Supplementary Material

One-pot microwave-assisted synthesis of 2,5-bis(pyrazol-4-yl)[1,3]thiazolo[5,4-d][1,3]thiazoles from pyrazole-4-carbaldehydes and dithiooxamide

Lyubov K. Papernaya,* Alexandra A. Shatrova, Alexander I. Albanov, Galina G. Levkovskaya, and Igor B. Rozentsveig

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
E-mail: papern@irioch.irk.ru

Table of Contents

1. Copies of 1H NMR, 13C NMR S2
2. X-ray study S6
1H NMR spectrum of compound 2a

13C NMR spectrum of compound 2a

1H NMR spectrum of compound 2b
13C NMR spectrum of compound 2b

1H NMR spectrum of compound 2c
13C NMR spectrum of compound 2c

1H NMR spectrum of compound 2d
X-ray analysis

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1 Experimental data and precise structures of compounds 2c

<table>
<thead>
<tr>
<th>Formula</th>
<th>C_{10}H_{13}N_{3}S</th>
</tr>
</thead>
</table>

Specimen	colorless plate
Spice dimensions, mm	0.070 x 0.320 x 0.500
Temperature, K	100
Crystal system / Space group	triclinic / P -1
Mr, g/mol	207.29
\(\theta_{\text{min}} / \theta_{\text{max}} \)	2.67/30.25
a, Å; b, Å; c, Å	5.7032(4); 7.7544(6); 1.9147(8)
\(\alpha^\circ; \beta^\circ; \gamma^\circ \)	89.211(2); 81.328(2); 79.248(3)
V, Å^3	511.70(6)
Z	2
D_{calc}, g/cm^3	1.345
F (000)	220
Absorp. Coeff., mm\(^{-1}\)	0.279
Reflections collected/Independ reflections	22201 / 3019
Number of ref.param.	131
Final R₁, % / Rw (all data)	3.37 / 0.0404
Goodness-of-fit on F^2	1.076
\((\Delta \rho)_{\text{max}}\) and \((\Delta \rho)_{\text{min}}, e/Å^3\)	0.394 and -0.411
Weight scheme
\[w = \frac{1}{\sigma^2(F_o^2) + (0.0419P)^2 + 0.2512P} \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

Principal bond distances, bond angles and torsion angles are presented in Table 2.

Table 2 Selected bond lengths, bond and torsion angles in compounds 2c

<table>
<thead>
<tr>
<th>(l, \text{Å})</th>
<th>(\text{Angle})</th>
<th>(\varphi,^\circ)</th>
<th>(\text{Angle})</th>
<th>(\theta,^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7296(12)</td>
<td>C6-S1-C5</td>
<td>88.77(5)</td>
<td>C3-N1-N3-C8</td>
<td>1.02(13)</td>
</tr>
<tr>
<td>1.3494(14)</td>
<td>C3-N1-C2</td>
<td>127.47(10)</td>
<td>C3-N1-C2-C10</td>
<td>-143.54(12)</td>
</tr>
<tr>
<td>1.4718(14)</td>
<td>C5-N2-C6</td>
<td>109.03(10)</td>
<td>C3-N1-C2-C1</td>
<td>92.20(14)</td>
</tr>
<tr>
<td>1.3670(14)</td>
<td>N1-C2-C10</td>
<td>110.20(10)</td>
<td>N3-N1-C3-C4</td>
<td>-0.87(14)</td>
</tr>
<tr>
<td>1.5204(18)</td>
<td>C10-C2-C1</td>
<td>112.39(10)</td>
<td>C6-S1-C5-N2</td>
<td>-0.66(9)</td>
</tr>
<tr>
<td>1.7700(11)</td>
<td>N3-N1-C2</td>
<td>119.09(9)</td>
<td>N1-N3-C8-C4</td>
<td>-0.74(13)</td>
</tr>
<tr>
<td>1.3654(13)</td>
<td>C8-N3-N1</td>
<td>105.11(9)</td>
<td>C3-C4-C5-S1</td>
<td>163.62(10)</td>
</tr>
<tr>
<td>1.3201(15)</td>
<td>N1-C2-C1</td>
<td>109.71(10)</td>
<td>C8-C3-C4-O1</td>
<td>179.66(10)</td>
</tr>
<tr>
<td>1.3324(14)</td>
<td>N1-C3-C7</td>
<td>122.81(10)</td>
<td>N1-C3-C4-C5</td>
<td>179.07(11)</td>
</tr>
<tr>
<td>1.4907(17)</td>
<td>N2-C5-S1</td>
<td>115.03(8)</td>
<td>C3-C4-C5-N2</td>
<td>-15.86(19)</td>
</tr>
<tr>
<td>1.4513(15)</td>
<td>C6-C6-S1</td>
<td>108.92(11)</td>
<td>N3-N1-C2-C10</td>
<td>44.60(14)</td>
</tr>
<tr>
<td>1.4008(15)</td>
<td>N3-C8-C9</td>
<td>119.10(10)</td>
<td>N3-N1-C2-C1</td>
<td>-79.66(13)</td>
</tr>
</tbody>
</table>