Synthesis and spectroscopic characterization of double chained and sulfurated derivatives of L-ascorbic acid

Damiano Tanini, Marianna Gori, Francesco Bicocchi, Moira Ambrosi, Pierandrea Lo Nostro, and Antonella Capperucci*

Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
E-mail: antonella.capperucci@unifi.it

Dedicated to Prof. Jacek Młochowski on the occasion of his 80th anniversary

Received 07-04-2016 Accepted 09-23-2016 Published on line 12-04-2016

Abstract

Lipophilic saturated and unsaturated L-ascorbyl 5,6-O-diesters from fatty acids are prepared and fully characterized through NMR and MS spectra. Derivatives with different sulfurated moieties are obtained as well through thio-Michael addition of thiols on ascorbyl acrylates. The new amphiphilic structures exhibit very high antioxidant activity using the DPPH assay.

Keywords: L-Ascorbic acid, fatty acids, antioxidant, sulfurated ascorbyl esters, thio-Michael addition
Introduction

Antioxidants are widely used in different fields, for example the food, cosmetic and pharmaceutical industries. Our interest in the chemistry of sulfurated and selenated compounds led us to develop an access to organo-chalcogen derivatives, such as selenides, diselenides and heterocyclic compounds,\(^1\)-\(^6\) which evidenced interesting antioxidant activity. The chemistry of organosulfur, and more recently of organoselenium compounds has in fact experienced a strong development.\(^7\),\(^8\) Such derivatives are used as reagents in organic synthesis and, due to their interest from the biological point of view, in the preparation of molecules with biological activity. Recently we were involved in the study of modifications of natural products, with the aim to introduce on the same molecular skeleton sulfurated or selelenated moieties, which could possess a synergistic effect together with the natural core. We found a convenient method for the synthesis of selenium-derivatives of resveratrol as antioxidants and free radical scavengers.\(^9\) These structures evidenced antioxidant activity with Trolox-like capacity.

In this context considerable interest has also been devoted to the study of liposoluble ester derivatives of L-ascorbic acid (L-ASC), which is a well known, potent and versatile antioxidant. Their physico-chemical properties have been extensively investigated\(^10\)-\(^17\) in particular their phase behavior in the solid state and in aqueous dispersions. The amphiphilic derivatives of ascorbic acid fully retain the antioxidant power of the parent molecule, and produce nanostructured self-assembled systems both in aqueous and non aqueous media, and therefore they can act as carriers for important hydrophobic molecules such as drugs and nutraceutics.

Certainly, a very large number of contributions have been reported on vitamin C, most of them dealing with the elaboration at positions 2, 3 or 6, depending on the application needs.\(^18\)-\(^22\) Generally 6-O-ascorbyl esters are obtained via different methods, by reacting vitamin C and fatty acids under catalysis of lipases\(^20\) or in concentrated sulfuric acid.\(^23\)

Here we report the preparation and full characterization of lipophilic saturated and unsaturated 5,6-O-diesters of L-ASC, as well as of sulphur-containing 6-O-ascorbyl alkanoates. Preliminary evaluation of their antioxidant properties will also be described.

Results and Discussion

To the best of our knowledge, few examples of synthesis of 5,6-diesters of L-ASC have been reported. Nevertheless, a very large number of examples of esterification at C-6 with palmitoyl chloride were described in a patent, bearing different substituents and protecting groups on selected hydroxyls.\(^24\) Chemical modifications of vitamin C are often limited by its intrinsic instability. Typically, together with the methods cited above, the chemical synthesis of ascorbyl esters is carried out by selective protection and deprotection of functional groups. Several steps are required to obtain the target compounds. Usually the first step involves the protection of hydroxyl groups on C-6 and C-5 as an acetonide, followed by treatment of the enol hydroxyls with benzyl bromide.\(^21\),\(^25\) Nevertheless, on the basis of results recently reported\(^26\) and of our own results in separate experiments, we observed a high, selective reactivity of the ene-diol portion with benzyl bromide by comparison with the alcohols at the 5 and 6 positions. This allowed us to treat L-ASC 1 with BnBr and K\(_2\)CO\(_3\) in
THF/DMSO (Scheme 1) directly, thus avoiding preliminary protection as 5,6-O-isopropylidene derivative and the following deprotection step.

Scheme 1. (i) RBr/K₂CO₃, THF/DMSO, 50 °C, 3 h; (ii) acyl chlorides, 4-DMAP/DCC or Et₃N (see experimental); (iii) H₂, Pd/C or SnCl₄/PhSH (see experimental).

The dibenzyl ether 2a was then treated with saturated fatty acid derivatives. Thus acyl chlorides of octanoic (caprylic, C₈), decanoic (capric, C₁₀) and dodecanoic (lauric, C₁₂) acid were reacted in the presence of DMAP/DCC in acetonitrile (Scheme 1). L-Ascorbyl 5,6-O-dialkanoates 3a-c were obtained in high yields (Table 1, entries 1-3). Cleavage with H₂, Pd/C led to the formation in quantitative yield of the previously unreported 2,3-(OH)₂-5,6-diesters 4a-c, which were fully characterized by means of NMR and MS spectra.

Table 1. Synthesis of saturated and unsaturated L-ASC esters

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R¹</th>
<th>R²</th>
<th>Products (Yield %)¹</th>
<th>Products 4 (Yield %)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bn</td>
<td>CH₃(CH₂)₆</td>
<td>CO(CH₂)₆CH₃</td>
<td>3a (90)</td>
<td>4a (>98)</td>
</tr>
<tr>
<td>2</td>
<td>Bn</td>
<td>CH₃(CH₂)₈</td>
<td>CO(CH₂)₈CH₃</td>
<td>3b (88)</td>
<td>4b (>98)</td>
</tr>
<tr>
<td>3</td>
<td>Bn</td>
<td>CH₃(CH₂)₁₀</td>
<td>CO(CH₂)₁₀CH₃</td>
<td>3c (91)</td>
<td>4c (>98)</td>
</tr>
<tr>
<td>4</td>
<td>Bn</td>
<td>CH₃(CH₂)₁₀</td>
<td>COCH₃</td>
<td>3d (63)</td>
<td>4d (>98)</td>
</tr>
<tr>
<td>5</td>
<td>Bn</td>
<td>C₁₇H₃₃ cis-Δ⁹</td>
<td>(CO)₅C₁₇H₃₃ cis-Δ⁹</td>
<td>3e (78)</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>PMB</td>
<td>C₁₇H₃₃ cis-Δ⁹</td>
<td>(CO)₅C₁₇H₃₃ cis-Δ⁹</td>
<td>3f (83)</td>
<td>4e (34)</td>
</tr>
<tr>
<td>7</td>
<td>Bn</td>
<td>CH=CH₂</td>
<td>(CO)CHCH₂</td>
<td>3g (75)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>PMB</td>
<td>C₁₇H₃₃ cis-Δ⁹</td>
<td>H</td>
<td>5a (48)</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Bn</td>
<td>CH=CH₂</td>
<td>H</td>
<td>5b (53)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>PMB</td>
<td>CH=CH₂</td>
<td>H</td>
<td>5c (48)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Bn</td>
<td>CH₃(CH₂)₁₀</td>
<td>H</td>
<td>5d (68)</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Isolated yields. ² Global yield over two steps. ³ 10% of diester was also formed.

In order to synthesize derivatives with different acyl chain lengths, for evaluating the influence on physico-chemical properties, compound 3d (Table 1, entry 4) was prepared in two steps from lauroyl- and acetyl-chlorides (see experimental). The final deprotection afforded the mixed diester 4d (Scheme 1). All the diesters were obtained with high selectivity (>99%), no trace of monoesters being observed.

Our interest also focused in the preparation of ascorbyl oleates. These compounds bear, on the same molecular skeleton, both oleic and ascorbic acid residues, that each possess antioxidant properties. However, the synthesis was not straightforward, the products being rather sensitive compounds. This makes ascorbyl oleate difficult to produce with traditional chemical methods. To the best of our knowledge only one example
has been described for ascorbyl 6-monooleate,27 while enzymatic methodologies are generally reported.28-34 The search for alternative methods is therefore a challenge to access these molecules.

Following a similar approach, oleoyl chloride was reacted with 2a leading to the formation of 2,3-O-dibenzyl-5,6-O-ascorbyl dioleate 3e in good yield (Scheme 1 and Table 1, entry 5). For the cleavage of benzylic ethers, the incompatibility of H\textsubscript{2}, Pd/C system with the double bonds prompted us to seek alternative, mild methods. Unfortunately, treatment with CSI (chlorosulfonyl isocyanate)35 did not afford the desired compound, but a complex mixture of products was formed. Thus, a different protecting group – p-methoxybenzyl (PMB) – was chosen. PMB can be more easily cleaved with numerous reagents, avoiding strong conditions.36,37 PMB-protected ascorbic acid 2b was prepared under the same conditions by direct treatment of L-ASC with PMBBr/K\textsubscript{2}CO\textsubscript{3} (Scheme 1). Subsequent reaction with oleyl chloride afforded 2,3-O-p-methoxybenzyl-5,6-O-ascorbyl dioleate 5a (Table 1, entry 8), depending on the reaction conditions (treatment with DMAP/DCC for diester, with Et\textsubscript{3}N for monoester). Efficient cleavage of 3f with SnCl\textsubscript{4}/thiophenol37 at -78 °C led to the isolation of the 2,3-deprotected ascorbyl dioleate 4e, while reaction on 5a allowed cleavage of only one PMBO-group (most likely on C-2). Further experiments are under investigation to obtain complete deprotection at both positions. Nonetheless, the result obtained is rather interesting, providing new ascorbyl oleates through a convenient, alternative access.

As a further step, we decided to evaluate the esterification on the secondary OH at position 5, retaining a free hydroxyl at C-6. To achieve this, a preliminary protection of 6-OH with trityl chloride was carried out on 2a and 2b following literature procedures (Scheme 2).25

Scheme 2. (i) Trityl chloride/Et\textsubscript{3}N; (ii) R1COCl/DMAP/DCC; (iii) BF\textsubscript{3}Et\textsubscript{2}O; iv) H\textsubscript{2}, Pd/C.

After purification, the so obtained products 6a,b were reacted respectively with lauroyl chloride and oleoyl chloride in the presence of DMAP/DCC, leading to 7a and 7b in good yields (Scheme 2). Deprotection of 6-OTrt under acidic conditions38 was performed by treatment of 7a with BF\textsubscript{3} etherate, leading to 8 (Scheme 2, via A). When reductive cleavage was carried out to obtain complete deprotection on C-2/C-3, a very complex mixture was observed, and the desired product 10 was present in only very low yield (<10%).

In order to seek better conditions, we firstly considered deprotection of benzyl groups in 7a with H\textsubscript{2}/Pd/C (Scheme 2, via B). Compound 9 was isolated, and then treated under acidic conditions (BF\textsubscript{3}) to remove the
trityl group. Unfortunately, through this sequence, compound 10 was also formed in comparable yields (ca. 10%), and optimization of this step is surely required.

Scheme 3. (i) PhSH, Neutral Al₂O₃; (ii) HSCH₂CH₂SH, neutral Al₂O₃ (see experimental).

Nevertheless, compound 9 is interesting, in so far as the enediol moiety, responsible of the antioxidant activity of vitamin C, is still present in this molecule.

Finally, to introduce a sulfurated or selenated group on the skeleton of vitamin C, we prepared ascorbyl 5,6-O-diacrylate 3g and 6-O-acrylates 5b, 5c (Scheme 1 and Table 1, entries 3, 9 and 10). Then 5b, 5c and 3g were reacted respectively with one or two equivalents of a sulfur nucleophile (PhSH) in the presence of Al₂O₃ (Scheme 3). Under these conditions compounds 11a, 11b and 12 were isolated, arising from a thio-Michael addition to the enones.

Even more interesting was the reaction of 5b with 1,2-ethanedithiol, providing the synthesis of the diascorbir derivative 13, containing a sulfurated linker between the two vitamin C moieties (Scheme 3). It will be of interest to investigate the characteristics of such derivatives, including chains of different length, to compare their properties with the behaviour of bolaform surfactants studied by some of us. Search for conditions to deprotect 2,3-positions is currently under study in our laboratory.

Finally, in order to preliminary evaluate whether the antioxidant capacity was maintained for these new amphiphilic structures, they were tested through the DPPH assay, which provides an easy and rapid way to assess antioxidant potency. Substances 4a-e and 9 exhibited a very high ability to act as free radical scavengers, in fact they instantaneously reacted with DPPH.

Conclusions

Different saturated and unsaturated ascorbyl derivatives, including novel sulfurated compounds, were prepared from fatty acids, and characterized by mono- and bidimensional NMR experiments. Their antioxidant activity was determined with the DPPH assay.

Experimental Section
General. NMR spectra were recorded in CDCl₃ with Varian Gemini 200, Mercury 400, Inova 400 and Bruker 400 spectrometers operating at 200 and 400 MHz (¹H), 50 and 100 MHz (¹³C). NMR signals were referenced to non deuterated residual solvent signals of deuterochloroform (7.26 ppm for ¹H, 77.0 ppm for ¹³C). Mass spectra (MS) were obtained by ESI. IR spectra were recorded on a Perkin Elmer Instrument (FT-IR). Only selected absorptions are reported, in wavenumbers (cm⁻¹). Solvents were dried using a solvent purification system (Pure-Solv™). Flash column chromatography was performed using silica gel (230-400 mesh). Where not specified, products were commercially available or obtained through reported procedures. 4-Methoxybenzyl bromide (PMBBr) was synthesised from (4-methoxyphenyl)methanol (PMBOH) upon treatment with phosphorus tribromide. DPPH assay was performed according to the literature, by measuring the absorbance decreasing of a DPPH methanolic solution (10⁻⁴ M) treated with an equimolar amount of ascorbic acid derivatives (4 a-e, 9).

General procedure for the protection of L-ascorbic acid as 2,3-dibenzylo- or 2,3-bis(p-methoxybenzyl)-ethers (GP1)²⁵

Benzyl bromide or p-methoxybenzyl bromide (2.4 eq) was added to a suspension of L-ascorbic acid (1.0 eq) and K₂CO₃ (3.0 eq) in DMSO/THF (2:1 vol) and the reaction was stirred at 50 °C for 3 h. Afterwards, the mixture was filtered through a Celite pad and the organic phase was extracted with EtOAc and washed with brine and H₂O. The organic layer was dried on Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography (petroleum ether/EtOAc).

(R)-5-(S)-1,2-Dihydroxyethyl)-3,4-bis((4-methoxybenzyl)oxy)furan-2(SH)-one (2b). Following the general procedure, 1.8 g of L-ascorbic acid and 4.94 g of p-methoxybenzyl bromide gave, after purification, 2b (1.91 g, 45%) as yellowish oil. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.80 (s, 3H), 3.81 (s, 3H), 3.71-3.81 (m, 2H), 3.85-3.90 (m, 1H), 4.64 (d, J 2.4 Hz, 1H, CHO), 5.06 (ap s, 2H), 5.07 (d, J 11.2 Hz, 1H), 5.12 (d, J 11.2 Hz, 1H), 6.86 (ap d, ls 8.6 Hz, 2H), 6.91 (ap d, ls 8.6 Hz, 2H), 7.15 (ap d, ls 8.6 Hz, 2H), 7.33 (ap d, ls 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 55.3, 63.3, 69.9, 73.4, 73.7, 76.1, 113.9, 114.0, 120.8, 127.3, 128.1, 129.9, 130.9, 157.6, 159.9, 160.0, 170.1. Elemental Analysis: C₂₂H₂₄O₈ 63.45%, H 5.81%. Found: C 63.22%, H 5.83%.

General procedure for the synthesis of ascorbyl 5-O-, 6-O-dialkanoates protected as 2,3-dibenzylo ethers or 2,3-bis((4-methoxybenzyl) ethers. (GP2). 4-DMAP (12 mmol, 3 eq.) and DCC (12 mmol, 3 eq.) were added to a stirred solution of 2a or 2b (4 mmol, 1 eq.) in MeCN (40 ml) under inert atmosphere at rt. Then the alkanoyl chloride (9.2 mmol, 2.3 eq.) was slowly added and the mixture was stirred for 12 h. Afterwards the solvent was removed under reduced pressure and the crude material purified by flash chromatography (petroleum ether/EtOAc 8:1).

(S)-1-((R)-3,4-Bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl dioctanoate (3a). Following the general procedure GP2, 2a (1.0 g, 2.80 mmol) and octanoyl chloride (1.043 g, 6.44 mmol) gave, after flash chromatography, 3a (1.53 g, 90%) as a colourless oil. ¹H NMR (200 MHz, CDCl₃): δ (ppm) 0.82-0.89 (m, 6H), 1.18-1.27 (m, 16H), 1.43-1.54 (m, 4H), 2.15-2.33 (m, 4H), 4.22 (dd, J 7.4, 11.6 Hz, 1H, CH₂H₂O), 4.33 (dd, J 5.6, 11.6 Hz, 1H, CH₂H₂O), 4.80 (d, J 2.2 Hz, 1H, CHO), 5.10 (ap, s, 2H, CH₂Ph), 5.15 (ap, s, 2H, CH₂Ph), 5.34-5.42 (m, 1H, CHCH₂), 7.19-7.25 (m, 4H), 7.27-7.42 (m, 6H). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 13.9, 22.5, 24.6, 24.7, 24.8, 28.7, 28.8, 28.9, 31.5, 33.8, 61.8, 67.3, 73.5, 73.6, 121.2, 127.9, 128.0, 128.6, 128.7, 128.8, 128.9, 129.0, 135.0, 135.9, 154.9, 168.3, 172.1, 172.8. MS (ESI positive) m/z (%): 632 [M+Na]⁺, (100). Elemental Analysis: C₃₈H₄₈O₈ C 71.03%, H 7.95%. Found: C 70.82%, H 7.98%.
(S)-1-((R)-3,4-Bis(benzylxylo)-5-oxo-2,5-dihydropuran-2-yl)ethane-1,2-diyli didecanoate (3b). Following the general procedure GP2, 2a (1.0 g, 2.80 mmol) and decanoyl chloride (1.22 g, 6.44 mmol) gave, after flash chromatography, 3b (1.64 g, 88%) as a colourless oil. 1H NMR (400 MHz, CDCl3): δ (ppm) 0.84-0.90 (m, 6H), 1.25 (m, 24H), 1.52-1.66 (m, 4H), 2.19 (dt, J 2.2, 7.1 Hz, 2H), 2.22-2.33 (m, 2H), 4.22 (dd, J 7.0, 11.7 Hz, 1H, CH2HBO), 4.32 (dd, J 5.9, 11.7 Hz, 1H, CH2HBO), 4.80 (d, J 2.0 Hz, 1H, CCHO), 5.10 (ap s, 2H, CH2Ph), 5.14 (ap s, 2H, CH2Ph), 5.35-5.39 (m, 1H, CHCH2), 7.21-7.23 (m, 2H), 7.33-7.39 (m, 8H). 13C NMR (50 MHz, CDCl3): δ (ppm) 13.7, 22.3, 24.3, 24.5, 24.7, 25.2, 28.8, 28.9, 29.1, 31.6, 33.6, 34.6, 55.3, 61.6, 67.2, 73.3, 73.5, 121.2, 127.7, 128.3, 128.4, 134.9, 135.7, 154.7, 168.1, 171.7, 172.5. MS (ESI positive) m/z (%): 687 [M+Na]+, (100). Elemental Analysis: C30H54O8 C 72.26%, H 8.49%. Found: C 72.01%, H 8.52%.

(S)-1-((R)-3,4-Bis(benzylxylo)-5-oxo-2,5-dihydropuran-2-yl)ethane-1,2-diyli didodecanoate (3c). Following the general procedure GP2, 2a (1.41 g, 3.95 mmol) and dodecanoyl chloride (1.981 g, 9.1 mmol) gave, after flash chromatography, 3c (2.59 g, 91%) as a colourless oil. 1H NMR (200 MHz, CDCl3): δ (ppm) 0.84-0.90 (m, 6H), 1.24 (m, 32H), 1.48-1.53 (m, 4H), 2.14-2.26 (m, 4H), 3.83 (ap d, J 6.2 Hz, 2H, CH2O), 4.90 (d, J 1.8 Hz, 1H, CCHO), 5.10 (ap s, 2H, CH2Ph), 5.17 (ap.s, 2H, CH2Ph), 5.18-5.23 (m, 1H, CHCH2), 7.17-7.28 (m, 2H), 7.33-7.41 (m, 8H). 13C NMR (50 MHz, CDCl3): δ (ppm) 14.0, 22.7, 24.8, 25.0, 29.1, 29.3, 29.4, 29.6, 31.9, 34.0, 61.9, 67.5, 73.8, 121.6, 128.0, 128.7, 128.8, 138.9, 135.2, 136.0, 155.1, 168.5, 172.2, 173.0. MS (ESI positive) m/z (%): 744 [M+Na]+, (100). Elemental Analysis: C34H64O8 C 73.30%, H 8.95%. Found: C 73.46%, H 8.92%.

(S)-2-Acetoxy-2-((R)-3,4-bis(benzylxylo)-5-oxo-2,5-dihydropuran-2-yl)ethyl dodecanoate (3d). Acetyl chloride (154 mg, 1.95 mmol, 1.5 eq.) was slowly added, to a cooled solution (0 °C) of 5d (vide infra) (700 mg, 1.30 mmol, 1.0 eq.) and Et3N (400 mg, 3.9 mmol, 3.0 eq.) in CH2Cl2 (10 mL). The reaction was allowed to warm up to rt and the mixture was stirred overnight under inert atmosphere. The reaction was then diluted with H2O (10 mL), the layers separated and the aqueous layer extracted into Et2O (2 x 10 mL). The combined organic layers were dried over Na2SO4, filtered, concentrated in vacuo and purified by flash column chromatography (petroleum ether/EtOAc 4:1) to give 3d (695 mg, 92%) as a colourless oil. 1H NMR (200 MHz, CDCl3): δ (ppm) 0.87 (ap t, J 7.0 Hz, 3H), 1.24 (m, 16H), 1.42-1.63 (m, 2H), 1.93 (s, 3H), 2.27 (t, J 8 Hz, 2H), 4.25 (dd, J 7.3, 12.0 Hz, 1H, CH2HBO), 4.32 (dd, J 6.6, 12.0 Hz, 1H, CH2HBO), 4.80 (d, J 2.2 Hz, 1H, CHO), 5.06-5.13 (m, 2H), 5.15 (ap s, 2H, CH2Ph), 5.26-5.39 (m, 1H), 7.17-7.26 (m, 2H), 7.33-7.40 (m, 8H). 13C NMR (50 MHz, CDCl3): δ (ppm) 14.1, 20.4, 22.6, 24.7, 29.1, 29.2, 29.3, 29.4, 29.6, 31.9, 33.9, 61.8, 67.7, 73.7, 121.4, 128.0, 128.4, 128.8, 129.0, 135.1, 135.9, 155.1, 168.5, 169.4, 173.0. MS (ESI positive) m/z (%): 603 [M+Na]+, (100). Elemental Analysis: C34H64O8 C 70.32%, H 7.64%. Found: C 70.08%, H 7.67%.

(S)-1-((R)-3,4-Bis(benzylxylo)-5-oxo-2,5-dihydropuran-2-yl)ethane-1,2-diyli diolate (3e). Following the general procedure GP2, 2a (500 mg, 1.40 mmol) and oleoyl chloride (969 mg, 3.22 mmol) gave, after flash chromatography, 3e (966 mg, 78%) as a slightly yellowish oil. 1H NMR (200 MHz, CDCl3): δ (ppm) 0.88 (ap t, J 6.4 Hz, 6H), 1.17-1.40 (m, 40H), 1.48-1.68 (m, 4H), 1.93-2.08 (m, 8H), 2.18-2.31 (m, 4H), 4.23 (dd, J 7.1, 11.5 Hz, 1H, CH2HBO), 4.34 (dd, J 5.0, 11.5 Hz, 1H, CH2HBO), 4.80 (d, J 2.1 Hz, 1H, CHO), 5.11 (s, 2H), 5.16 (s, 2H), 5.26-5.44 (m, 5H), 7.21-7.43 (m, 10H). 13C NMR (50 MHz, CDCl3): δ (ppm) 14.0, 22.6, 24.8, 25.0, 27.2, 29.1, 29.3, 29.5, 29.7, 29.8, 31.9, 34.0, 61.9, 67.6, 73.7, 121.7, 128.0, 128.2, 128.7, 128.8, 128.9, 129.7, 130.0, 135.2, 136.1, 155.0, 168.4, 172.1, 172.9. MS (ESI positive) m/z (%): 908 [M+Na]+, (100). Elemental Analysis: C56H84O8 C 75.98%, H 9.56%. Found: C 75.77%, H 9.58%.

(S)-1-((R)-3,4-Bis((4-methoxybenzylxylo)-5-oxo-2,5-dihydropuran-2-yl)ethane-1,2-diyli diolate (3f). Following the general procedure GP2, 2b (200 mg, 0.48 mmol) and oleoyl chloride (301 mg, 1.0 mmol) gave, after flash chromatography, 3f (376 mg, 83%) as a slightly yellowish oil. 1H NMR (200 MHz, CDCl3): δ (ppm) 0.83-0.91 (m, 6H), 1.19-1.29 (m, 40H), 1.41-1.66 (m, 4H), 1.87-2.05 (m, 8H), 2.17-2.36 (m, 4H), 3.78 (s, 3H), 3.79 (s, 3H), 4.19
(dd, J 7.3, 11.7 Hz, 1H, CH₂H₂O), 4.31 (dd, J 5.5, 11.7 Hz, 1H, CH₂H₂O) 4.75 (d, J 2.2 Hz, 1H, CHO), 5.06 (ap, s, 4H, CH₂Ar), 5.27-5.38 (m, 5H), 6.83-6.91 (m, 4H), 7.17 (ap d, Is 8.8 Hz, 2H), 7.32 (ap d, Is 8.8 Hz, 2H). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 14.0, 22.6, 24.7, 24.9, 27.1, 29.0, 29.1, 29.2, 29.5, 29.6, 29.7, 31.8, 33.9, 55.2, 61.8, 67.4, 73.3, 73.4, 73.7, 114.0, 121.2, 127.2, 128.1, 129.6, 129.9, 130.6, 155.2, 160.0, 168.6, 172.1, 172.9. MS (ESI positive) m/z (%): 968 [M+Na]+, (100). Elemental Analysis: C₅₈H₈₈O₁₀ C 73.69%, H 9.38%. Found: C 73.91%, H 9.40%.

(S)-1-[(R)-3,4-Bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl]ethane-1,2-diyli diacrylate (3g). Following the general procedure GP2, 2a (200 mg, 0.56 mmol) and acryloyl chloride (117 mg, 1.29 mmol) gave, after flash chromatography, 3g (195 mg, 75%) as a colourless oil. ¹H NMR (200 MHz, CDCl₃): δ (ppm) 4.36-4.45 (m, 2H, CH₂O), 4.87 (d, J 2.2 Hz, 1H, CHO), 5.06 (d, J 10.2, 1H, CH₂Ph), 5.08 (ap, s, 2H, CH₂Ph), 5.14 (d, J 10.2, 1H, CH₂Ph), 5.42-5.56 (m, 1H), 5.81-6.19 (m, 4H), 6.37-6.51 (m, 2H), 7.19-7.38 (m, 10H). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 62.0, 67.6, 73.6, 73.7, 73.9, 121.7, 127.9, 127.2, 127.5, 128.0, 128.6, 128.7, 131.8, 132.5, 134.9, 135.8, 155.2, 164.3, 165.2, 168.6. MS (ESI positive) m/z (%): 487 [M+Na]+, (100). Elemental Analysis: C₅₈H₆₅O₈ C 67.23%, H 5.21%. Found: C 67.13%, H 5.22%.

Cleavage of benzyl ethers. General procedure (GP3). To a solution of ascorbyl 5-O,6-O-dialkanoate-2,3-dibenyl ethers 3a-d (3.0 mmol) in EtOAc (30 mL), Pd/C (10%) was added. Then a balloon filled with H₂ was attached to the flask and the reaction was stirred for 2 h. The reaction progress was monitored by TLC. After the complete consumption of the starting product, the mixture was filtered through Celite and the solvent was removed under reduced pressure. Crystallization from Et₂O/petroleum ether gave ascorbyl 5-O,6-O-dialkanoates 4a-d in almost quantitative yield.

(S)-1-[(R)-3,4-Dihydroxy-5-oxo-2,5-dihydrofuran-2-yl]ethane-1,2-diyli dioctanoate (4a). Prepared from 3a according to the general procedure GP3. White solid. ¹H NMR (200 MHz, CDCl₃): δ (ppm) 0.84-0.90 (m, 6H), 1.22-1.29 (m, 16H), 1.51-1.67 (m, 4H), 2.28-2.36 (m, 4H), 4.29 (dd, J 6.6, 11.8 Hz, 1H, CH₂H₂O), 4.42 (dd, J 4.8, 11.8.0 Hz, 1H, CH₃H₆O), 4.91 (d, J 3.4 Hz, 1H, CHO), 5.38-5.46 (1H, m, CHO). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.9, 22.5, 24.7, 24.8, 28.8, 28.9, 29.0, 31.5, 34.0, 62.0, 68.2, 74.6, 119.5, 148.9, 170.1, 172.9, 173.7. Elemental Analysis: C₃₂H₃₆O₈ C 61.66%, H 8.47%. Found: C 61.59%, H 8.50%.

(S)-1-[(R)-3,4-Dihydroxy-5-oxo-2,5-dihydrofuran-2-yl]ethane-1,2-diyli didodecanoate (4b). Prepared from 3b according to the general procedure GP3. White solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (ap t, Is 6.6 Hz, 6H), 1.26 (m, 24H), 1.51-1.68 (m, 4H), 2.29-2.38 (m, 4H), 4.30 (dd, J 6.8, 11.6 Hz, 1H, CH₃H₂O), 4.42 (dd, J 4.8, 11.6 Hz, 1H, CH₃H₂O), 4.92 (d, J 3.6 Hz, 1H, CHO), 5.41-5.45 (m, 1H, CHCH₂). ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 13.9, 22.5, 24.6, 24.7, 28.9, 29.0, 29.1, 29.3, 31.7, 33.9, 34.0, 62.1, 68.1, 74.8, 119.1, 150.9, 171.5, 173.1, 173.9 ppm. MS (ESI negative) m/z (%): 483 [M-H]⁻, (100). IR [CDCl₃] ν (cm⁻¹): 3350-3400, 3100-3200, 2800-2950, 1550, 1690, 1620, 1100-1200. Elemental Analysis: C₂₆H₃₆O₈ C 64.44%, H 9.15%. Found: C 64.09%, H 9.25%.

(S)-1-[(R)-3,4-Dihydroxy-5-oxo-2,5-dihydrofuran-2-yl]ethane-1,2-diyli didodecanoate (4c). Prepared from 3c according to the general procedure GP3. White solid ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (m, 6H, 1.26 (m, 32H), 1.54-1.65 (m, 4H), 2.29-2.34 (m, 4H), 4.31 (dd, J 6.6, 11.7 Hz, 1H, CH₂H₂O), 4.41 (dd, J 4.8, 11.7 Hz, 1H, CH₂H₂O), 4.90 (d, J 3.1 Hz, 1H, CHO), 5.38-5.43 (m, 1H, CHCH₂). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.9, 22.5, 24.6, 24.7, 28.9, 29.0, 29.2, 29.4, 29.5, 31.8, 33.8, 33.9, 62.1, 68.1, 74.7, 118.8, 151.4, 171.5, 173.0, 173.8. MS (ESI negative) m/z (%): 539 [M-H]⁻, (100). IR [CDCl₃] ν (cm⁻¹): 3300-3500, 2800-2950, 1770, 1690, 1100-1190. Elemental Analysis: C₃₀H₃₈O₈ C 64.64%, H 9.69%. Found: C 64.32%, H 9.59%.

(S)-2-Acetoxy-2-[(R)-3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl]ethyl dodecanoate (4d). Prepared from 3d according to the general procedure GP3. White solid ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (t, J 6.8 Hz, 3H), 1.19-1.38 (m, 16H), 1.54-1.69 (m, 2H), 2.09 (s, 3H), 2.34 (t, J 7.6 Hz, 2H), 4.31 (dd, J 6.6, 11.8 Hz, 1H, CH₂H₂O),
4.42 (dd, J 4.8, 11.8 Hz, 1H, CH$_3$H$_2$O), 4.95 (d, J 3.5 Hz, 1H, CHO), 5.38-5.46 (1H, m, CHO). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 14.1, 20.6, 22.7, 24.8, 29.1, 29.2, 29.3, 29.4, 29.6, 31.9, 34.0, 61.9, 68.5, 74.7, 119.2, 150.4, 170.4, 171.3, 173.9. MS (ESI negative) m/z (%): 399 [M-H]$^-$, (100). Elemental Analysis: C$_{20}$H$_{32}$O$_8$ C 59.98%, H 8.05%. Found C 59.63%, H 8.19%.

(S)-1-((R)-3,4-Dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl dioleate (4e). To a solution of 3f (155 mg, 0.16 mmol, 1 eq.) and benzenethiol (43 mg, 0.38 mmol, 2.4 eq.) in dry CH$_2$Cl$_2$ (3 mL) cooled at -78 °C, SnCl$_4$ (39.4 mL, 0.336 mmol, 2.1 eq.) was dropwise added and the reaction was stirred for 30 min. Then the mixture was quenched with saturated aqueous NaHCO$_3$, allowed to warm up at rt and extracted with EtOAc, dried over Na$_2$SO$_4$, filtered and concentrated in vacuo. The residue was purified by column chromatography (petroleum ether/EtOAc 1:1) to give 4e (38 mg, 34%) as a slightly yellow sticky solid. 1H NMR (200 MHz, CDCl$_3$): δ (ppm) 0.83-0.95 (m, 6H), 1.21-1.32 (m, 40H), 1.46-1.63 (m, 4H), 1.93-2.04 (m, 8H), 2.24-2.36 (m, 4H), 4.27 (dd, J 6.6, 11.9 Hz, 1H, CH$_3$H$_2$O), 4.41 (dd, J 5.0, 11.9 Hz, 1H, CH$_3$H$_2$O), 4.89 (d, J 2.6 Hz, 1H, CHO), 5.31-5.36 (m, 4H), 5.37-5.47 (m, 1H). 13C NMR (50 MHz, CDCl$_3$): δ (ppm) 13.8, 22.6, 24.8, 24.8, 27.0, 29.0, 29.1, 29.3, 29.4, 29.6, 29.7, 31.9, 34.2, 61.8, 67.4, 73.5, 129.7, 130.0, 155.3, 168.9, 172.6, 173.8. MS (ESI negative) m/z (%): 704 [M-H]$^-$, (100). Elemental Analysis: C$_{42}$H$_{72}$O$_8$ C 71.55%, H 10.29%. Found: C 71.38%, H 10.31%.

(S)-2-((R)-3,4-Bis((4-methoxybenzyl)oxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl oleate (5a). Oleoyl chloride (331 mg, 1.1 mmol) was slowly added to a solution of 2b (416 mg, 1.0 mmol) and Et$_3$N (507 mg, 5.0 mmol) in CH$_2$Cl$_2$ (10 mL). The reaction was stirred overnight under inert atmosphere at ambient temperature. Afterwards, the mixture was diluted with H$_2$O (10 mL) and the aqueous layer extracted into Et$_2$O (2 x 10 mL). The combined organic layers were dried over Na$_2$SO$_4$, filtered, concentrated in vacuo and purified by flash column chromatography (petroleum ether/EtOAc 4:1 to give the product 5a (327 mg, 48%). Colourless oil 1H NMR (200 MHz, CDCl$_3$): δ (ppm) 0.83-0.91 (m, 3H), 1.19-1.29 (m, 20H), 1.47-1.61 (m, 2H), 1.87-2.11 (m, 4H), 2.17-2.35 (m, 2H), 3.79 (s, 3H), 3.81 (s, 3H), 4.02-4.36 (m, 3H), 4.62 (d, J 2.2 Hz, 1H, CHO), 5.07 (ap. s, 4H), 5.29-5.36 (m, 2H), 6.84-6.91 (m, 4H), 7.17 (ap d, Is 8.8 Hz, 2H), 7.32 (ap d, Is 8.8 Hz, 2H). MS (ESI positive) m/z (%): 704 [M+Na]$^+$, (100). Elemental Analysis: C$_{40}$H$_{56}$O$_9$ C 70.56 %, H 8.29%. Found: C 70.69%, H 8.30%.

(S)-2-((R)-3,4-Bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl acrylate (5b). Acryloyl chloride (99.6 mg, 1.1 mmol) was slowly added to a solution of 2a (356 mg, 1.0 mmol) and Et$_3$N (152 mg, 1.5 mmol) in CH$_2$Cl$_2$ (10 mL). The reaction was stirred overnight under inert atmosphere at ambient temperature. Afterwards, the mixture was diluted with H$_2$O (10 mL), the layers separated and the aqueous layer extracted into Et$_2$O (2 x 10 mL). The combined organic layers were dried over Na$_2$SO$_4$, filtered, concentrated in vacuo and purified by flash column chromatography (petroleum ether/EtOAc 3:1 to give the product 5b (218 mg, 53%) as a colourless oil. 1H NMR (200 MHz, CDCl$_3$): δ (ppm) 2.10 (bs, 1H), 3.70-4.18 (m, 1H, CHCH$_2$), 4.30 (dd, J 5.1, 11.7 Hz, 1H, CH$_3$H$_2$O), 4.40 (dd, J 6.6, 11.7 Hz, 1H, CH$_3$H$_2$O), 4.69 (d, J 2.2 Hz, 1H, CHO), 5.10 (ap. s, 2H, CH$_2$Ph), 5.13 (d, J 10.6, 1H, CH$_2$Ph), 5.22 (d, J 10.6, 1H, CH$_2$Ph), 5.87 (dd, 1H, J 1.5, 10.3 Hz), 6.13 (dd, 1H, J 10.3, 17.2 Hz), 6.45 (dd, 1H, J 1.8, 17.2 Hz), 7.19-7.26 (m, 4H), 7.33-7.41 (m, 6H). 13C NMR (50 MHz, CDCl$_3$): δ (ppm) 64.9, 67.9, 73.6, 73.9, 75.4, 121.7, 127.9, 128.7, 128.8, 129.1, 131.8, 135.2, 135.9, 156.5, 165.9, 169.3. MS (ESI positive) m/z (%): 433 [M+Na]$^+$, (100). Elemental Analysis: C$_{23}$H$_{32}$O$_7$ C 67.31%, H 5.40%. Found: C 67.21%, H 5.41%.

(S)-2-((R)-3,4-Bis((4-methoxybenzyl)oxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl acrylate (5c). Following the same procedure as described above for 5b, acryloyl chloride (72 mg, 0.79 mmol) and 2b (300 mg, 0.72 mmol) gave, after purification by column chromatography (petroleum ether/EtOAc 2:1), 5c (162 mg, 48%). Colourless oil. 1H NMR (200 MHz, CDCl$_3$): δ (ppm) 2.20 (bs, 1H), 3.79 (s, 3H), 3.81 (s, 3H), 4.03-4.12 (m, 1H, CHCH$_2$), 4.22 (dd, J 5.4, 11.4 Hz, 1H, CH$_3$H$_2$O), 4.37 (dd, J 6.8, 11.4 Hz, 1H, CH$_3$H$_2$O), 4.65 (d, J 2.2 Hz, 1H, CHO).
CHO), 5.02 (d, J 12.2, 1H), 5.05 (ap. s, 2H), 5.12 (d, J 12.2, 1H), 5.85 (dd, 1H, J 1.8, 10.6 Hz), 6.11 (dd, 1H, J 10.4, 17.2 Hz), 6.42 (dd, 1H, J 1.8, 17.2 Hz), 6.82-6.91 (m, 4H), 7.14 (ap d, ls 7.14 Hz, 2H), 7.32 (ap d, ls 7.14 Hz, 2H).

Elemental Analysis: C_{25}H_{26}O_{9} C 63.82%, H 5.57%. Found: C 63.73%, H 5.58%.

S-2-((R)-3,4-Bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl dodecanoate (5d). Following the same procedure as described for 5a, dodecanoyl chloride (0.90 g, 4.14 mmol), 2a (1.34 g, 3.76 mmol) and Et_{3}N (1.90 g, 18.8 mmol) gave, after purification by column chromatography (petroleum ether/ EtOAc 3:1), 5d (1.38 g, 68%) as a colourless oil. ^1H NMR (200 MHz, CDCl_{3}) δ (ppm): 0.88 (ap t, J 7.2 Hz, 3H), 1.25 (m, 16H), 1.48-1.61 (m, 2H), 2.33 (t, J 8 Hz, 2H), 4.01-4.11 (m, 1H), 4.21 (dd, J 5.0, 11.9 Hz, 1H, CH_{2}O), 4.36 (dd, J 6.2, 11.9 Hz, 1H, CH_{3}BO), 4.67 (d, J 1.8 Hz, 1H, CHO), 5.11 (ap. s, 2H, CH_{2}Ph), 5.11 (d, J 11.9, 1H, CH_{2}Ph), 5.22 (d, J 11.9, 1H, CH_{2}Ph), 5.78-6.26 (m, 2H), 7.33-7.41 (m, 8H). ^13C NMR (50 MHz, CDCl_{3}): δ (ppm) 14.0, 22.5, 24.8, 29.0, 29.1, 29.3, 29.4, 29.5, 31.6, 34.0, 64.1, 67.6, 73.1, 73.8. Found: C 76.59%, H 7.67%.

Arkivoc 2017, (ii), 407-420

Tanini, D. et al

Page 416 © ARKAT USA, Inc
22.5, 24.8, 29.0, 29.1, 29.2, 29.3, 29.4, 31.8, 33.9, 60.7, 70.1, 73.5, 73.7, 121.3, 127.1, 127.8, 128.5, 128.7, 135.2, 136.0, 143.4, 155.4, 168.2, 172.0. MS (ESI negative) m/z (%): 599 [M-H]-, (100). Elemental Analysis: C_{38}H_{36}O_{8}S_{2} C 66.65%, H 5.56%. Found: C 66.69%, H 5.52%.

(S)-2-((R)-3,4-bis((4-methoxybenzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl-3-(phenyl-thio)propanoate (11b). Following the general procedure GP4, 5c (118 mg, 0.25 mmol, 1 eq.), neutral alumina (50 mg) and benzenethiol (33 mg, 0.30 mmol, 1 eq.) in dry toluene (2.5 mL), gave after flash chromatography (petroleum ether/EtOAc 3:1) as a yellowish oil. \(^1 \)H NMR (400 MHz, CDCl_3): \(\delta \) (ppm): 2.10 (bs, 1H), 2.64 (ap t, J 7.3 Hz, 2H), 3.14 (ap t, J 7.3 Hz, 2H), 3.79 (s, 3H), 3.80 (s, 3H), 3.97-4.14 (m, 1H, CHCH_2), 4.19 (dd, J 5.1, 11.4 Hz, 1H, CH_2O), 4.31 (dd, J 6.7, 11.4 Hz, 1H, CH_3O), 4.62 (d, J 2.2 Hz, 1H, CHO), 5.02 (d, J 11.2 Hz, 1H), 5.06 (ap, s, 2H), 5.12 (d, J 11.2 Hz, 1H), 6.83-6.92 (m, 4H), 7.12-7.38 (m, 9H). Elemental Analysis: C_{33}H_{32}O_{8}S C 64.13%, H 5.56%. Found: C 64.26%, H 5.21%.

(S)-1-((R)-3,4-bis((benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl bis(3-(phenyl-thio)propanoate) (12). Following the general procedure GP4, 3g (116 mg, 0.25 mmol, 1 eq.), neutral alumina (50 mg) and benzenethiol (66 mg, 0.60 mmol, 2 eq.) in dry toluene (2.5 mL), gave after flash chromatography (petroleum ether/EtOAc 5:1), 12 (152 mg, 88%) as a yellowish oil. \(^1 \)H NMR (400 MHz, CDCl_3): \(\delta \) (ppm): 2.44-2.57 (m, 2H), 2.62 (ap t, J 7.3 Hz, 2H), 3.06 (ap t, J 7.4 Hz, 2H), 3.14 (ap t, J 7.4 Hz, 2H), 4.27 (dd, J 7.2, 11.6 Hz, 1H, CH_3O), 4.36 (dd, J 5.3, 11.6 Hz, 1H, CH_2O), 4.80 (d, J 2.2 Hz, 1H, CHO), 5.12 (AB system, Is 10.8 Hz, 2H, CH_2Ph), 5.20 (AB system, Is 11.3 Hz, 2H, CH_2Ph) 5.41 (dd, J 2.2, 5.3, 7.2 Hz, 1H, CHCH_2), 7.17-7.37 (m, 20H). \(^{13} \)C NMR (100 MHz, CDCl_3): \(\delta \) (ppm): 28.8, 29.1, 33.8, 34.1, 62.2, 67.7, 73.6, 73.5, 73.7, 71.3, 126.6, 126.7, 127.4, 128.1, 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 130.1, 130.3, 134.9, 135.0, 135.8, 154.8, 168.4, 170.2, 170.9. MS (ESI positive) m/z (%): 708 [M+Na]^+, (100). Elemental Analysis: C_{38}H_{36}O_{8}S_{2} C 66.65%, H 5.30%. Found: C 66.78%, H 5.27%.

General procedure for the thiol-Michael addition on ascorbly acrylates (GP4). Neutral alumina was added to a solution of thiol (benzenethiol or 1,2-ethanedithiol) and ascorbly acrylate 3b, 5b or 5c in dry toluene. The reaction was stirred under inert atmosphere at rt for 4 h. Afterwards the mixture was diluted with EtOAc, washed with \(\text{H}_2\text{O} \), dried over \(\text{Na}_2\text{SO}_4 \), filtered and concentrated under reduced pressure.
Bis((S)-2-((R)-3,4-bis(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl) 3,3′-(ethane-1,2-diylbis(sulfanediyl))dipropionate (13). Following the general procedure GP4, 5b (103 mg, 0.25 mmol, 1 eq.), neutral alumina (25 mg) and 1,2-ethanedithiol (10.6 mg, 0.11 mmol, 0.45 eq.) in dry toluene (2 mL), gave after flash chromatography (petroleum ether/EtOAc 3:2), 13 (95 mg, 94%). Slightly yellow oil.

1H NMR (200 MHz, CDCl₃): δ (ppm) 2.61-2.93 (m, 12H), 3.38 (bd, J 7.9 Hz, 2H, OH), 4.05-4.20 (m, 2H), 4.27 (dd, J 5.6, 11.3 Hz, 2H, C₄H₄H₅O), 4.36 (dd, J 7.0, 11.3 Hz, 2H, CH₂H₂O), 4.74 (d, J 1.9 Hz, 2H, CHO), 5.06 (ap s, 4H, C₄H₄Ph), 5.07 (d, J 11.6 Hz, 2H, CH₂Ph), 5.22 (d, J 11.6 Hz, 4H, C₄H₄Ph), 7.17-7.26 (m, 4H), 7.32-7.43 (m, 16H).

13C NMR (50 MHz, CDCl₃): δ (ppm) 26.6, 31.9, 35.0, 65.1, 67.7, 73.7, 74.0, 75.7, 121.3, 127.9, 128.6, 128.7, 129.1, 135.3, 135.9, 156.9, 169.9, 171.8.

Elemental Analysis: C₄₈H₅₀O₁₄S₂ C 63.01%, H 5.51%. Found C 62.86%, H 5.39%.

References

http://dx.doi.org/10.1007/s11746-010-1643-5

http://dx.doi.org/10.1016/j.procbio.2008.10.014

http://dx.doi.org/10.1016/S0040-4039(02)02648-5

http://dx.doi.org/10.1016/j.tetlet.2011.08.102

http://dx.doi.org/10.1016/S0040-4039(00)00574-8

http://dx.doi.org/10.1039/C6OB00067C

http://dx.doi.org/10.1246/nikkashi.1998.824

http://dx.doi.org/10.1021/jf025938l