Supplementary Material

Mechanistic studies on the metal-free decarboxylative coupling reaction for synthesis of propargylamines by NMR

Yongjun Lee,a,b Kyungho Park,a Han-Sung Kim,a Jimin Kim,a Young Ju Lee,b Ki Deok Park,b Jonghoon Oh,*a and Sunwoo Lee*a

a Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
b Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea

E-mail: kdpark@kbsi.re.kr, jhoh@chonnam.ac.kr, sunwoo@chonnam.ac.kr

Table of Contents

1. NMR analysis of morpholinomethanol (HA) and dimorpholinomethane (BA) S2
2. NMR analysis of Reaction mixtures of HA, BA, PPA, and PA S4
3. 1H NMR data of the reaction mixture with PPA, paraformaldehyde and morpholine in CD$_3$CN S6
Figure S1-1. 1H-1H COSY of morpholinomethanol (HA) and dimorpholinomethane (BA)

Figure S1-2. 1H-13C HSQC of morpholinomethanol (HA) and dimorpholinomethane (BA)
Figure S1-3. 1H-13C HMBC of morpholinomethanol (HA) and dimorpholinomethane (BA)
Figure S2-1. 1H-1H COSY of Reaction mixtures of HA, BA, PPA, and PA.

Figure S2-2. 1H-13C HSQC of Reaction mixtures of HA, BA, PPA, and PA.
Figure S2-3. 1H-13C HMBC of Reaction mixtures of HA, BA, PPA, and PA.
Figure S3. 1H NMR data of the reaction mixture with PPA, paraformaldehyde and morpholine in CD$_3$CN.