/PE (3:1)), mp 131-134 oС, yield 70% (0.36 g). 1H NMR (400 MHz, DMSO-d6): δ 2.49, (s, 3H, CH3), 7.37-

7.42 (m, 2H, Harom.), 7.52 (s, 2H, Harom.), 8.02-8.05 (m, 2H, Harom.), 11.92 (br. s, 2H, 2NH). 13C NMR (100 MHz, 

DMSO-d6): δ 20.0 (C-3'), 96.6 (2C, C-4, C-7), 115.9 (d, J 22.0 Hz, C-m), 129.2 (d, J 9.5 Hz, C-o), 130.9 (2C, C-3a, C-

7a), 131.0 (t, J 250.0 Hz, C-8), 138.8 (d, J 3.0 Hz, C-i), 138.9 (2C, C-5, C-6), 145.5 (C-2), 163.9 (d, J 250.0 Hz, C-p), 

165.6 (C-2'). MS EI (70 eV), m/z (I,%): 412 [M+] (26), 212 (100), 159 (47), 118 (20), 95 (77). IR (ATR, ZnSe): νmax 

(cm-1) 1143, 1234, 1463, 1550, 2898, 3004, 3107, 3277. Anal. Calcd for C16H11F3N4O4S (412.34): C, 46.61; H, 

2.69; N, 13.59. Found: C, 46.53; H, 2.88; N, 13.70%. 

Crystal Data for 4o. Crystal is triclinic, space group P-1, a = 6.823(7), b = 10.989(17), c = 11.360(9) Å, α = 

76.93(10)o, β = 80.77(8)o, γ = 87.12(10)o, V = 818.9(16) Å3, Z = 2, μ(CuKα) = 2.398 mm-1. On the angles 4.04 < θ < 

67.75o 16712 reflections were collected, 2913 independent reflection (Rint = 0.0515), completeness for θ = 

67.75o 98.1%. Final R-factors of the refinement: R1 = 0.0411, wR2 = 0.1016 [I>2σ(I)]; R1 = 0.0553, wR2 = 0.1048 
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(all data), GooF = 1.002. Maximum and minimum electron density: 0.221 and -0.373 Åē-3. 

Single crystal data for compound 4o (CCDC 1552962) have been deposited in the Cambridge Crystallographic 

Data Center and can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from 

the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). 

 

Molecular modeling 

Molecular modeling was performed on a DELL Precision T5500 eight core workstation. For visualization 

Maestro, version 10.4, 2014 (Schrödinger LLC, New York, NY, USA) was used.25 Protein structures were 

prepared prior to docking by Schrödinger Protein Preparation Wizard synchronizing the following modules: 

Epik,26 Impact, and Prime.27 Water molecules beyond 5 Å from hetero atoms have been deleted. H-bond 

optimization was performed in a standard sampling, the Root-mean-square deviation for atomic positions 

cutoff of heavy atoms in subsequent protein minimization was set to 0.3 Å. By using this workflow, for CK1δ, 

we generated a model based on the high-resolution structure PDB 4TWC,28 and for CK1 based on PDB 4HNI.29 

Ligands were prepared by MacroModel30 to generate energetically minimized structures. Ionization and 

tautomeric states were processed by LigPrep utilizing Hammet and Taft methodology-based Epik. Additionally, 

Epik state penalties were implemented. Receptor grid were generated by Glide SP settings.29 Energetically 

minimized ligand conformations were docked into the active site of the protein, respectively. Binding poses 

were determined and subsequently ranked based on their calculated binding affinities. 

Biological testing. Materials and methods 

In vitro kinase assays. In vitro kinase assays were performed with different CK1 isoforms and selected 

compounds at an ATP concentration of 10 µM and using DMSO controls as described previously.32,33 Bovine 

GST-CK1α (FP296)34 human GST-CK1γ (FP1054)35 human GST-CK1δ TV1 (FP1417),36 and recombinant human 

GST-CK1ε (FP455)37 were used as sources of enzyme. Phosphorylated proteins were separated by SDS-PAGE 

and stained with Coomassie. α-casein served as a substrate for all kinase assay reactions. Phosphate 

incorporation was detected by autoradiography of dried gels. The phosphorylated protein bands were cut out 

and quantified by Cherenkov counting. Dose-response analyses were carried out using GraphPad Prism 6 

(GraphPad Software, Inc., La Jolla CA, USA) statistical software. In vitro kinase assays were performed in the 

presence or absence of the selected compounds. CK1α, CK1γ3, CK1δ, and CK1ε were used as sources of 

enzyme and α-casein as substrate. All compounds were used at a concentration of 10 µM. Kinase reactions 

were separated by SDS-PAGE and quantification of phosphate incorporation was performed by Cherenkov 

counting. Results are shown as normalized bar graphs using DMSO as a control for 100% kinase activity 

(dotted line). Error bars represent the standard deviation (SD) (DMSO: dimethyl sulfoxide). 

Cell culture. The glioblastoma cell line DK-MG38 was obtained from the Leibniz Institute DSMZ (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen). Cells were grown in RPMI medium. The medium was 

supplemented with 10% fetal calf serum (FCS; Biochrom, Berlin, Germany), 100 units/ml penicillin, 100 µg/ml 

streptomycin (Gibco, Karlsruhe, Germany) and 2 mM glutamine. The cultures were kept at 37 oC in a 

humidified 5% carbon dioxide atmosphere. 

Cell viability assay. Cells were seeded at a concentration of 5 x 104 cells/ml in 96-well cell culture plates and 

allowed to attach overnight at 37 oC and 5% CO2. To investigate the effects of selected compounds on cancer 

cell proliferation, cells were treated with 10 µM of each compound, with untreated and DMSO-treated cells 

serving as a control. All media were exchanged every two days for fresh treated or control media. After an 

incubation period of 7 days at 37 oC, 10 µl of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) 12 mM solution in PBS] were added, followed by further incubation for 4 h at 37 oC. Media 

containing MTT was then removed carefully and 100 µl of 0.04 N HCl in isopropanol were added. To dissolve 

mailto:deposit@ccdc.cam.ac.uk
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the formazan crystals, the plates were placed for 30 min on an orbital shaker. The resulting purple solution 

was spectrophotometrically measured at 570 nm with TECAN Spectra II Plate Reader using Magellan3 (TECAN) 

as software. 

IC50 values for 2c and 4l were evaluated for their inhibition of CK1δ and CK1ε, respectively (Figure 4). 

Determination of the 50% inhibitory concentration (IC50) curves of these compounds on the kinase activities 

was performed using serial dilutions with CK1δ and CK1ε as enzymes. Kinase reactions were separated by SDS-

PAGE and the phosphate incorporation into α-casein was measured by Cherenkov counting. Obtained data 

were normalized towards their respective DMSO control reactions. Dose-response analyses were performed 

using GraphPad Prism 6, curves are shown as mean. Error bars represent the standard deviation (SD) (DMSO: 

dimethyl sulfoxide). 
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