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Abstract 

This review presents a comprehensive, critical treatment of all the literature data related to the phenomenon 

of the SDE taking place during gravity-driven achiral chromatography of scalemic compounds bearing sulfoxide 

and thioamide functionalities. The discussion is focused on the SDE magnitude as a function of the structure 

iof the compound, composition of eluent and stationary phase, including some mechanistic details. An 

apparent possibility of application of the SDE phenomenon via achiral chromatography as a novel, emerging 

unconventional enantiomeric purification technique is also discussed. 
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1. Introduction 
 

For a number of decades the possibility of spontaneous separation of enantiomerically enriched and 

enantiomerically depleted fractions during gravity-driven chromatography under achiral conditions was not 

considered at all. It was commonly accepted that such chromatographic purification of crude reaction 

products enriched in a particular enantiomer always gives a set of fractions in which the ratio of enantiomers 

remains is unchanged. The first doubts about the validity of this assumption were apparent in 1983 when 

Cundy and Crooks reported1 the separation of an excess of 14C-labeled (S)-(-)-nicotine enantiomer (second 

fraction) from the racemate (first fraction) on an achiral HPLC system. Almost independently Charles and Gil-

Av in 19842 reported that achiral chromatography of valine-derived diamide (S)-1 (Scheme 1) of 74% ee [using 

relatively weak eluent (n-hexane to n-hexane/EtOAc)] afforded fractions significantly enriched and 

correspondingly depleted in (S)-1 enantiomer. They isolated the first fraction of (S)-1 having only 46% ee, 

while the two subsequent fractions contained diamide (S)-1 of considerably higher enantiomeric purity, as 

compared with the 74% ee of the starting sample. Furthermore, they showed that slightly changing the eluent 

composition, allowed the isolation of (S)-1 in enantiomerically pure form. 
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Scheme 1. Enantiomeric enrichment/depletion of diamide (S)-1 during achiral chromatography on Kieselgur.   

 

Moreover, they discovered2 the opposite order of elution of enantiomerically enriched/depleted fractions 

in the chromatographic purification of dipeptide (S)-2. In this case the difference between the highest and 

lowest % ee of the eluted fractions was a somewhat less pronounced, resulting in an enrichment from 70.7% 

ee to 86.5% ee and in the corresponding depletion to 25% ee (Scheme 2). 
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Scheme 2. Enantiomeric enrichment/depletion of diamide (S)-2 during achiral chromatography on Kieselgur.  

 

      These authors also suggested that the phenomenon might not be limited to amino acid derivatives and 

could be applicable to various types of chiral compounds.2 At the same time, considering the role of amino 

acids in the emergence of life, they put forward an idea that such processes could have occurred under 

prebiotic conditions, providing significant amounts of highly enantiomerically enriched compounds leading 

eventually to biological homochirality.3 Soon thereafter, Dreiding et al. reported4 that chromatography on 

silica gel of a chiral hydrindandione also gave fractions that showed dispersion of ees. The similar 

chromatographic behaviour of a mixture of 14C-labeled racemic N-acetylvaline tert-butyl ester with the 

unlabeled (S)-enantiomer on silica gel was described by Hara et al.5 and for a cineole derivative by Carman.6 

With (aminopropyl)silica gel as the stationary phase the same chromatographic behaviour was observed for 

1,1’-binaphthol, 1-anthryl-2,2,2-trifluoroethanol, N-benzoylalanine methyl ester, a benzodiazepine, and 

chloromezanone.7 

     It should be noted that this phenomenon is observed with HPLC,2,4-11 medium-pressure liquid 

chromatography (MPLC),12 and flash13 and regular14-16 chromatography. Before 2006 different definitions of 

this phenomenon were proposed in the literature: among them were “self-amplification of optical activity”,2 

“enantiomer differentiation”,4 “autoseparation of enantiomers”,5 “separation of excess enantiomer”,6,8 

“enantiomeric enrichment”,8-13,15-16 and “optical purification”.12 In 2006 one of us17 suggested the use of the 

term “self-disproportionation of enantiomers” to describe the phenomenon. 

     Very recently, Soloshonok and Klika18 presented a detailed rationale regarding the terminology related to 

the phenomenon self-disproportion of enantiomers (SDE) and discussed recently suggested alternative terms. 

Among a few terms proposed to describe this phenomenon, mentioned above, the maintenance of the 

acronym SDE has been advocated taking into account its qualities and the fact that its perceived shortcomings 

are invalid. This commentary also draws attention to the fact that this term can be readily applied to any 

process that exhibits the phenomenon of transforming a scalemic sample into fractions having different ratios 

of enantiomers in comparison to the enantiomeric composition of the starting sample, and is not restricted 

solely to chromatographic processes. Therefore, the term SDE refers to the end result, that is, the 

simultaneous formation of the correspondingly, to the same degree, enantiomerically enriched and depleted 

fractions, under achiral conditions.  

     The most recognized case of SDE is a fractional crystallization of solids enriched in a particular 

enantiomer.19 The SDE of chiral crystalline compounds results from the essential differences in the 

crystallographic structures of racemates and enantiomerically pure crystals (named as conglomerates), which 

are expressed as the Wallach rule.3,20-21 It is obvious that racemates and conglomerates always show different 

physicochemical properties such as melting point, density, sublimation and solubility rates and these 

differences can be used for the purpose of enantiomeric purification. However, SDE via density gradient 

centrifugation22 or SDE via sublimation23-25 are far much less known, but can be quite successfully used for 
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practical enantiomeric purifications.26 It is also obvious that the well-defined preferences for dynamic 

homochiral/heterochiral molecular associations for chiral compounds in liquid state or in solution can be 

considered as the equivalent of the distinct crystallographic structures observed in the solid state. Therefore 

these preferences for homochiral/heterochiral dynamic molecular associations induce various nonlinear 

effects,27-30 including SDE via chromatography.17,31-35 Thus, when a solution of non-racemic compound is going 

through a chromatographic column, such dynamic homochiral/heterochiral molecular associations, having 

different mobility behaviour, as compared to the corresponding monomers, in the eluted material gradual 

decrease or increase of the given enantiomer is observed. Since such intermolecular interactions are the 

fundamental property of all organic compounds, the SDE phenomenon should occur always when a non-

racemic sample is subjected to physicochemical phase-transitions or chromatography. But, the magnitude of 

the nonlinear effects is a function of the quality of the corresponding homochiral/heterochiral interactions, 

which in the vast majority of cases are based on H-bonding,31,33,36-37 π-stacking1,38 or dipole-dipole 

interactions4,39 and therefore heavily depends on the structure of a particular chiral compound. In practical 

terms, the easiness of SDE observation depends on its magnitude under particular chromatographic 

conditions. Under standard conditions of gravity-driven column chromatography, the difference between 

enantiomerically-enriched and –depleted fractions is usually low (~10% ee) precluding the discovery of the 

SDE via achiral chromatography until relatively recently.  

     As predicted by Charles and Gil-Av2 and proved by experimental studies, which have been carried out in our 

groups and by others, SDE via achiral chromatography turns out to be a remarkably comprehensive 

phenomenon observed for virtually all types of chiral compounds containing central,17,23,31-33,40 axial5,7,41 or 

helical42 chirality. It is worth mentioning that the results of experiments are supported by theoretical 

modelling of chromatographic behaviour of non-racemic compounds under various conditions of achiral 

chromatography.43-50 The results of these experimental studies and theoretical calculations allow the 

formulation of the concept of the SDE-phoric groups as a structural element responsible for the occurrence of 

the SDE during achiral chromatography.51-61 Considering the structure of the SDE-phoric moieties one can 

expect interesting properties for a chiral sulfinyl grouping or a chiral thioamide residue. This results from the 

ability that compounds containing these groups have to form homo- and heterochiral dimers or higher-order 

aggregates by dipole–dipole interactions and/or hydrogen bonds. Thus, a sulfinyl group is better represented 

as its resonance structure (Scheme 3) bearing a positive charge on the sulfur and a negative charge on the 

oxygen.62-63 It is interesting to note that hydrogen bonding between the sulfur oxygens and the acidic α-

hydrogens in sulfoxides was proposed as a supramolecular synthon in crystal engineering.64  
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Scheme 3. Resonance structures for a sulfinyl bond. 

 

     Similarly, a thioamide group is better represented as its resonance structure (Scheme 4) bearing a positive 

charge on the nitrogen and a negative charge on the sulfur. The higher charge transfer from nitrogen to sulfur 

atom, in comparison with the amide bond, results from the small difference in electronegativity between the S 

and C atoms and a larger atomic size of sulfur. Therefore, in thioamides the C-N bond has a greater double 

bond character65 resulting in a higher rotation barrier.66 When one is considering the ability to form hydrogen 



Arkivoc 2017, ii, 557-578  Drabowicz, J. et al 

 

 Page 561  ©ARKAT USA, Inc 

bonds, the thioamides are weaker hydrogen bond acceptors (as compared to the oxoamides), and they offer a 

more acidic NH proton as a hydrogen bond donor.67,68 
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Scheme 4. Resonance structures for a thioamide bond.  

 

     The main goal of this paper is to review all relevant literature data dealing with the phenomenon of SDE-via 

achiral chromatography of chiral sulfur-containing compounds. We discuss the observed SDE magnitude as a 

function of the structure of the compounds, composition of eluent and stationary phase, also providing some 

mechanistic considerations. 

 

 

2. Optically Active Sulfoxides        
 

2.1 The SDE of chiral sulfoxides during their gravity-driven silica gel column chromatography 

Great interest in the synthesis of optically active sulfoxides69-73 results at least from two reasons. First of all 

they are recognized as valuable and efficient reagents in synthetic chemistry, particularly for asymmetric 

synthesis due to high asymmetric induction exerted by a sulfinyl fragment, and its configurational 

stability.69,71,74-76 Several review articles are devoted to this topic.77-84 Moreover, sulfoxides are present in 

many natural products and they play an important role in biology.85 Moreover, a few sulfoxides have found 

application in medicinal chemistry.86 Therefore, their availability as single enantiomers is of growing interest 

and importance. Generally, the most convenient way to obtain optically active sulfoxides is based on 

asymmetric oxidation of the corresponding sulfides. Despite the great advances in searching for more efficient 

procedures for asymmetric oxidation of sulfides, these protocols allow, as a rule, isolation of a mixture 

enriched in one enantiomer.69-73,77,78 However, the optical purification of scalemic sulfoxides as an approach to 

enantiomerically pure products is still problematic, because results may not always be forthcoming. Therefore 

the studies devoted to the SDE phenomenon in the liquid phase in the family of optically active sulfoxides are 

very timely and their results should be very helpful in solving the limitations of this approach for the isolation 

of enantiomerically pure sulfoxides. With reference to this statement it is worth noting that since the first 

report on the occurrence of the SDE phenomenon during recrystallization (from light petroleum) of samples of 

scalemic (R)-methyl p-tolyl sulfoxide 3 which were isolated by the decomposition of a supramolecular complex 

formed between β-cyclodextrin (beta-CD) and a racemic mixture of this sulfoxide (Scheme 5)87 the enrichment 

of the enantiomeric excess of scalemic sulfoxides by recrystallization has been reported frequently.69-73,77-80 
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Scheme 5. The enrichment of the enantiomeric excess of scalemic (R)-methyl p-tolyl sulfoxide-3 by 

recrystallization. 

 

     In our opinion, the most appealing example of the application of this phenomenon is the large scale 

production of enantiomerically pure esomeprazole 5 (5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-

pyridinyl)methyl]sulfinyl]-1H-benzimidazole) based on asymmetric oxidation of the corresponding sulfide 4 

which gives the requested sulfoxide having 94% ee. This is increased to 100% by a crystallization of a 

magnesium salt of esomeprazole 5 (Scheme 6).88-89 
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Scheme 6. The large scale synthesis of enantiomerically pure esomeprazole 5 (5-methoxy-2-[[(4-methoxy-3,5-

dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole). 

 

     On the other hand, the first systematic study of the SDE phenomenon of sulfoxides in solution, which 

accompanied achiral flash chromatography on silica gel, was performed90 with the use of (R)-methyl p-tolyl 

sulfoxide-3 obtained by the asymmetric oxidation of methyl p-tolyl sulfide 6 with the use of cumene 

hydroperoxide as an oxidant in the presence of the combination Ti(O-i-Pr)4/diethyl tartrate/H2O = 1:2:1 

(Scheme 7).91 
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Scheme 7. Preparation of (R)-methyl p-tolyl sulfoxide-3 by asymmetric oxidation of methyl p-tolyl sulfide 6. 

 

     The sulfoxide (86% ee) obtained by this procedure was subjected to flash chromatography on a silica gel 

column. Elution by ethyl acetate allowed the recovery of pure methyl p-tolyl sulfoxide 3 in 14 fractions of 20 

mL each. The enrichment of ee occurred in the first fraction (99.5% ee) while depletion (up to 77% ee) was 

observed in the last fraction (entries 7 and 8 in Table 1). A similar relationship was noted for samples of (-)-(S)-

3 with ee 82.0% (entries 9 and 10 in Table 1) and for a sample prepared by mixing the two enantiopure 

sulfoxides (entries 1-6 in Table 1). A similar effect, although less pronounced, was observed on alumina 

(entries 11-12 in Table 1) and on reverse-phase silica chromatography (entries 13-16 in Table 1). It was also 

observed that an increase of the amount of silica gel (three times) did not improve the efficiency of the 

enantiomeric enrichment and the fractionation of ee occurs in a similar way on reverse-phase flash 
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chromatography (reverse-phase silica), using ethyl acetate as eluent. The enrichment of enantiomeric excess 

by flash chromatography on silica gel was also observed for methyl ferrocenyl sulfoxide 7a (entries 17-21 in 

Table 1) and benzyl tert-butyl sulfoxide-8 (entries 22 and 23 in Table 1). The authors claimed that in the case 

of ferrocenyl p-tolyl sulfoxide 7c and ferrocenyl tert-butyl sulfoxide 7d, no measurable magnitude of the SDE 

was recorded. In the case of ferrocenyl phenyl sulfoxide (-)-(R)-7b chromatography on silica gel and elution by 

ethyl acetate provided reproducibly in the first fraction a sulfoxide with 79% ee (S configuration, the minor 

enantiomer) while the last fraction gave the sulfoxide with 94 % ee (R). 

 

O

S
R

Fc

O

S
PhH2C t-Bu

(R)-7a-d                                                   (S)-8              
 
a) R = Me
b) R = Ph
c) R = t-Bu
d) R = p-Tol

Fc = ferrocenyl  
 

Figure 1. The chemical structures of sulfoxides 7, 8 studied by flash chromatography. 

 

Table 1. Flash chromatography of sulfoxides 3, 7a and 8 

Entry 
Sulfoxide/% ee 

Fraction ee (%) 
(+)-(R)-3/86.0 eea 

1  1 99.5 

2  2 99.0 

3  3 92.5 

4  9 80.2 

5  12 76.5 

6  14 73.5 

 (+)-(R)-3/85.0 ee   

7  1 99.5 

8  14 77.0 

 (-)-(S)-3/82.0 ee   

9  1 89.0 

10  14 70.0 

 (+)-(R)-3/86.0 ee,a,b   

11  1 91.0 

12  14 80.5 

 (+)-(R)-3/91.0 ee,a,c   

13  1 99.5 

14  4 94.8 

15  17 81.0 
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Table 1. Continued 

Entry 
Sulfoxide/% ee 

Fraction ee (%) 
(+)-(R)-3/86.0 eea 

16  19 73.0 

 (+)-(R)-7a/90.0 ee   

17  1 99.5 

18  4 97.0 

19  8 94.0 

20  16 86.5 

21  23 82.0 

 (+)-(S)-8/44.5 ee   

22  1 53.0 

23  14 42.0 

 aPrepared by mixing the two enantiopure sulfoxides; diameter of the column - 4 cm; amount of silica gel (230-

400 mesh) - 50 g; volume of the collected fractions - 20 mL each.  bFlash chromatography on Al2O3. 

 cReverse-phase silica. 

 

     Very recently this initial study of the SDE phenomenon for sulfoxides by gravity-driven column 

chromatography over achiral silica gel was performed in our group39 by more detailed experiments with the 

use of methyl n-pentyl sulfoxide 11 (MPS 11) as the analyte. The samples needed of this sulfoxide, enriched in 

the R enantiomer, were prepared according to a literature modification92 of the Andersen methodology93 

 by a Grignard reaction between n-pentylmagnesium bromide and O-menthyl methanesulfinate 10, which in 

turn was produced as a pair of diastereomers by the reaction of methylsulfinyl chloride 9 and (−)-menthol 

(Scheme 8). 
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Me n-C5H11
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Scheme 8. Preparation of methyl n-pentyl sulfoxide 11 (MPS 11) enriched in the R enantiomer with the use of 

O-menthyl methanesulfinate 10 as a chiral precursor. 

 

      We decided to use for our study MPS 11 having a relatively modest enantiomeric purity (34.62% ee 

enriched in the R enantiomer) in order to determine if it is indeed possible to obtain a sample with high optical 
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purity, e.g. > 99% ee. The results of the executed experiments listed in Table 2 are fully in line with this 

assumption.  

 

Table 2. SDE of MPS 11 with a starting 34.62% during achiral, gravity-driven column chromatography 

Run Eluent (ratio) First fraction (% ee) Last fraction (% ee) ee 

1 CH2Cl2 /EtOAc (5/1)a 74.32 28.64 45.68 

2 EtOAca 97.42 3.90 93.52 

3 EtOAc/c-hexane (5/1)a >99.99 13.00 86.99 

4 CH2Cl2/MeCN (5/1)a 57.26 28.64 28.62 

5 MeCN/toluene (1/1)a 61.70 31.12 30.58 

6 Acetone/c-hexane (1/3)a 48.98 33.78 15.20 

7 
EtOAc/c-hexane/MeOH 

(5/1/0.5)a 50.08 29.30 20.78 

8 EtOAc/c-hexane (5/1)b 85.50 15.92 69.58 

9 EtOAc/c-hexane (5/1)c >99.99 13.98 86.01 

10 EtOAc/c-hexane (5/1)d 74.28 21.22 53.06 

11 EtOAc/c-hexane (5/1)e >99.99 31.08 68.91 

aRatio of MPS-11 to silica gel, ca. 1 mmol:30 g. 
bRatio of MPS-11 to silica gel, ca. 1 mmol:15 g. 
cRatio of MPS-11 to silica gel, ca. 1 mmol:60 g. 
dSilica gel of 70-230 mesh was used. 
eMPS-11 of 55.24% ee was used. 

 

     Analysis by GC using a chiral column of the collected fractions showed that the early eluting fractions were 

enantiomerically enriched in comparison to the starting sample while the later eluting fractions were 

enantiomerically depleted. Moreover, the basic features of the presented results constitute the following 

relationships: 

(a) the magnitude of the SDE was far greater (more than doubled in fact) in EtOAc (run 2, Table 2)  in 

comparison to the run using CH2Cl2–EtOAc eluent (run 1, Table 2) 

(b) chromatography using EtOAc–c-hexane (5:1) as eluent (run 3, Table 2) yielded an even better result–

the ee value for the first eluting fraction was > 99.99%, though the Δee value at 86.99% was actually relatively 

diminished slightly 

(c) the incorporation of 7.7% of MeOH to the EtOAc–c-hexane eluent (run 7, Table 2) failed to fully 

suppress the SDE phenomenon whereby the reduction was comparable to the acetone–c-hexane (1:3) run. 

(d) increasing the ratio of MPS to silica gel, thereby effectively reducing the length of the constant 

diameter column, resulted, unsurprisingly, in a decrease of Δee (run 8, Table 2). 

(e) reducing the ratio of MPS to silica gel did not improve the magnitude of the SDE (run 9, Table 2). 

(f) the use of silica gel with a larger grain size, 70–230 mesh, as the stationary phase resulted in a 

decrease in the magnitude of the SDE (run 10, Table 1). 

(g) chromatography for the sample of MPS starting with 55.24% ee (run 2) provided fractions of high ee in 

much greater yield than for the sample starting with 34.62% ee (run 2) (Table 3). 
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Table 3. Effect of the starting ee on the SDE of MPS 11 

Percentile band for ee 

(%) 

Weight (%) 

Starting ee 

34.6% 

Starting ee 

55.2% 

> 99.9 0.16 1.05 

90–99.9 1.98 4.93 

80–90 1.65 7.64 

70–80 2.04 8.56 

60–70 2.18 8.10 

50–60 5.03 29.31 

40–50 8.75 18.70 

30–40 38.20 21.72 

20–30 28.25 – 

< 20 11.75 – 

 

     The results discussed above constitute the first example of SDE predictability. Moreover, they allow us to 

say that SDE can be considered as a practical and useful method to obtain a sulfoxide with extremely high 

enantiomeric excess starting from a sample of only modest ee. This can be explained by the strong tendency 

of the sulfoxide moiety to form homo- and heterochiral dimers or higher-order aggregates by dipole–dipole 

interactions with the differing chromatographic behaviour of the entities, the underlying mechanism 

responsible for the SDE phenomenon. This is exceptional in that in the majority of cases the appearance of the 

SDE phenomenon is based on hydrogen bonding interactions. This opinion is nicely supported by the SDE 

behaviour of a non-racemic mixture of esomeprazole 5, lansoprazole 12, pantoprazole 13, and rabeprazole 14 

on regular gravity-driven silica gel column chromatography using different eluents.89 It should be added here 

that a growing interest in the chemistry of these prazole–containig sulfoxides results from the fact that they 

are commonly used as drugs for peptic ulcers.88,94-95 Racemic omeprazole 5 (losec, prilosec) launched in 1988, 

was the first gastric proton-pump inhibitor (PPI) used for treatment of this type of gastric problems and 

quickly became the world’s best selling drug in the late 1990s.88,94-95 Esomeprazole, the (S)-form of 

omeprazole 5, was introduced to the pharmaceutical market in 2001 as the first single-optical-isomer PPI, 

under name Nexium. It has the better acid control and a favourable pharmacokinetic profile relative to 

omeprazole.95 In 2003 was the 7th most sold drug (with 3.8 billion US dollars sales) and its sales still reached 

3.9 billion US dollars in 2012. The large-scale production of the (S)-enantiomer of esomeprazole is achieved by 

asymmetric oxidation of the same sulfide intermediate as is used in the production of omeprazole 5, which 

gives a 94% enantiomeric excess (ee). This is increased to >99.99% by preparing a magnesium salt of 

esomeprazole and then performing a crystallization.   

     The results that are listed in Table 4 show that the SDE phenomenon occurs for all samples of prazole-

containing sulfoxides 5, 12-14 (with high to low enantiomeric purity) during their gravity–driven 

chromatographic purification. The pure enantiomer of each prazole was isolated from non-racemic starting 

materials by this chromatography (entries 1, 4, 8, and 11).89 Therefore, we suggest that further research on 

the SDE of these compounds could make their enantiomeric purification by achiral chromatography affordable 

and competitive to crystallization. 
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Figure 2. Prazole–containing sulfoxides 12-14. 

 

 

Table 4. SDE of prazole-containg sulfoxides 5 and 12-14 with different ee values on achiral silica gel 

chromatographya 

Entry Sulfoxide (% ee) First fraction (% ee)b Last fraction (% ee)b Δee 

1 Esomeprazole-5 (88.2) >99.9 80.0 20.0 

2 Esomeprazole-5 (60.0) 69.6 51.2 18.4 

3 Esomeprazole-5 (20.1) 31.0 12.0 19.0 

4 (R)-Lansoprazole-12 (87.0) >99.9 75.6 24.4 

5 (R)-Lansoprazole-12 (82.0) 99.2 73.8 25.4 

6 (R)-Lansoprazole-12 (60.0) 72.0 58.0 20.0 

7 (R)-Lansoprazole-12 (17.2) 20.0 14.4 5.6 

8 (S)-Pantoprazole-13 (84.0) >99.9 70.1 29.9 

9 (S)-Pantoprazole-13 (59.3) 69.5 50.2 19.3 

10 (S)-Pantoprazole-13 (18.4) 26.8 11.2 15.6 

11 (R)-Rabeprazole-14 (89.4) >99.9 80.0 20.0 

12 (R)-Rabeprazole-14 (87.2) 96.3 78.8 17.5 

13 (R)-Rabeprazole-14 (64.0) 73.0 57.4 15.6 

14 (R)-Rabeprazole-14 (22.2) 29.4 15.0 14.4 

a2.9 mmol of sulfoxide, 87 g of silica gel (300-400 mesh; 30 g silica gel/mmol sulfoxide), 40 ˣ 600 mm glass 

column, 30 mL fractions were collected per bottle. 
b Measured by HPLC on Chiralcel AD-H (Daicel).  

 

     The formation of heterochiral dimers based on H-bonds between the sulfoxide (proton acceptor) and the 

benzimidazole (proton donor) moieties was proposed as the reason for the SDE of the prazole-containing 

sulfoxides 5 and 12-14 during their gravity-driven silica gel column chromatography.89 This proposal stems 



Arkivoc 2017, ii, 557-578  Drabowicz, J. et al 

 

 Page 569  ©ARKAT USA, Inc 

from both the X-ray crystallographic structure analysis of omeprazole 5, which showed the existence of a cyclic 

dimer of two enantiomers,96-97 and a great extent of dimerization observed for a chloroform solution.98 

 

2.2 Comments related to problems with the accurate determination of the enantiomeric excess of chiral 

sulfoxides isolated via any type of asymmetric synthesis 

It is obvious that the accurate determination of optical purities and/or enantiomeric excesses of optically 

active sulfoxides prepared by any type of asymmetric synthesis is possible only if the purification procedures 

do not change the ratio of enantiomers which are present in a crude product. For a number of decades gravity 

driven chromatography under achiral conditions has been considered as such a safe, “enantiomeric excess 

maintaining”, procedure. Due to the above mentioned cases of SDE, this assumption must be treated with 

caution and cannot be considered any longer as an empirical rule. Consequently, there is a need to examine 

very carefully the stereochemical outcome of reactions leading to the generation of a new stereogenic sulfinyl 

sulfur atom in which the isolation of pure products is based on a chromatographic purification of crude 

reaction mixtures. First of all the accurate determination of the optical purities and/or enantiomeric excess 

values for sulfoxides requires total washing-out of a sample introduced on a chromatographic column. Not 

always can this be easily done due to the strong interaction of a sulfoxide molecule and the surface of a solid 

chromatographic loading, especially in the cases of sulfoxides which contain additional functional groups able 

to participate in hydrogen bonding. Moreover, such a determination cannot be based on a sample isolated 

from a particular set of fractions but should be done using an averaged sample prepared from the whole of 

the product obtained during the given purification procedure.  

     Bearing in mind these requirements and the fact that the SDE phenomenon for the family of sulfoxides has 

been known since 1994, we have checked a number of publications from the last 10 years devoted to the 

catalytic asymmetric oxidation of sulfides to sulfoxides, hoping to assess whether the possibility of an 

erroneous determination of the enantiomeric excesses of the isolated products due to the SDE phenomenon 

was considered by the authors at all. Among the analyzed publications we have not been able to identify a 

single work in which this possibility was recognized. Simultaneously, among the analyzed papers we noted a 

few papers for which the opinion, that the enantiomeric excesse values reported can be burdened with an 

error, has some substantive grounds. This is based on the fact that the reported enantiomeric excess values 

differ very much for derivatives having very similar structures. Among them there are papers co-authored by 

one of us99-100 devoted to the asymmetric oxidation of 2,2’-bipyridine alkyl sulfides 15a-e to non-racemic 2,2’-

bipyridine alkyl sulfoxides 16a-e and bis-sulfoxides 17a-e using either (+)-(8,8-dichlorocamphorylsulfonyl) 

oxaziridine (method A)101 or the Kagan reagent (method B)91 (Scheme 9). 

 

 
 

Scheme 9. Asymmetric oxidation of 2,2'-bipyridine alkyl sulfides 15a-e to non-racemic 2,2'-bipyridine alkyl 

sulfoxides 16 a-e and bis-sulfoxides 17a-e.  
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     It was found that the enantiomeric excesses of the final products, isolated by flash chromatography of the 

crude product (SiO2, methylene chloride), differ substantially for the pure mono sulfoxides 16a-e (values from 

5 to 82%) and for the bis sulfoxides 17-a-e (values from 5.4 to 99%). Therefore, it is strongly recommended 

that these and many other data on determination of the stereochemical outcome should be revisited and, 

most likely, corrected. As it is obvious that a very exhaustive and detailed report on this topic should be 

considered as a very timely we are planning to prepare independently such a manuscript. 

 

 

3. Optically Active Thioamides 
 

To compare the SDE phenomenon in amides and thioamides, we synthesised102 N-(1-phenylethyl) 

thioacetamide, 19,103 the sulfur analogue of N-(1-phenylethyl) acetamide 18,104 using the literature procedure 

(Scheme 10).106 

 

 
 

Scheme 10. Preparation of N-(1-phenylethyl)thioacetamide 19 by thionation of N-(1-phenylethyl)acetamide 

18. 

 

     It was found that the isolated thioamide 19 shows the expected SDE phenomenon, although its magnitude 

(Δee 3.6) is substantially lower in comparison with the corresponding amide 18 (Δee 40.8). This relationship 

clearly indicates that replacement of oxygen with sulfur has evident consequences for the formation of 

associates under chromatographic conditions, as the hydrogen bonding ability of the thioamide 19 is strongly 

reduced. This result has a very powerful mechanistic implication suggesting that thioamide derivatives can be 

used to probe the importance of H-bonding interactions in SDE research and in non-linear effects in general.  

 

 

4. Conclusions 
 

The data discussed above, which are based on a limited number of examples of the SDE phenomenon for 

sulfoxides (since the first paper by Kagan at al.90), clearly indicate that the relatively strong SDE phenomenon 

should be observed as a rule when a chiral sulfoxide is subjected to achiral gravity–driven chromatography. 

This means that the sulfinyl moiety should be considered as a SDE-phoric group18,103 along with chiral 

amides31,51-55,102 and fluorine-containing compounds.33,56-61 Thus, it may now be a suitable time to consider 

addition, in papers dealing with asymmetric synthesis of sulfoxides, information regarding the magnitude of 

the SDE phenomenon during a gravity-derived chromatographic purification. The discussed examples of the 

SDE phenomenon of chiral sulfoxides constitute an additional support for an opinion that this 

chromatographic method can be considered as advantageous in comparison with fractional crystallization as: 
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a) it works for both liquid and crystalline compounds, b) enantiomeric enrichment does not so heavily depend 

on an initial enantiomeric ratio of a sample, c) it can be applied for compounds of low % ee, while 

crystallization cannot. A model experiment using N-(1-phenylethyl)thioacetamide 19 indicates that the 

substitution of the sulfur atom for the oxygen in the acyl group, strongly reduces the observed magnitude of 

the SDE phenomenon. 
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