Lewis acid-catalyzed Wolff cyclocondensation in the synthesis of (1H-1,2,3-triazolyl)furoxans

Leonid L. Fershtat,*a Maxim R. Radzhabov,a,b Anna A. Romanova,b,c Ivan V. Ananyev,c and Nina N. Makhova*a

aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation
bHigher Chemical College, Russian Academy of Sciences, 125047 Moscow, Russian Federation
cA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991 Moscow, Russian Federation

Emails: fershtat@ioc.ac.ru, mnn@ioc.ac.ru

Dedicated to Prof. Oleg A. Rakitin on the occasion of his 65th birthday

Received 02-22-2017 Accepted 03-13-2017 Published on line 05-21-2017

Abstract

Novel regioselective approach to the synthesis of (1H-1,2,3-triazol-1-yl)furoxans based on Lewis acid-catalyzed Wolff cyclocondensation of aminofuroxans with diazo-β-dicarbonyl compounds has been developed. This approach allows to involve aminofuroxans as substrates which are very weak nucleophiles and usually do not participate in reactions with common electrophiles.

Keywords: Furoxan, oxadiazole, triazole, Lewis acid, Wolff cyclocondensation, nitrogen heterocycles

DOI: https://doi.org/10.24820/ark.5550190.p010.070
Introduction

One of the useful tools for the design of new drug candidates with improved pharmacokinetic profiles is the molecular hybridization of different compounds with known pharmacological activity.\(^1\,^2\) To solve this issue, it is necessary to create new, highly effective and regioselective methods. Recent scientific investigations of our laboratory were directed towards the synthesis and reactivity of nitrogen-oxygen containing heterocycles - 1,2,5-oxadiazone 2-oxides (furoxans).\(^3\,^4\) Furoxans are unique representatives of heterocyclic compounds. On the one hand they are of interest as high energy compounds due to a positive enthalpy of formation and the presence of two active oxygen atoms in the molecule.\(^5\,^12\) On the other hand furoxan derivatives reveal a wide spectrum of pharmacological activity owing to their ability to release NO under physiological conditions.\(^13\,^19\)

Our last developments resulted in new, effective one-pot approaches for the synthesis of a series of hybrid heterocyclic systems incorporating furoxan ring connected with various pharmacophoric and/or energy rich poly-nitrogen (nitrogen-oxygen) heterocycles (isomeric 1,2,3- and 1,2,4-triazoles, 1,2,4- and 1,3,4-oxadiazones, tetrazole, pyridines, tetrahydroisoquinoline, indenopyridine, etc.).\(^20\,^28\)

Among synthesized compounds (1,2,3-triazol-1-yl)furoxan derivatives 1 attract special attention due to a wide variety of their pharmacological activity. The 1,2,3-triazole nucleus is found in a large number of compounds with agrochemical and pharmaceutical uses,\(^29\) shows anti-HIV,\(^30\) antimicrobial,\(^31\) antibacterial,\(^32\) and antitumor\(^33\) properties and has also found many applications in chemical industries.\(^34\) Cycloadditions of azides to alkynes and their derivatives (Huisgen reaction)\(^34\,^36\) continue to be the main synthetic route to 1,2,3-triazoles. The reactions are usually catalyzed with transition metals and carried out at room or elevated temperature. Reactivity and regioselectivity in reactions of acetylenes with azides depends strongly on electronic and steric factors of both reagents.

Earlier\(^22\) we attempted to synthesize (1,2,3-triazol-1-yl)furoxans 1 based on the [3+2] cycloaddition of azidofuroxans with acetylene derivatives. Unfortunately, in contrast to analogous reactions of other heterocyclic azides (in particular, azidofurazans\(^37\,^38\)), the expected cycloaddition products were not obtained in any of the organic solvents even at prolonged heating. The [3+2] cycloaddition of azidofuroxans to internal and terminal acetylenes was found to occur only in the ionic liquids medium at prolonged heating and resulted in (1H-1,2,3-triazol-1-yl)furoxans in moderate to good yields. The reaction with terminal acetylenes proceeded with high regioselectivity, but another regioisomer was also formed in significant amounts. A decreased reactivity of azidofuroxans in [3+2] cycloaddition reaction connected, evidently, with a strong electron-withdrawing character of the furoxan ring.\(^39\) Therefore, it was of interest to develop a new, more effective and regioselective method for the synthesis of (1H-1,2,3-triazol-1-yl)furoxans 1.

We paid attention to 1,2,3-triazole synthesis based on Wolff’s cyclocondensation of diazoketones with aromatic and aliphatic amines under different catalysts. This reaction was discovered in 1902\(^40\,^41\) and has become one of the known synthetic approaches to 1,2,3-triazoles.\(^42\,^43\) The advantage of this method is that it yields only one of the two possible regioisomers of the 1,2,3-triazoles with unsymmetrically substituted substrates and safe amines are used instead of dangerous azido derivatives. Since aminofuroxans are rather available compounds,\(^3\) we aimed to develop new, regioselective method for the synthesis of (1H-1,2,3-triazol-1-yl)furoxans 1 by an interaction of 4-aminofuroxans 2 with diazo-β-dicarbonyl compounds 3.

Results and Discussion

The investigations were begun with screening of the optimal conditions for the reaction of aminofuroxan 2a with 3-diazo-2,4-dioxopentane (3a) (Table 1). Different Lewis acids as catalysts, their amount, temperature,
solvent and reactants ratio were varied. As expected, in absence of any catalyst the reaction did not occur (Table 1, entry 1). With the use of 10 mol.% of BF$_3$·OEt$_2$ target (1,2,3-triazolyl)furoxan 1a was isolated in moderate yield (entry 2). The increase of catalyst amount to 20 mol.% significantly increased the yield to 83% (entry 3), while further increase of catalyst molar equivalents resulted in yield decrease (entries 4,5). Probably, 10 mol.% of BF$_3$·OEt$_2$ is insufficient, while the increase in amount of catalyst more than 20 mol.% partially blocks the amino group of furoxan 2a. Utilization of transition metal salts afforded target product only in trace amounts (entries 6-9). Replacement of MeCN with DMF or [bmim]BF$_4$ as well as variation of temperature and reactants ratio also did not improve the product’s yield (entries 10-15). Iron (III) chloride and nickel nitrate were also ineffective in this reaction (entries 16,17). Therefore, the optimal conditions were found to include reactants ratio 1:1 and 20 mol.% BF$_3$·OEt$_2$ as catalyst in MeCN at room temperature.

Table 1. Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol. %)</th>
<th>Solvent</th>
<th>Equiv. of 3a</th>
<th>T, °C</th>
<th>Yield, %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>BF$_3$·OEt$_2$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>BF$_3$·OEt$_2$ (50)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>BF$_3$·OEt$_2$ (100)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>GaCl$_3$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>Traceb</td>
</tr>
<tr>
<td>7</td>
<td>Sc(OTf)$_3$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>Traceb</td>
</tr>
<tr>
<td>8</td>
<td>Y(OTf)$_3$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>Traceb</td>
</tr>
<tr>
<td>9</td>
<td>Yb(OTf)$_3$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>Traceb</td>
</tr>
<tr>
<td>10</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>DMF</td>
<td>1.0</td>
<td>20</td>
<td>–c</td>
</tr>
<tr>
<td>11</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>[bmim]BF$_4$</td>
<td>1.0</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>MeCN</td>
<td>1.0</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>MeCN</td>
<td>1.0</td>
<td>50</td>
<td>Traceb</td>
</tr>
<tr>
<td>14</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>MeCN</td>
<td>1.5</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>BF$_3$·OEt$_2$ (20)</td>
<td>MeCN</td>
<td>2.0</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>FeCl$_3$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>Traceb</td>
</tr>
<tr>
<td>17</td>
<td>Ni(NO$_3$)$_2$ (10)</td>
<td>MeCN</td>
<td>1.0</td>
<td>20</td>
<td>–c</td>
</tr>
</tbody>
</table>

a Isolated yields are for an average of two runs. b Determined by 1H NMR spectroscopy. c Decomposition of initial compounds was observed.

This approach to the (1H-1,2,3-triazol-1-yl)furoxan scaffold assembly encouraged us to examine the substrate scope of the reaction of aminofuroxans 2 with diazo-β-dicarbonyl compounds 3. The reaction of aminofuroxans 2a-d incorporating phenyl, methyl, ester and acetyl groups respectively proceeded successfully with 3-diazo-2,4-dioxopentane (3a), however, the highest yield of final 1,2,3-triazole was obtained for compound 1a. Among diazo compounds, 2-diazoacetoacetic ester (3b) was found to be less reactive since the yields of final products 1b,d,f were lower in comparison with the yields of compounds 1a,c,e. Moreover, the
reaction of aminofuroxan 2d comprising acetyl group at C(3) atom of the furoxan ring with diazo compound 3b did not occur. In general, the yields of (1H-1,2,3-triazol-1-yl)furoxans were moderate which is explained by low basicity and low nucleophilicity of aminofuroxans due to the strong electron-withdrawing effect of the furoxan ring.39 Interestingly, the reaction of 3-amino-4-phenylfuroxan, which is more nucleophilic than the corresponding 4-amino isomer 2a, with diazo compound 3a did not occur due to the decomposition of starting materials.

Table 2. Substrate scope for the reaction of aminofuroxans 2 with diazo compounds 3a

\begin{equation}
\text{2a-d} + \text{3a,b} \xrightarrow{\text{BF}_3\text{OEt}_2 (20 \text{ mol.\%), MeCN, rt}} \text{1a-g}
\end{equation}

\begin{align*}
R^1 = \text{Ph (a), Me (b), } & R^2 = R^3 = \text{Me (a)} \\
\text{CO}_2\text{Me (c), Ac (d) } & R^2 = \text{Me, } R^3 = \text{OEt (b)}
\end{align*}

\begin{align*}
\text{1a (83\%)} & \\
\text{1b (38\%)} & \\
\text{1c (40\%)} & \\
\text{1d (12\%)} & \\
\text{1e (28\%)} & \\
\text{1f (27\%)} & \\
\text{1g (53\%)} &
\end{align*}

a Isolated yields are for an average of two runs. b 1.5 equiv. of 3a were used.

A plausible mechanism for the BF\textsubscript{3}:OEt\textsubscript{2}-catalyzed reaction of aminofuroxans 2 with diazo compounds 3 is outlined in Scheme 1. Since aminofuroxans are of very low basicity and correspond to weak nucleophiles39 it seems that BF\textsubscript{3}:OEt\textsubscript{2} activates the diazo compound 3 to generate complex 4. The electrophilicity of the carbonyl group in intermediate 4 has increased enough for the condensation with aminofuroxan 2 to occur. Finally, the intramolecular cyclization in imine 5 completes the regioselective 1,2,3-triazole 1 formation incorporating R2 substituent at C(5) atom of the triazole ring.

All of the synthesized (1H-1,2,3-triazol-1-yl)furoxans 1a-g were characterized by spectral and analytical methods. Finally, we confirmed the structures of the 1,2,3-triazole derivatives by a single-crystal X-ray diffraction study of the representative compound 1a (Figure 1).
Scheme 1. Plausible mechanism for (1H-1,2,3-triazol-1-yl)furoxan (1) formation.

Figure 1. A general view of the 1a molecule. Non-hydrogen atoms are represented by probability ellipsoids of atomic vibrations (p = 50%).

According to X-ray data compound 1a is the first structurally characterized furoxan derivative with a triazole ring (Figure 1). The mutual orientation of cyclic fragments is noteworthy: the N(2)N(3)C(6)C(7) torsion angle is 74.8(6)°, while the C(13)C(8)C(7)O(5) torsion angle is 15.9(8)°. The corresponding π-conjugation between phenyl and furoxan rings is a known attribute of phenylfuroxans^{44} (the C(7)-C(8) bond length is 1.461(2) Å), its lack between two electron-withdrawing heterocycles is in line with the rather large bond length of the C(6)-N(3) bond (1.401(2) Å). The combination of conjugation effects and steric hindrance in the 1a molecule causes the formation of quite strong intermolecular stacking interactions (the C(7)...C(13) distance is 3.289(2) Å) together with weak C-H...O contacts (the C(9)...O(3) distance is 3.119(2) Å, with C-H bond length being normalized on 1.080 Å the O(3)...H(5C) distance is 2.355 Å). These supramolecular forces lead to association of molecules into continuous piles (Figure 2a). An interesting “key-lock” contacts are also presented in crystal which can be described as an interaction between lone electron pair of the N(4) nitrogen atom of furoxan cycle and π*-orbital of triazole ring (the C(4)...N(4) distance is 3.223(2) Å); these interactions bind piles into layers (Figure 2b). The 3D-crystal structure is stabilized by weak hydrogen bonds between acetyl fragment and the O(3) oxygen atom of the furoxan ring (with normalized C-H bonds the H(1AC)...O(3) distance is greater than 2.51 Å). It is interesting to note that the O(1) oxygen atom does not participate in any
of intermolecular contacts which may serve as an explanation of disordered of acetyl fragment on three positions (the occupation ratio is 2 : 2 : 1).

![Figure 2. The fragment of piles in the crystal of 1a (a) and the fragment of a layer (b).](image)

Conclusions

In summary, atom-economical approach to the synthesis of (1H-1,2,3-triazol-1-yl)furoxans based on BF$_3$·OEt$_2$-catalyzed Wolff cyclocondensation of aminofuroxans with diazo compounds has been developed. The advantages of this method are operational simplicity, step economy and the use of readily accessible reagents. It was estimated that the reaction is quite sensitive to the nature of the substituent either at furoxan ring or in diazo derivative. Capability to participate in Wolff cyclocondensation decreases with an increase of the electron-withdrawing character of the functional groups in both substrates.

Experimental Section

General. All reactions were carried out in well-cleaned oven-dried glassware with magnetic stirring. 1H and 13C NMR spectra were recorded on a Bruker AM-300 (300.13 and 75.47 MHz, respectively) spectrometer and referenced to residual solvent peak. The chemical shifts are reported in ppm (δ); multiplicities are indicated by s (singlet), d (doublet), t (triplet), qv (quartet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz. The IR spectra were recorded on a Bruker “Alpha” spectrometer in the range 400-4000 cm$^{-1}$ (resolution 2 cm$^{-1}$). Elemental analyses were performed by the CHN Analyzer Perkin-Elmer 2400. The melting points were determined on “Stuart SMP20” melting point apparatus and are uncorrected. Analytical thin-layer chromatography (TLC) was carried out on Merck 25 TLC silica gel 60 F$_{254}$ aluminum sheets. The visualization of the TLC plates was accomplished with a UV light. Column chromatography was performed on silica gel 60 A (0.060-0.200 mm, Acros Organics). All solvents were purified and dried using standard methods prior to use. 4-Amino-3-phenylfuroxan 2a, 45 4-amino-3-methylfuroxan 2b, 46 4-amino-3-(methoxycarbonyl)furoxan 2c, 47 3-acetyl-4-aminofuroxan 2d 48 and diazo compounds 3a,b 41 were synthesized according literature. All other reagents were purchased from Acros Organics and used without further purification.

Crystallographic data. Crystals of 1a (C$_{13}$H$_{11}$N$_{5}$O$_{3}$, $M = 285.27$) are monoclinic, space group P2/n, at 120K: $a = 12.284(2)$, $b = 6.9526(14)$, $c = 16.078(4)$ Å, $β = 100.501(4)^{°}$, $V = 1350.1(5)$ Å3, $d_{calc} = 1.403$ g·cm$^{-3}$, $μ = 1.04$
mm$^{-1}$, F(000) = 592. Intensities of 8022 reflections were measured with a Bruker APEX II CCD diffractometer [\(\lambda(\text{MoK}\alpha)=0.71073\text{\AA}, \omega\)-scans, 2\(\theta<70^\circ\)] and 5525 independent reflections [\(R_{int}=0.0242\)] were used in further refinement. The structure was solved by direct method and refined by the full-matrix least-squares technique against \(F^2\) in the isotropic-anisotropic approximation. The hydrogen atoms H(C) positions were calculated. All hydrogen atoms were refined in the isotropic approximation within the riding model. For \(1\text{a}\), the refinement converged to \(wR_2 = 0.1974\) and \(GOF \equiv 1.004\) for all independent reflections (\(R_1 = 0.0619\) was calculated against \(F\) for 2902 observed reflections with \(l>2\sigma(l)\)). The disorder of the O(1) and C(1A) atoms was modeled with superposition of three places due to the lowest residual density peaks observed for such consideration. The final refinement was done using restraints on the bond lengths (with maximum shift parameters up to 0.01 Ang.) and constraints on the anisotropic displacement parameters from different parts. All calculations were performed using SHELX 2014.\(^{49,50}\) CCDC 1528040 contains the supplementary crystallographic data for \(1\text{a}\). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html , or from the CCDC, 12 Union Road, Cambridge, CB21EZ, UK; or deposit@ccdc.cam.ac.uk.

General procedure for the synthesis of \((1H,1,2,3-triazol-1-yl)furoxans 1\). The corresponding aminofuroxan \(2\) (1 mmol) was added in one portion to a magnetically stirred solution of diazo compound \(3\) (1 mmol) in MeCN (2 mL) at room temperature. Then BF$_3$·Et$_2$O (5 \(\mu\)L, 0.2 mmol) was added. The reaction mixture was stirred until complete consumption of the initial aminofuroxan \(2\) (TLC monitoring, eluent CHCl$_3$: EtOAc = 15:1). Then the solvent was evaporated \textit{in vacuo} and the residue was purified by column chromatography on SiO$_2$ (eluent CHCl$_3$: EtOAc = 15:1).

\begin{itemize}
 \item **4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-3-phenylfuroxan (1a).** Yellow needles; yield 237 mg (83%); m.p.: 108.0-109.5 °C (MeCN); \(R_f\) 0.54 (CHCl$_3$: EtOAc = 15:1); \(\text{IR (KBr, } \nu_{\text{max}}\text{, cm}^{-1})\): 2963, 2923, 2854, 1689, 1614, 1546, 1477, 1448, 1367, 1264, 967; \(\nu^1\)NMR (300 MHz, CDCl$_3$) \(\delta_{\text{H}}:\) 2.64 (s, 3H, CH$_3$), 2.79 (s, 3H, COCH$_3$), 7.41-7.51 (m, 5H, Ph); \(\nu^{13}\)C NMR (75.5 MHz, CDCl$_3$) \(\delta_{\text{C}}:\) 9.4, 28.1, 110.9, 120.1, 127.2, 129.5, 131.6, 140.1, 143.4, 148.0, 193.5; Calcld for C$_{13}$H$_{11}$N$_2$O$_3$: C, 57.74; H, 3.89; N, 24.56; Found: C, 57.66; H, 3.97; N, 24.67 %.

 \item **4-(4-{Ethoxy carbonyl})-5-methyl-1H-1,2,3-triazol-1-yl]-3-phenylfuroxan (1b).** Yellow prisms; yield 120 mg (38%); m.p.: 121.5-122.2 °C (MeCN); \(R_f\) 0.55 (CHCl$_3$: EtOAc = 15:1); \(\text{IR (KBr, } \nu_{\text{max}}\text{, cm}^{-1})\): 2989, 1736, 1605, 1448, 1263, 1215, 1179, 1107, 776; \(\nu^1\)NMR (300 MHz, CDCl$_3$) \(\delta_{\text{H}}:\) 1.24 (t, 3H, COCH$_2$CH$_3$), \(J\ 7.1\ Hz\)), 2.62 (s, 3H, CH$_3$), 4.47 (q, 2H, COCH$_2$CH$_3$), \(\nu^{13}\)C NMR (75.5 MHz, CDCl$_3$) \(\delta_{\text{C}}:\) 9.4, 14.3, 61.7, 111.0, 120.1, 127.1, 129.5, 131.7, 137.2, 141.5, 148.1, 160.8; HRMS (ESI) \(m/z\) calcld for C$_{14}$H$_{14}$N$_2$O$_4$ (M + H)$^+$: 316.1040, found 316.1030.

 \item **4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-3-methylfuroxan (1c).** Yellow prisms; yield 89 mg (40%); m.p.: 87.1-88.5 °C (MeCN); \(R_f\) 0.63 (CHCl$_3$: EtOAc = 15:1); \(\text{IR (KBr, } \nu_{\text{max}}\text{, cm}^{-1})\): 2964, 2920, 1692, 1621, 1546, 1487, 1372, 1301; \(\nu^1\)NMR (300 MHz, CDCl$_3$) \(\delta_{\text{H}}:\) 2.49 (s, 3H, CH$_3$ furoxan), 2.75 (s, 3H, CH$_3$ triazole), 2.88 (s, 3H, COCH$_3$); \(\nu^{13}\)C NMR (75.5 MHz, CDCl$_3$) \(\delta_{\text{C}}:\) 9.4, 10.3, 28.2, 108.8, 139.4, 143.6, 150.6, 193.5; HRMS (ESI) \(m/z\) calcld for C$_8$H$_{10}$N$_2$O$_3$ (M + H)$^+$: 224.0778, found 224.0772.

 \item **4-(4-{Ethoxy carbonyl})-5-methyl-1H-1,2,3-triazol-1-yl]-3-methylfuroxan (1d).** Yellow oil; yield 30 mg (12%); \(R_f\) 0.59 (CHCl$_3$: EtOAc = 15:1); \(\text{IR (thin layer, } \nu_{\text{max}}\text{, cm}^{-1})\): 2984, 2935, 2857, 1724, 1630, 1554, 1494, 1416, 1342, 1236, 1203, 1114, 1032, 848; \(\nu^1\)NMR (300 MHz, CDCl$_3$) \(\delta_{\text{H}}:\) 1.46 (t, 3H, COCH$_2$CH$_3$), \(J\ 7.1\ Hz\)), 2.48 (s, 3H, CH$_3$ furoxan), 2.91 (s, 3H, CH$_3$ triazole), 4.49 (q, 2H, COCH$_2$CH$_3$), \(\nu^{13}\)C NMR (75.5 MHz, CDCl$_3$) \(\delta_{\text{C}}:\) 9.4, 10.4, 14.3, 61.7, 108.8, 137.5, 140.7, 150.6, 160.8; Calcld for C$_9$H$_{11}$NO$_4$ (%): C, 42.69; H, 4.38; N, 27.66; Found: C, 42.81; H, 4.30; N, 27.53 %.

 \item **4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-3-(methoxy carbonyl)furoxan (1e).** Yellow oil; yield 75 mg (28%); \(R_f\) 0.51 (CHCl$_3$: EtOAc = 15:1); \(\text{IR (KBr, } \nu_{\text{max}}\text{, cm}^{-1})\): 2973, 2926, 2854, 1744, 1692, 1630, 1547, 1492, 1435, 1318, 1216, 1183, 1029, 947, 782; \(\nu^1\)NMR (300 MHz, CDCl$_3$) \(\delta_{\text{H}}:\) 2.71 (s, 3H, CH$_3$ triazole), 2.78 (s, 3H, COCH$_3$), 3.90 \textit{...}
(s, 3H, COOCH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ C: 9.5, 28.1, 54.1, 104.1, 143.1, 146.6, 154.8, 193.5; Calcd for C₉H₉N₅O₅: C, 40.46; H, 3.40; N, 26.21; Found: C, 40.33; H, 3.51; N, 26.08 %.

4-{(Ethyloxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl)-3-(methyloxycarbonyl)furoxan (1f). Yellow oil; yield 80 mg (27%); Rf 0.55 (CHCl₃ : EtOAc = 15:1); ¹H NMR (300 MHz, CDCl₃) δ H: 1.43 (t, 3H, COCH₂CH₃, 3J 7.1 Hz), 2.71 (s, 3H, CH₃), 3.88 (s, 3H, COOCH₃), 4.49 (q, 2H, OC₃H₂CH₃, 3J 7.1 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ C: 8.2, 9.1, 48.9, 56.4, 111.3, 136.2, 141.3, 149.5, 154.2, 155.5; Calcd for C₁₀H₁₁N₅O₆: C, 40.41; H, 3.73; N, 23.56; Found: C, 40.29; H, 3.85; N, 23.69 %.

3-{Acetyl-4-(acetyl-5-methyl-1H-1,2,3-triazol-1-yl)furoxan (1g). Yellow oil; yield 133 mg (53%); Rf 0.60 (CHCl₃ : EtOAc = 15:1); IR (thin layer, νmax, cm⁻¹): 2925, 2851, 1688, 1618, 1545, 1372, 1016, 954, 620; ¹H NMR (300 MHz, CDCl₃) δ H: 2.59 (s, 3H, CH₃triazole), 2.61 (s, 3H, COCH₃furoxan), 2.71 (s, 3H, COCH₃triazole); ¹³C NMR (75.5 MHz, CDCl₃) δ C: 9.2, 27.8, 28.5, 109.2, 140.2, 142.9, 146.5, 184.0, 193.4; Calcd for C₉H₉N₅O₄: C, 43.03; H, 3.61; N, 27.88; Found: C, 42.94; H, 3.79; N, 27.76 %.

Acknowledgements

Support from the Russian Foundation for Basic Research (Projects 16-33-00564 and 16-29-01042) and the Russian President’s Council for Grants (Project MK-1302.2017.3) is greatly acknowledged.

References

https://doi.org/10.1039/C6RA05110C

https://doi.org/10.1016/j.tetlet.2016.11.023

https://doi.org/10.1021/jm00050a015

https://doi.org/10.1021/jm990373e

https://doi.org/10.1007/BF02256852

https://doi.org/10.1070/MC2002v012n03ABEH001590

https://doi.org/10.1002/ardp.19883210207

https://doi.org/10.1002/jlac.19023250202

https://doi.org/10.1002/jlac.19123940104

https://doi.org/10.1070/RC2005v074n04ABEH000893

 https://doi.org/10.1002/hlca.19700530738

 https://doi.org/10.1070/MC1995v005n02ABEH000456

 https://doi.org/10.1023/A:1026073108494

 https://doi.org/10.1070/MC1995v005n02ABEH000455

 https://doi.org/10.1107/S2053229614024218

 https://doi.org/10.1107/S0108767707043930