Synthesis of aryl-substituted indanones and indenes via a highly efficient ligand-free palladium-catalyzed Suzuki coupling process

Yuming Song, ** Yamei Xie, a Minjian Chen, a Jingping Qu, a Hongfan Hu, b Xiaomei Lang, b Shan Xue, b Yin Ran, b and Shixuan Xin**

a State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China

b PetroChina Petrochemical Research Institute, Block A42, PetroChina Innovation Base, Shahe Township, Changping District, Beijing 102206, P. R. China

E-mail: song-ym@dlut.edu.cn; xinshixuan@petrochina.com.cn

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.627

Abstract
Strategically substituted indene derivatives are useful building blocks for high efficiency olefin polymerization metalloocene catalysts. In this paper, various 4-aryl-substituted 2-methyl-1H-indanones were prepared efficiently using a ligand-free palladium-catalysed Suzuki coupling procedure. Quantitative yields of indanone intermediates were achieved for most of the non-coordinative substrates with a loading of 0.005 mol% of palladium catalyst. The corresponding indene derivatives were obtained in high purity and multi-gram scale in excellent yields, following a simple sequential reduction and dehydration procedure.

Keywords: Suzuki coupling, ligand-free palladium catalysis, metallocenes, polymerization

Introduction
Among numerous highly active homogeneous olefin polymerization catalysts, racemic dimethylsilyl-bridged bis-2-methyl-4-phenylindenyl ZrCl2, (Figure1) reported by the Hoechst team in the early 1990s, acts as a cornerstone in isospecific propylene polymerization catalysis, producing isotactic polypropylene (iPP) with significantly high catalytic activity, high molecular mass, high iso-specificity, and high melting point for industrial applications. Known results have shown that methyl and phenyl substitutions are responsible for superior performance of the catalysts in respect of high molecular weight, isotacticity and activity.1-3 Subsequent research found that the precatalyst 1 is also a versatile catalyst for the preparation of olefin copolymers4-8 or heteroatom containing functionalized copolymers,9-14 which could potentially be used for the substitution of
PS, PVC, polydiene and related copolymers or as specialty materials (for example coatings, blends, composites, or ion exchange membranes, etc.). Other metallocenes based on 1 have appeared since 1990, and intensive studies of substitution effects for all possible positions of the indene framework were carried out. Much better catalytic performances were achieved and the polymers or co-polymer materials so generated exhibit pronounced improvements of PP properties (melting temperature, molecular mass, uniform monomer distribution, comonomer incorporation, et al.).

![Hoechst catalyst](image)

Figure 1. The Hoechst catalyst.

The critical dependence of the activity and selectivity of a metallocene on its ligand structure, especially the fact that some of the C_1 symmetric analogues exhibit boosted catalytic performances compared with their C_2 symmetric counterparts, have stimulated continuing efforts to develop fast and reliable ligand synthetic processes. Many research groups have developed diverse coupling procedures for the synthesis of substituted indenes, based on abundant starting materials and highly efficient organic transformations. There are several strategies applied according to different coupling precursors:

A) From the coupling of 2-functionalized toluenes with desired aryl partners, a reliable sequential procedure was established and a number of indene ligands were prepared. However, many repeated operations are needed to evaluate catalysts with various aryl substitutions. In addition, undesired side reactions may occur for some sensitive substrates during the tedious process. For example, an extremely low yield was observed during the preparation of 2-methyl-4-(1-naphthyl)indanone using the above mentioned procedure;[1,19]

B) As an important improvement, phosphine- or nitrogen-containing palladium complexes catalyzed Suzuki–Miyaura coupling of 4/7-halo indanones was widely applied in 4/7-aryl indene syntheses. Nevertheless, extra ligands used in these reactions caused additional limits such as inert atmosphere protection, more complex purification procedures or higher catalyst loadings;[7,18,20,21]

C) Alexander *et al.* reported an impressive procedure of catalyzed coupling of 4/7 functionalized indenes or indanes with arylboron, halogen, zinc, or magnesium reagents, using metal complexes, as the key step, affording 4/-7-aryl-substituted indenes in excellent yields. This method has been
widely used in novel indene ligand synthesis. However, besides the above-mentioned limits with method B, the use of organometallic reagents greatly narrows the substrate scope.22-24 D) As the most straightforward strategy, bromo-substituted Group 4 metallocenes can be efficiently coupled with organo-zinc reagents following a Negishi coupling procedure. However, strikingly lower isolated yields were obtained for some of the substrates because of their sensitivity or isolation problems (Scheme 1).25-27 Most of these methods need extra ligands to stabilize the palladium catalysts, relatively high noble metal catalyst loading (2-6 mol\%) and some of the organometallic reagents utilized severely limit the reaction conditions and the substrate scope.

\textbf{Scheme 1.} General methods for Ar-Ar bond formation in metallocene synthesis.

In recent years, many computational studies have been reported aimed at understanding olefin polymerization mechanisms, which have stimulated the development of novel metallocenes useful for new plastic material production.28-31 In our continuing efforts to develop highly efficient metallocene catalysts based on theoretical computation and high-throughput methods for specialty polyolefins, a simple and efficient synthesis of high purity 4/7-arylindene derivatives is, undoubtedly, of great importance. In this respect, special attention has been paid to 4-aryl-indanones 4, which can easily be converted into substituted 7-arylindenes 5 and thence into electron-rich ligands 6 following known procedures (Scheme 2). Moreover, the brominated indanones 2 could easily be prepared from abundant commercially available materials. Also, the electron-withdrawing property of the ketone group facilitates the oxidative addition of aryl bromide to the palladium center, which in most cases is known as the rate determining step in the catalytic cycle (Scheme 3).32-35 PEG-mediated ligand-free Suzuki coupling reactions are attractive because they avoid the use of a complex ligand, thus reducing the residue of harmful and costly noble metals in the final product and simplifying work-up procedures.36-39

We report here a highly efficient ligand-free catalytic system for the Suzuki coupling of 4-bromo-2-methyl-1\textit{H}-indanone with aryl/heteroaryl boronic acids in a tetrabutylammonium bromide (TBAB)/Pd(OAc)$_2$/ PEG400 system. Most of the reactions were complete in one hour at 110 °C without inert gas protection. Following a prototype reduction and dehydration procedure, the final 7-aryl-2-methyl-1\textit{H}-indene products could be prepared in excellent yields. Multi-gram
scale reactions of 4-bromo-2-methyl-1H-indanone with 3,5-bis(trifluoromethyl)phenylboronic acid as the substrate proceeded smoothly, and the substituted indene was prepared in very high total yield for three steps without fractional distillation or column chromatography.

Scheme 2. Metallocenes prepared from 4-bromoindan-1-one.

Results and Discussion

The Suzuki coupling of 4-bromo-2-methylindan-1-one with phenylboronic acid (8a0) in a PEG400/Pd(OAc)2/TBAB system was chosen as the model reaction and various parameters were evaluated (Equation 1). The reaction yield improved from 17% to 98% in one hour at elevated temperatures (from 80 °C to 110 °C). In situ generated nano palladium particles, whose surface properties are unambiguously affected by reaction temperature, have been proved to be active catalysts (Table 1 entries 1, 2). Of those tested, potassium carbonate was the base of choice, providing the highest product yields (Table 1, entries 2-5), while potassium hydroxide was a poor base for the coupling (Table 1, entry 3). Sodium carbonate and potassium phosphate also gave good yields (Table 1, entries 4, 5). In addition, the effect of TBAB on the reaction was examined under otherwise identical conditions; reactions without TBAB or decreasing its loading to 10
mol% furnished the coupled product in lower yields. Reported results showed that TBAB played a dual role for the reaction, as phase transfer catalyst and also as a nano-palladium stabilizer (Table 1, entries 6, 7). Surprisingly, on reducing the loading of the noble metal catalyst precursor Pd(OAc)$_2$ from 0.1 mol% to 0.01 mol%, or even to as low as 0.005 mol%, identical catalytic productivities were achieved under otherwise identical reaction conditions. Further decreasing the catalyst loading to 0.001 mol% resulted in a lowered yield of coupling product (53% in three hours). To the best of our knowledge, this is one of the most efficient methods for this kind of indanone synthesis to date (Table 1, entries 8, 9, 10). As a comparison, the same coupling was performed under the commonly used oxygen-free coupling conditions with 0.1 mol% of Pd(PPh$_3$)$_4$ as the catalyst, and 90% of coupling yield was obtained in five hours (Table 1, entry 11).

Table 1. Suzuki coupling of 4-bromo-2,3-dihydro-2-methyl-1H-inden-1-one 7 with phenylboronic acid 8a$_0$ a

<table>
<thead>
<tr>
<th>Entries</th>
<th>Catalyst</th>
<th>Base</th>
<th>TBAB</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>1 eq.</td>
<td>80</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$</td>
<td>KOH</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)$_2$</td>
<td>Na$_2$CO$_3$</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)$_2$</td>
<td>K$_3$PO$_4$</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>none</td>
<td>110</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>10 mol%</td>
<td>110</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>8 c</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>9 d</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>1 eq.</td>
<td>110</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>10 e</td>
<td>Pd(OAc)$_2$</td>
<td>K$_2$CO$_3$</td>
<td>1 eq.</td>
<td>110</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>11 f</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>K$_2$CO$_3$</td>
<td>none</td>
<td>90</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>

a 7 (0.2 mmol), 8a$_0$ (0.24 mmol), base, Pd(OAc)$_2$ (0.1 mol%), PEG400 (1 g); b GC-area normalization; c Pd(OAc)$_2$ (0.01 mol%); d Pd(OAc)$_2$ (0.005 mol%); e Pd(OAc)$_2$ (0.001 mol%); f Pd(PPh$_3$)$_4$ (0.1 mol%) in EtOH-H$_2$O.

With the process established, a variety of coupling reactions of 4-bromo-2-methylindan-1-one with substituted phenylboronic acids were investigated (Table 2, Equation 2).
Table 2. The Suzuki coupling of 4-bromo-2,3-dihydro-2-methyl-1H-inden-1-one 7 and arylboronic acids 8a

\[
\begin{align*}
\text{7} & \quad \begin{array}{c}
\text{B} \\
\text{R}
\end{array} & \quad \begin{array}{c}
\text{O} \\
\text{Ar}
\end{array} \\
\text{8a} & \quad \text{Br} & \quad \text{O} & \quad \text{R} & \quad \text{B(OH)}_2 & \quad \text{K}_2\text{CO}_3/\text{TBAB}, 110^\circ\text{C} \\
\text{8a} & \quad 0.005 & \quad 1 & \quad \text{9a} & \quad 84
\end{align*}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Boronic acid 8</th>
<th>R or (Heteroaryl = Ar)</th>
<th>Cat. (mol%)</th>
<th>Time (h)</th>
<th>Product 9</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8a1</td>
<td>R = 2-CH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₁</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>8a2</td>
<td>R = 3-CH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₂</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>8a3</td>
<td>R = 2-OCH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₃</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>8a4</td>
<td>R = 3-OCH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₄</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>8a5</td>
<td>R = 4-OCH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₅</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>8a6</td>
<td>R = 3,5-di-CH₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₆</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>8a7</td>
<td>R = 4-C(CH₃)₂</td>
<td>0.005</td>
<td>1</td>
<td>9a₇</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>8a8</td>
<td>R = 4-OCF₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₈</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>8a9</td>
<td>R = 2-F</td>
<td>0.005</td>
<td>3</td>
<td>9a₉</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>8a₁₀</td>
<td>R = 3-F</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₀</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>8a₁₁</td>
<td>R = 4-F</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₁</td>
<td>97</td>
</tr>
<tr>
<td>12</td>
<td>8a₁₂</td>
<td>R = 4-Cl</td>
<td>0.005</td>
<td>0.5</td>
<td>9a₁₂</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>8a₁₃</td>
<td>R = 3-CF₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₃</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>8a₁₄</td>
<td>R = 4-CF₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₄</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>8a₁₅</td>
<td>R = 3,5-di-CF₃</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₅</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>8a₁₆</td>
<td>R = 3-CN</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₆</td>
<td>90</td>
</tr>
<tr>
<td>17</td>
<td>8a₁₇</td>
<td>R = 4-CN</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₇</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>8a₁₈</td>
<td>R = 4-Ph</td>
<td>0.005</td>
<td>1</td>
<td>9a₁₈</td>
<td>82</td>
</tr>
<tr>
<td>19</td>
<td>8a₁₉</td>
<td>R = 2-Cl</td>
<td>0.01</td>
<td>2</td>
<td>9a₁₉</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>8a₂₀</td>
<td>R = 3-Cl</td>
<td>0.01</td>
<td>0.5</td>
<td>9a₂₀</td>
<td>87</td>
</tr>
<tr>
<td>21</td>
<td>8a₂₁</td>
<td>R = 3-NO₂</td>
<td>0.01</td>
<td>1</td>
<td>9a₂₁</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>8a₂₂</td>
<td>R = 2-CF₃</td>
<td>5</td>
<td>1</td>
<td>9a₂₂</td>
<td>79</td>
</tr>
<tr>
<td>23</td>
<td>8a₂₃</td>
<td>Ar = 2-naphthyl</td>
<td>1</td>
<td>1</td>
<td>9a₂₃</td>
<td>85</td>
</tr>
<tr>
<td>24</td>
<td>8b₁</td>
<td>(3-pyridinyl)</td>
<td>1</td>
<td>1</td>
<td>9b₁</td>
<td>73</td>
</tr>
<tr>
<td>25</td>
<td>8b₂</td>
<td>(4-pyridinyl)</td>
<td>1</td>
<td>1</td>
<td>9b₂</td>
<td>84</td>
</tr>
<tr>
<td>26</td>
<td>8b₃</td>
<td>(5-pyrimidinyl)</td>
<td>1</td>
<td>1</td>
<td>9b₃</td>
<td>71</td>
</tr>
<tr>
<td>27</td>
<td>8b₄</td>
<td>(3-quinolinyl)</td>
<td>1</td>
<td>1</td>
<td>9b₄</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>8b₅</td>
<td>(2-thienyl)</td>
<td>5</td>
<td>1</td>
<td>9b₅</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>8b₆</td>
<td>(2-furyl)</td>
<td>0.01</td>
<td>0.5</td>
<td>9b₆</td>
<td>90</td>
</tr>
</tbody>
</table>

a 7 (0.2 mmol), 8 (0.24 mmol), K₂CO₃ (0.4 mmol), Pd(OAc)₂, PEG400 (1 g), 110 °C
To our satisfaction, all the coupling reactions proceeded smoothly with substituted phenylboronic acids containing either electron-withdrawing or -donating groups (CN, CF₃, t-Bu, OMe, et al.) with 0.005 mol% of catalyst loading in 84-97% isolated yields (Table 2, entries 1-18). For 2-Cl, 3-Cl or 3-NO₂ phenylboronic acid, slightly elevated Pd(OAc)₂ loading (0.01 mol%) is necessary for satisfactory coupling yields (80-90%, Table 2, entries 19-21). Generally, the ortho substituted phenylboronic acids produced a somewhat inferior result to their meta and para substituted congeners, thus the reaction of 2-trifluoromethylphenylboronic acid needed as high as 5 mol% of catalyst loading to deliver sufficient catalytic productivity (79% yield). We ascribed this to the stereo-hindrance effect of the substrates (Table 2 Entries 1,3,9,19,22). 2-Naphthaleneboronic acid and heteroaryl boronic acids proved to be good candidates for the current coupling with 1-5 mol% of catalyst precursor (Table 2, entries 23 - 28). The furan ring had much less effect on the reactivity than did N-containing heterocycles; thus with 0.01 mol% of catalyst loading, the reaction was complete within 30 minutes to give the desired product in 90% isolated yield (Table 2, entry 29).

7-Aryl-2-methyl-1H-indenes were prepared following a reduction/dehydration procedure (Equation 3) and the results are listed in Table 3.

Table 3. Preparation of 7-aryl-2-methyl-1H-indenes 10 from 4-aryl-2-methyl-1-indanones 9

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9a₁</td>
<td>10a₁</td>
<td>82</td>
<td>14</td>
<td>9a₁₄</td>
<td>10a₁₄</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>9a₂</td>
<td>10a₂</td>
<td>85</td>
<td>15</td>
<td>9a₁₅</td>
<td>10a₁₅</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>9a₃</td>
<td>10a₃</td>
<td>79</td>
<td>16</td>
<td>9a₁₆</td>
<td>10a₁₆</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>9a₄</td>
<td>10a₄</td>
<td>90</td>
<td>17</td>
<td>9a₁₇</td>
<td>10a₁₇</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>9a₅</td>
<td>10a₅</td>
<td>95</td>
<td>18</td>
<td>9a₁₈</td>
<td>10a₁₈</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>9a₆</td>
<td>10a₆</td>
<td>93</td>
<td>19</td>
<td>9a₁₉</td>
<td>10a₁₉</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>9a₇</td>
<td>10a₇</td>
<td>94</td>
<td>20</td>
<td>9a₁₁₀</td>
<td>10a₁₁₀</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>9a₈</td>
<td>10a₈</td>
<td>96</td>
<td>21</td>
<td>9b₁</td>
<td>10b₁</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>9a₉</td>
<td>10a₉</td>
<td>97</td>
<td>22</td>
<td>9b₂</td>
<td>10b₂</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>9a₁₀</td>
<td>10a₁₀</td>
<td>96</td>
<td>23</td>
<td>9b₃</td>
<td>10b₃</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>9a₁₁</td>
<td>10a₁₁</td>
<td>90</td>
<td>24</td>
<td>9b₄</td>
<td>10b₄</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>9a₁₂</td>
<td>10a₁₂</td>
<td>77</td>
<td>25</td>
<td>9b₅</td>
<td>10b₅</td>
<td>77</td>
</tr>
<tr>
<td>13</td>
<td>9a₁₃</td>
<td>10a₁₃</td>
<td>90</td>
<td>26</td>
<td>9b₆</td>
<td>10b₆</td>
<td>63</td>
</tr>
</tbody>
</table>

aReduction: 9 (1.0 mmol), NaBH₄ (3.0 mmol), THF/MeOH (15 mL 2:1), 0 ºC–r.t, 4 h. **b**Dehydration: PTSA (100 mg), toluene (50 mL), reflux, 2 h. **c**Isolated yield.
Most of the reactions proceeded smoothly and produced the desired indene products in excellent yields. It is should be noted that higher concentrations in the dehydration step may promote undesirable side reactions, especially for some electron-rich substrates.

Considering the solubility differences of PEG400, Pd(OAc)$_2$, TBAB, arylboronic acids, substituted indanones and related indenes, developing a fast and highly efficient 7-aryl-2-alkyl-1H-indene synthetic procedure with simple purification operations is highly desirable. To this end, 3,5-bis(trifluoromethyl)phenylboronic acid was chosen as the model substrate for a multi-gram scale (4.5 g, 20 mmol) synthesis following the current procedure. According to previous results, the couplings were fast, clean and previously observed side reactions, such as debromination and/or de-boronation were, to our surprise, not observed; thus the aryl boronic acid was used in slight excess (1.05 eq.). As expected, the reaction proceeded smoothly at higher concentration and was accomplished with only 0.005 mol% of catalyst loading. After normal extraction and evaporation, complete removal of residual PEG400, Pd(OAc)$_2$, TBAB and aryl boronic acid was achieved by washing with cold methanol. After the reduction and dehydration protocol, the crude product was washed again with methanol to give 86% of pure indene derivative $10a_{15}$ as a white crystalline material (Scheme 4).

Scheme 4 Multi-gram scale synthesis of $10a_{15}$ from $8a_{15}$.

Conclusions

A ligand-free Suzuki coupling system consisting of PEG-400/Pd(OAc)$_2$/TBAB/K$_2$CO$_3$ in optimized ratio was employed for the Suzuki-Miyaura coupling reaction of 4-bromo-2,3-dihydro-2-methyl-1H-inden-1-one (7) with aryl and/or heteroarylboronic acids. Most of the substituted phenylboronic acids reacted smoothly with 0.005 mol% of catalyst loading, and all the reactions were accomplished within a period of 0.5–3 hours in excellent yields (82–98%). Some of the heteroarylboronic acids also reacted in good to excellent yield (59–90%) with controlled low catalyst loading (0.01–5 mol%). The intermediate indanones could be easily transformed into their indene derivatives in high purity and high productivity. Multi-gram scale reaction of $8a_{15}$ was conducted following our typical Suzuki-Miyaura coupling, reducing and dehydrating procedures without fractional distillation or column chromatographic purification. Pure substituted indene $10a_{15}$ was obtained in high yield. Coupling of more complex substituted indanones with
arylboronic acids following the current procedure is in progress and the catalytic properties of newly prepared novel C1 and C2 symmetric metallocenes are under evaluation.

Experimental Section

General. Melting points were measured on a Novel X-5 melting point instrument. All 1H NMR (400 MHz) and 13C NMR (100 Hz) spectra were measured in CDCl$_3$ and recorded on Bruker Avance II 400 (1H NMR) spectrometer with chemical shifts reported as ppm (with TMS as an internal standard). Purification of the reaction products was carried out by flash chromatography (FC) on silica gel (200-300 mesh). HRMS were conducted on GCT mass spectrometer (EI). All reactions were carried out in air and using distilled solvents, without any precautions to exclude moisture unless otherwise noted. Commercial grade reagents and solvents were used without further purification; otherwise, where necessary, they were purified as recommended.

4-Bromo-2,3-dihydro-2-methyl-1H-inden-1-one 7 was prepared from 2-bromobenzyl bromide following a reported procedure in 85% yield. Mp 40-42 °C. 1H NMR (CDCl$_3$, 400 MHz) δ$_H$: 7.74 (1H, d, 3J$_{HH}$ 7.8 Hz, ArH), 7.69 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 7.27 (1H, t, 3J$_{HH}$ 7.7 Hz, ArH), 3.31-3.38 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.6 Hz, CH$_2$CH), 2.71-2.81 (H, m, CH$_2$CH), 2.67 (1H, dd, 3J$_{HH}$ 4.0 Hz, 2J$_{HH}$ 17.6 Hz, CH$_2$CH), 1.32 (3H, d, 3J$_{HH}$ 7.4 Hz, CHCH$_3$).

General procedure for the Suzuki coupling reaction

Into a 10 mL vial, was filled with a mixture of 4-bromo-2,3-dihydro-2-methyl-1H-inden-1-one 7 (44.8 mg, 0.20 mmol, PhB(OH)$_2$ 8a (26.8 mg, 0.22 mmol, 1.2 eq.), Pd(OAc)$_2$ (chloroform solution, 0.005 mol%), TBAB (75.7 mg, 0.20 mmol, 1.0 eq.), K$_2$CO$_3$ (55.3 mg, 0.40 mmol, 2.0 equiv) and PEG400 1.0 g. The vial was capped and the mixture was stirred at 110 °C till completion (TLC). 5 mL of water was added and the contents were extracted with EtOAc (10 mL × 3), the combined organic phases were washed with brine (10 mL × 3), dried over MgSO$_4$ and concentrated. The residue was subjected to column chromatography to obtain the desired product 9a in 98% yield. 1H NMR (CDCl$_3$, 400 MHz) δ$_H$: 7.78 (1H, d, 3J$_{HH}$ 8.4 Hz, ArH), 7.61 (1H, d, 3J$_{HH}$ 7.4 Hz, ArH), 7.45-7.50 (5H, m, ArH), 7.40-7.43 (1H, m, ArH), 3.40-3.46 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.6 Hz, CH$_2$CH), 2.61-2.81 (2H, m, CH$_2$CH), 1.32 (3H, d, 3J$_{HH}$ 7.3 Hz, CHCH$_3$).

2-Methyl-4-((o-tolyl)-2,3-dihydro-1H-inden-1-one (9a). Yield: 84%, 198 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δ$_H$: 7.75 (1H, m, ArH), 7.41-7.43 (2H, m, ArH), 7.28-7.30 (2H, m, ArH), 7.22-7.27 (1H, m, ArH), 7.14 (1H, d, 3J$_{HH}$ 7.1 Hz, ArH), 7.08 (1H, br, CH$_2$CH), 2.64-2.69 (1H, m, CH$_2$CH), 2.44 (1H, br, CH$_2$CH), 2.11 (3H, s, ArCH$_3$), 1.25 (3H, d, 3J$_{HH}$ 7.4 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ$_C$: 209.4, 151.7, 140.2, 138.5, 136.4, 135.4, 134.9, 130.2, 128.9, 127.8, 127.4, 125.7, 122.7, 41.9, 34.2, 19.2, 19.8, 16.1. EI-HRMS (m/z) calcd for C$_{17}$H$_{16}$O (M$^+$) 236.1201, found 236.1200.
2-Methyl-4-(m-tolyl)-2,3-dihydro-1H-inden-1-one (9a). Yield: 90%, 212 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δH: 7.81 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.61-7.65 (1H, m, ArH), 7.50 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.41 (1H, t, 3J$_{HH}$ 7.6 Hz, ArH), 7.32 (1H, s, ArH), 7.28 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 3.44-3.51 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.2 Hz, CH$_2$CH$_2$), 2.60-2.82 (2H, m, CH$_2$CH$_2$), 2.49 (3H, s, ArCH$_3$), 1.36 (3H, d, 3J$_{HH}$ 7.4 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δC: 209.4, 150.8, 140.3, 139.1, 138.2, 136.7, 134.7, 129.1, 128.4, 128.3, 127.9, 125.5, 122.8, 42.1, 34.8, 21.4, 16.1. EI-HRMS (m/z) calcd for C$_{17}$H$_{16}$O (M$^+$) 236.1201, found 236.1192

4-(2-Methoxyphenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a3). Yield, 89%, 224 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δH: 7.77 (1H, d, 3J$_{HH}$ 8.5 Hz, ArH), 7.53 (1H, dd, 3J$_{HH}$ 1.2 Hz, 4J$_{HH}$ 7.4 Hz, ArH), 7.44 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 7.37-7.42 (1H, m, ArH), 7.22 (1H, dd, 4J$_{HH}$ 1.7 Hz, 3J$_{HH}$ 7.4 Hz, ArH), 7.06 (1H, d, 3J$_{HH}$ 8.4 Hz, ArH), 7.02 (1H, d, 3J$_{HH}$ 8.3 Hz, ArH), 3.80 (3H, s, OCH$_3$), 3.19-3.26 (1H, dd, 3J$_{HH}$ 8.0 Hz, 2J$_{HH}$ 17.2 Hz, CH$_2$CH$_2$), 2.67-2.71 (1H, m, CH$_2$CH$_2$), 2.58 (1H, dd, 3J$_{HH}$ 4.0Hz, 2J$_{HH}$ 17.3, CH$_2$CH$_3$), 1.28 (3H, d, 3J$_{HH}$ 7.4 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δC: 209.8, 156.4, 152.8, 137.5, 136.2, 135.8, 130.8, 129.4, 127.4, 122.8, 120.6, 110.9, 55.4, 42.0, 34.4, 16.2. EI-HRMS (m/z) calcd for C$_{17}$H$_{16}$O$_2$ (M$^+$) 252.1150, found 252.1145.

4-(3-Methoxyphenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a4). Yield 94%, 237 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δH: 7.77 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 7.60 (1H, d, 3J$_{HH}$ 7.4 Hz, ArH), 7.46 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.39 (1H, d, 3J$_{HH}$ 7.9 Hz, ArH), 7.03 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 6.98 (1H, s, ArH), 6.95 (1H, dd, 3J$_{HH}$ 2.4 Hz, 3J$_{HH}$ 8.2 Hz, ArH), 3.86 (3H, s, OCH$_3$), 3.40-3.46 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.2 Hz, CH$_2$CH$_2$), 2.60-2.80 (2H, m, CH$_2$CH$_2$), 1.31 (3H, d, 3J$_{HH}$ 7.3 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δC: 209.5, 159.6, 150.8, 140.5, 140.0, 136.8, 134.7, 129.6, 127.9, 123.0, 120.9, 114.4, 112.8, 55.3, 42.1, 34.8, 16.1. EI-HRMS (m/z): [M+H]$^+$ C$_{17}$H$_{16}$O$_2$ calcd 252.1150, found 252.1146

4-(4-Methoxyphenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a5). Yield, 91%, 229 mg, white solid Mp 85 - 87 °C. 1H NMR (CDCl$_3$, 400MHz) δH: 7.73 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.55-7.57 (1H, m, ArH), 7.43 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.37-7.41 (2H, m, ArH), 6.98-7.02 (2H, m, ArH), 3.86 (3H, s, OCH$_3$), 3.38-3.44 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.2 Hz, CH$_2$CH$_2$), 2.63-2.78 (2H, m, CH$_2$CH$_2$), 1.30 (3H, d, 3J$_{HH}$ 7.3 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δC: 158.6, 146.3, 146.1, 140.6, 136.9, 133.7, 129.4, 127.1, 126.9, 124.1, 118.5, 113.7, 55.1, 42.7, 16.6. EI-HRMS (m/z) calcd for C$_{17}$H$_{16}$O$_2$ (M$^+$) 252.1150, found 252.1159

4-(3,5-Dimethylphenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a6). Yield 98%, 245 mg, pale yellow solid, Mp 104 – 106 °C. 1H NMR (CDCl$_3$, 400 MHz) δH: 7.75 (1H, d, 3J$_{HH}$ 8.4 Hz, ArH), 7.57-7.59 (1H, m, ArH), 7.44 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.07 (1H, s, ArH), 7.05 (1H, s, ArH), 3.40-3.46 (1H, dd, 3J$_{HH}$ 7.6 Hz, 2J$_{HH}$ 17.2 Hz, CH$_2$CH$_2$), 2.65-2.80 (2H, m, CH$_2$CH$_2$), 2.40 (6H, s, ArCH$_3$), 1.31 (3H, d, 3J$_{HH}$ 7.3 Hz, CHCH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δC: 209.5, 150.9, 140.6, 139.1, 138.1, 135.7, 134.7, 129.2, 127.8, 125.3, 122.7, 42.1, 34.9, 21.3, 16.1. EI-HRMS (m/z) calcd for C$_{14}$H$_{12}$O$_2$ (M$^+$) 250.1358, found 250.1354.

4-(4-(tert-Butyl)phenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a7). Yield: 94%, 261 mg, white solid, Mp 102 – 104 °C. 1H NMR (CDCl$_3$, 400 MHz) δH: 7.76 (1H, d, 3J$_{HH}$ 7.4 Hz, ArH),
7.60 (1H, dd, J_HH 7.6 Hz, J_HH 1.2 Hz, ArH), 7.36-7.54 (5H, m, ArH), 3.43-3.49 (1H, dd, J_HH 7.6 Hz, J_HH 17.2 Hz, CH_2CH), 2.80 (1H, dd, J_HH 4.0 Hz, J_HH 17.2 Hz, CH_2CH), 2.66-2.76 (H, m, CH_2CH), 1.38 (9H, s, C(CH_3)_3), 1.31 (3H, d, J_HH 7.4 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.5, 150.9, 150.8, 140.1, 136.8, 136.2, 134.7, 128.1, 127.9, 125.5, 122.7, 42.2, 34.9, 34.6, 31.3, 16.1. EI-HRMS (m/z) calcd for C_{20}H_{25}O (M^+) 278.1671, found 278.1661

2-Methyl-4-(4-(trifluoromethoxy)phenyl)-2,3-dihydro-1H-inden-1-one (9a_8). Yield, 90%, 275 mg, colorless oil. 1H NMR (CDCl_3, 400 MHz) δ_H: 7.79 (1H, d, J_HH 8.5 Hz, ArH), 7.58 (1H, dd, J_HH 1.2 Hz, J_HH 7.5 Hz, ArH), 7.46-7.50 (3H, m, ArH), 7.33 (2H, d, J_HH 8.7 Hz, ArH), 3.37-3.43 (1H, dd, J_HH 8.0 Hz, J_HH 17.6 Hz, CH_2CH), 2.70-2.78 (2H, m, CH_2CH), 1.32 (3H, d, J_HH 7.3 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.1, 150.7, 148.8, 138.8, 137.8, 137.0, 134.7, 129.9, 128.1, 123.4, 121.1, 120.5 (q, J_{^1}J_{^2}C = 255.9 Hz) 42.2, 34.8, 16.1. EI-HRMS (m/z) calcd for C_{17}H_{13}FO (M^+) 306.0868, found 306.0872

4-(2-Fluorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a_9). Yield: 85%, 204 mg, colorless oil. 1H NMR (CDCl_3, 400 MHz) δ_H: 7.80 (1H, d, J_HH 7.6 Hz, ArH), 7.56 (1H, d, J_HH 7.5 Hz, ArH), 7.44-7.48 (1H, m, ArH), 7.37-7.43 (1H, m, ArH), 7.31-7.35 (1H, m, ArH), 7.10-7.30 (2H, m, ArH), 3.25-3.31 (1H, dd, J_HH 7.6 Hz, J_HH 17.2 Hz, CH_2CH), 2.60-2.80 (2H, m, CH_2CH), 1.29 (3H, d, J_HH 7.3 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.3, 169.5 (d, J_{^1}J_{^2}FC 245.5 Hz), 152.3, 136.7, 135.7, 134.6, 131.2 (d, J_{^1}J_{^2}FC 3.6 Hz), 129.9 (d, J_{^1}J_{^2}FC 8.0 Hz), 127.7, 126.6 (d, J_{^1}J_{^2}FC 16.0 Hz), 124.3 (d, J_{^1}J_{^2}FC 3.7 Hz), 123.6, 115.9 (d, J_{^1}J_{^2}FC 22.2 Hz), 42.0, 34.2, 16.1. EI-HRMS (m/z) calcd for C_{16}H_{12}FO (M^+) 240.0950, found 240.0943

4-(3-Fluorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a_10). Yield 95%, 228 mg, colorless oil. 1H NMR (CDCl_3, 400 MHz) δ_H: 7.78 (1H, d, J_HH 7.6 Hz, ArH), 7.58 (1H, d, J_HH 7.4 Hz, ArH), 7.40-7.48 (2H, m, ArH), 7.23 (1H, d, J_HH 7.7 Hz, ArH), 7.13-7.17 (1H, m, ArH), 7.06-7.11 (1H, m, ArH), 3.37-3.43 (1H, dd, J_HH 7.6 Hz, J_HH 16.8 Hz, CH_2CH), 2.65-2.80 (2H, m, CH_2CH), 1.31 (3H, d, J_HH 7.3 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.1, 162.8 (d, J_{^1}J_{^2}FC 245.1 Hz), 150.7, 141.3 (d, J_{^1}J_{^2}FC 7.6 Hz), 139.0, 137.0, 134.7, 130.2 (d, J_{^1}J_{^2}FC 8.4 Hz), 128.1, 124.3 (d, J_{^1}J_{^2}FC 2.9 Hz), 123.5, 115.5 (d, J_{^2}J_{^3}FC 21.6 Hz), 114.6 (d, J_{^2}J_{^3}FC 20.9 Hz), 42.1, 34.8, 16.1. EI-HRMS (m/z) calcd for C_{16}H_{12}FO (M^+) 240.0950, found 240.0946

4-(4-Fluorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a_11). Yield 97%, 232 mg, colorless oil. 1H NMR (CDCl_3, 400 MHz) δ_H: 7.76 (1H, d, J_HH 7.5 Hz, ArH), 7.56 (1H, d, J_HH 7.4 Hz, ArH), 7.40-7.46(3H, m, ArH), 7.15 (2H, t, J_HH 8.7 Hz, ArH), 3.35-3.41 (1H, dd, J_HH 7.6 Hz, J_HH 16.8 Hz, CH_2CH), 2.68-2.76 (2H, m, CH_2CH), 1.31 (3H, d, J_HH 7.3 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.2, 162.4 (d, J_{^1}J_{^2}FC 245.6 Hz), 150.8, 139.2, 136.9, 135.2 (d, J_{^1}J_{^2}FC 3.4 Hz), 134.7, 130.1 (d, J_{^1}J_{^2}FC 8.1 Hz), 130.0, 128.0, 123.1, 115.6 (d, J_{^2}J_{^3}FC 21.3 Hz), 42.1, 34.8, 16.1. EI-HRMS (m/z) calcd for C_{16}H_{12}FO (M^+) 240.0950, found 240.0953

4-(4-Chlorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a_12). Yield 90%, 230 mg, white solid, Mp 83 - 85 °C. 1H NMR (CDCl_3, 400 MHz) δ_H: 7.78 (1H, d, J_HH 8.4 Hz, ArH), 7.57 (1H, dd, J_HH 1.1 Hz, J_HH 7.4 Hz, ArH), 7.43-7.49 (3H, m, ArH), 7.37-7.40 (2H, m, ArH), 3.35-3.42 (1H, dd, J_HH 8.4 Hz, J_HH 17.6 Hz, CH_2CH), 2.69-2.77 (2H, m, CH_2CH), 1.31 (3H, d, J_HH 7.3 Hz, CHCH_3). 13C NMR (CDCl_3, 100 MHz) δ_C: 209.2, 150.7, 139.0, 137.6, 137.0, 134.6, 133.8, 129.8,
128.8, 128.1, 123.3, 42.2, 34.8, 16.1. EI- HRMS (m/z) calcd for C_{10}H_{13}ClO (M^+) 256.0655, found 256.0652.

2-Methyl-4-(3-(trifluoromethyl)phenyl)-2,3-dihydro-1H-inden-1-one (9a_{13}). Yield 87%, 252 mg, white solid, Mp 114 - 116 °C. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.82 (1H, d, ^3J_{HH} 7.6 Hz, ArH), 7.72 (1H, s, ArH), 7.66 (2H, d, ^3J_{HH} 7.4 Hz, ArH), 7.59-7.62 (2H, m, ArH), 7.50 (1H, t, ^3J_{HH} 7.5 Hz, ArH), 3.37-3.44 (1H, dd, ^3J_{HH} 8.8 Hz, ^2J_{HH} 18.4 Hz, CH_2CH), 2.70-2.81 (2H, m, CH_2CH), 1.32 (3H, d, ^3J_{HH} 7.2 Hz, CH(CH_3)). ^13C NMR (CDCl_3, 100 MHz) δ_C: 209.2, 150.7, 139.9, 138.7, 137.0, 134.8, 131.8, 129.1, 128.2, 125.3 (q, ^4J_{FC} = 3.7 Hz), 124.5 (q, ^4J_{FC} = 3.9 Hz), 123.7, 42.2, 34.6, 16.1. EI- HRMS (m/z) calcd for C_{17}H_{13}F_3O (M^+) 290.0918, found 290.0928

2-Methyl-4-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1H-inden-1-one (6a_{10}). Yield 90%, 261 mg, white solid, Mp 93 - 95 °C. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.82 (1H, d, ^3J_{HH} 7.5 Hz, ArH), 7.74 (2H, d, ^3J_{HH} 8.0 Hz, ArH), 7.57-7.61 (3H, m, ArH), 7.50 (1H, t, ^3J_{HH} 7.5 Hz, ArH), 3.37-3.43 (1H, dd, ^3J_{HH} 7.6 Hz, ArH), 2.71-2.79 (2H, m, CH_2CH), 1.32 (3H, d, ^3J_{HH} 7.2 Hz, CHCH_3). ^13C NMR (CDCl_3, 100 MHz) δ_C: 209.0, 150.7, 142.8, 138.8, 137.1, 134.7, 129.9 (q, ^4J_{FC} 32.5 Hz), 128.9, 128.2, 125.6 (q, ^4J_{FC} 3.6 Hz), 124.1 (q, ^4J_{FC} 270.4 Hz), 123.8, 42.2, 34.7, 16.1. EI- HRMS (m/z) calcd for C_{17}H_{13}F_3O (M^+) 290.0918, found 290.0924

4-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a_{15}). Yield 98%, 255 mg, white solid, Mp 115 - 117 °C. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.92 (3H, s, ArH), 7.86 (1H, d, ^3J_{HH} 7.6 Hz, ArH), 7.63 (1H, d, ^3J_{HH} 7.2 Hz, ArH), 7.54 (1H, t, ^3J_{HH} 7.6 Hz, ArH), 3.37-3.43 (1H, dd, ^3J_{HH} 8.0 Hz, ^2J_{HH} 17.2 Hz, CH_2CH), 2.71-2.79 (2H, m, CH_2CH), 1.33 (3H, d, ^3J_{HH} 7.6 Hz, CHCH_3). ^13C NMR (CDCl_3, 100 MHz) δ_C: 208.5, 150.5, 141.3, 137.4, 137.2, 134.7, 132.2 (q ^4J_{FC} 33.2 Hz), 128.6 (m), 128.5, 123.3 (q ^4J_{FC} 271.0 Hz), 124.5, 121.5 (m), 42.2, 34.5, 16.1. EI- HRMS (m/z) calcd for C_{18}H_{13}F_6O (M^+) 358.0792, found 358.0796

-(2-Methyl-1-oxo-2,3-dihydro-1H-inden-4-yl)benzonitrile (9a_{16}). Yield 90%, 222 mg, white solid, Mp 160 - 162 °C. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.81 (1H, d, ^3J_{HH} 7.2 Hz, ArH), 7.64-7.75 (5H, m, ArH), 7.50 (1H, t, ^3J_{HH} 7.2 Hz, ArH), 3.34-3.41 (1H, dd, ^3J_{HH} 8.8 Hz, ^2J_{HH} 18.0 Hz, ArH), 2.72-2.77 (2H, m, CH_2CH), 1.31 (3H, d, ^3J_{HH} 7.2 Hz, CHCH_3). ^13C NMR (CDCl_3, 100 MHz) δ_C: 208.8, 150.5, 140.5, 137.8, 137.2, 134.6, 132.9, 131.9, 131.2, 129.6, 128.3, 124.0, 118.5, 113.0, 42.2, 34.6, 16.1. EI- HRMS (m/z) calcd for C_{19}H_{13}NO (M^+) 247.0997, found 247.0996.

4-(2-Methyl-1-oxo-2,3-dihydro-1H-inden-4-yl)benzonitrile (9a_{17}). Yield 96%, 237 mg, white solid, mp 112 - 114 °C. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.81 (1H, d, ^3J_{HH} 7.2 Hz, ArH), 7.77 (2H, d, ^3J_{HH} 8.4 Hz, ArH), 7.57-7.60 (3H, m, ArH), 7.50 (1H, t, ^3J_{HH} 7.2 Hz, ArH), 3.35-3.42 (1H, dd, ^3J_{HH} 8.8 Hz, ^2J_{HH} 18.0 Hz, CH_2CH), 2.68-2.77 (2H, m, CH_2CH), 1.31 (3H, d, ^3J_{HH} 7.2 Hz, CHCH_3). ^13C NMR (CDCl_3, 100 MHz) δ_C: 208.7, 150.4, 143.8, 138.2, 137.1, 134.5, 132.4, 129.2, 128.2, 124.0, 118.5, 111.5, 42.1, 34.6, 16.9. EI- HRMS (m/z) calcd for C_{19}H_{13}NO (M^+) 247.0997, found 247.0995.

4-[[1,1'-Biphenyl]-4-yl]-2-methyl-2,3-dihydro-1H-inden-1-one (9a_{18}). Yield 82%, 244 mg, colorless oil. ^1H NMR (CDCl_3, 400 MHz) δ_H: 7.81 (1H, d, ^3J_{HH} 7.6 Hz, ArH), 7.71-7.74 (2H, m, ArH), 7.65-7.69 (3H, m, ArH), 7.55-7.57 (2H, m, ArH), 7.47-7.51 (3H, m, ArH), 7.37-7.42 (1H, m, ArH), 3.46-3.52 (1H, dd, ^3J_{HH} 8.0 Hz, ^2J_{HH} 17.2 Hz, CH_2CH), 2.84 (1H, dd, ^3J_{HH} 4.1 Hz, ^2J_{HH} 270.4 Hz).
17.2 Hz, CH₂CH), 2.73-2.76 (2H, m, CH₂CH), 1.34 (3H, d, 3JHH 7.6 Hz, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 209.3, 150.8, 140.4, 140.4, 139.7, 138.0, 136.9, 134.7, 128.9, 128.8, 128.0, 127.5, 127.2, 127.0, 123.0, 42.1, 34.9, 16.1. EI-HRMS (m/z) caleđ for C₂₂H₁₈O (M⁺) 298.1358, found 298.1369

4-(2-Chlorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a₁₉). Yield 90%, 230 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.75-7.82 (1H, d, 3JHH 7.2 Hz, ArH), 7.44-7.58 (3H, m, ArH), 7.33-7.38 (2H, m, ArH), 7.26-7.30 (1H, m, ArH), 3.18-3.43 (H, br, CH₂CH), 2.65-2.80 (H, m, CH₂CH), 2.45-2.60 (H, br, CH₂CH), 1.28 (3H, d, 3JHH 7.2 Hz, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 209.3, 152.1, 137.9, 135.4, 133.2, 130.8, 129.8, 129.3, 127.5, 126.8, 123.5, 42.0, 34.1, 16.2. EI-HRMS (m/z) caleđ for C₁₆H₁₃ClO (M⁺) 256.0655, found 256.0652

4-(3-Chlorophenyl)-2-methyl-2,3-dihydro-1H-inden-1-one (9a₂₀). Yield 87%, 222 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.79 (1H, d, 3JHH 7.2 Hz, ArH), 7.57 (1H, dd, 3JHH 7.6 Hz, 4JHH 1.2 Hz, ArH), 7.32-7.49 (5H, m, ArH), 3.37-3.43 (1H, dd, 3JHH 8.8 Hz, 2JHH 18.0 Hz, CH₂CH), 2.68-2.78 (2H, m, CH₂CH), 1.31 (3H, d, 3JHH 7.2 Hz, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 209.1, 150.7, 140.9, 138.8, 137.0, 134.7, 134.5, 129.876, 128.6, 128.1, 127.8, 126.7, 123.5, 42.2, 34.7, 16.1. EI-HRMS (m/z) caleđ for C₁₆H₁₃ClO (M⁺) 256.0655, found 256.0652

2-Methyl-4-(3-nitrophenyl)-2,3-dihydro-1H-inden-1-one (9a₂₁). Yield 80%, 213 mg, white solid, mp 111 - 113 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 8.35 (1H, t, 3JHH 2.0 Hz, ArH), 8.26-8.29 (1H, m, ArH), 7.85 (1H, d, 3JHH 7.6 Hz, ArH), 7.80 (1H, d, 3JHH 7.6 Hz, ArH), 7.61-7.74 (2H, m, ArH), 7.53 (1H, t, 3JHH 7.5 Hz, ArH), 3.38-3.45 (1H, dd, 3JHH 8.8 Hz, 2JHH 18.0 Hz, CH₂CH), 2.74-2.80 (2H, m, CH₂CH), 1.33 (3H, d, 3JHH 7.2 Hz, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 208.7, 150.6, 140.8, 137.7, 137.3, 134.7, 134.5, 129.7, 128.4, 124.2, 123.4, 122.6, 42.2, 34.6, 16.1. EI-HRMS (m/z) caleđ for C₁₆H₁₃NO₃ (M⁺) 267.0895, found 267.0889.

2-Methyl-4-(trifluoromethyl)phenyl)-2,3-dihydro-1H-inden-1-one (9a₂₂) contains stereo isomers (1 : 1). Yield 79%, 229 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.76-7.85 (2H, ArH), 7.58-7.65 (1H, ArH), 7.52-7.58 (1H, ArH), 7.41-7.48 (2H, m, ArH), 7.27-7.30 (1H, ArH), 3.97-3.11 (H, m, CH₂CH), 2.66-2.70 (H, m, CH₂CH), 2.33-2.64 (H, m, CH₂CH), 1.26 (3H, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 209.2, 151.9, 139.7, 137.7, 136.1, 135.0, 131.6, 131.2, 128.8 (m), 128.1, 127.0, 126.3 (m), 123.9 (q, JFC = 270.8 Hz), 123.6, 42.0, 34.0, 16.1. EI-HRMS (m/z) caleđ for C₁₇H₁₃F₃O (M⁺) 290.0917, found 290.0918

2-Methyl-4-(naphthalen-2-yl)-2,3-dihydro-1H-inden-1-one (9a₂₃). Yield 85%, 231 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.95 (1H, d, 3JHH 8.5 Hz, ArH), 7.89-7.91 (3H, m, ArH), 7.82 (1H, d, 3JHH 7.6 Hz, ArH), 7.69-7.71 (1H, m, ArH), 7.58-7.60 (1H, m, ArH), 7.49-7.56 (3H, m, ArH), 3.43-3.49 (1H, dd, 3JHH 7.6 Hz, 2JHH 17.2 Hz, CH₂CH), 2.82 (1H, dd, 3JHH 4.1 Hz, 2JHH 17.3 Hz, CH₂CH), 2.71-2.75 (1H, m, CH₂CH), 1.33 (3H, d, 3JHH 7.6 Hz, CHCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 209.4, 150.1, 140.1, 136.9, 136.6, 134.9, 133.3, 132.5, 128.2, 128.0, 128.0, 127.7, 127.4, 126.5, 126.4, 126.3, 123.0, 42.2, 34.9, 16.1. EI-HRMS (m/z) caleđ for C₂₀H₁₆O (M⁺) 272.1201, found 272.1200.
2-Methyl-4-(pyridin-3-yl)-2,3-dihydro-1H-inden-1-one (9b). Yield 73%, 162 mg, colorless oil.
1H NMR (CDCl$_3$, 400 MHz) δ: 8.71 (1H, s, ArH), 8.64 (1H, d, 3J$_{HH}$ 4.4 Hz, ArH), 7.77-7.82 (2H, m, ArH), 7.59 (1H, d, 3J$_{HH}$ 7.3 Hz, ArH), 7.50 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.41 (1H, dd, 3J$_{HH}$ 7.6 Hz, 3J$_{HH}$ 4.8 Hz, ArH), 3.37-3.43 (1H, dd, 3J$_{HH}$ 7.6 Hz, 3J$_{HH}$ 17.2 Hz, CH$_2$CH), 2.69-2.82 (2H, m, CH$_2$CH), 1.31 (3H, d, 3J$_{HH}$ 7.2 Hz, CH$_3$CH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ: 208.8, 150.9, 149.1, 148.7, 137.1, 136.5, 135.7, 134.8, 134.7, 128.2, 123.7, 123.4, 42.1, 34.6, 16.0. El-MS (m/z) calcd for C$_{13}$H$_{13}$NO (M$^+$) 223.0997, found 223.0996.

2-Methyl-4-(pyridin-4-yl)-2,3-dihydro-1H-inden-1-one (9b). Yield 84%, 187 mg, white solid, mp 130-132 °C. 1H NMR (CDCl$_3$, 400 MHz) δ: 8.68 (1H, d, 3J$_{HH}$ 5.6 Hz, ArH), 7.80 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.60 (1H, d, 3J$_{HH}$ 7.4 Hz, ArH), 7.48 (1H, t, 3J$_{HH}$ 7.5 Hz, ArH), 7.37 (2H, d, 3J$_{HH}$ 6.0 Hz, ArH), 3.37-3.43 (1H, dd, 3J$_{HH}$ 8.0 Hz, 3J$_{HH}$ 17.2 Hz, CH$_2$CH), 2.68-2.79 (2H, m, CH$_2$CH), 1.29 (3H, d, 3J$_{HH}$ 7.3 Hz, CH$_3$CH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ: 208.4, 150.3, 149.8, 146.7, 137.1, 137.0, 134.2, 128.1, 124.1, 123.1, 41.9, 34.5, 15.8. El-MS (m/z) calcd for C$_{15}$H$_{15}$NO (M$^+$) 223.0997, found 223.0993.

2-Methyl-4-(pyrimidin-5-yl)-2,3-dihydro-1H-inden-1-one (9b). Yield 71%, 159 mg, light yellow solid, mp 187 - 189 °C. 1H NMR (CDCl$_3$, 400 MHz) δ: 9.27 (1H, s, ArH), 8.88 (2H, s, ArH), 7.88 (1H, d, 3J$_{HH}$ 7.4 Hz, ArH), 7.62 (1H, d, 3J$_{HH}$ 6.8 Hz, ArH), 7.55 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 3.39-3.46 (1H, dd, 3J$_{HH}$ 8.8 Hz, 3J$_{HH}$ 18.0 Hz, CH$_2$CH), 2.76-2.81 (2H, m, CH$_2$CH), 1.34 (3H, d, 3J$_{HH}$ 7.2 Hz, CH$_3$CH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ: 208.3, 157.8, 155.9, 150.8, 137.4, 134.6, 132.91, 132.8, 128.6, 124.66, 42.1, 34.5, 16.0. El-MS (m/z) calcd for C$_{14}$H$_{12}$NO$_2$ (M$^+$) 224.0950, found 224.0948.

2-Methyl-4-(quinolin-3-yl)-2,3-dihydro-1H-indan-1-one (9b). Yield 59%, 161 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δ: 9.05 (1H, d, 3J$_{HH}$ 1.8 Hz, ArH), 8.24 (1H, s, ArH), 8.18 (1H, d, 3J$_{HH}$ 8.5 Hz, ArH), 7.90 (1H, d, 3J$_{HH}$ 8.0 Hz, ArH), 7.87 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.78 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.72 (1H, d, 3J$_{HH}$ 7.2 Hz, ArH), 7.63 (1H, t, 3J$_{HH}$ 7.6 Hz, ArH), 7.56 (1H, t, 3J$_{HH}$ 7.6 Hz, ArH), 3.44-3.50 (1H, dd, 3J$_{HH}$ 7.6 Hz, 3J$_{HH}$ 16.8 Hz, CH$_2$CH), 2.70-2.90 (2H, m, CH$_2$CH), 1.33 (3H, d, 3J$_{HH}$ 7.2 Hz, CH$_3$CH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ: 208.9, 151.2, 150.2, 147.1, 137.2, 136.6, 135.2, 135.1, 132.1, 130.0, 129.1, 128.4, 127.9, 127.7, 127.3, 123.9, 42.2, 34.7, 16.1. El-MS (m/z) calcd for (M$^+$) C$_{17}$H$_{13}$NO 273.1155, found 273.1154.

2-Methyl-4-(thien-2-yl)-2,3-dihydro-1H-inden-1-one (9b). Yield 68%, 155 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δ: 7.76 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.68 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 7.36-7.40 (2H, m, ArH), 7.29 (1H, d, 3J$_{HH}$ 3.3 Hz, ArH), 7.11-7.13 (1H, m, ArH), 3.51-3.58 (1H, dd, 3J$_{HH}$ 8.0 Hz, 3J$_{HH}$ 17.2 Hz, CH$_2$CH), 2.85 (1H, dd, 3J$_{HH}$ 3.9 Hz, 3J$_{HH}$ 17.2 Hz, CH$_2$CH), 2.69-2.74 (1H, m, CH$_2$CH), 1.32 (3H, d, 3J$_{HH}$ 7.4 Hz, CH$_3$CH$_3$). 13C NMR (CDCl$_3$, 100 MHz) δ: 209.0, 149.7, 140.8, 137.1, 133.4, 132.6, 127.9, 127.6, 125.7, 125.6, 122.8, 41.8, 35.6, 16.1. El-MS (m/z) calcd for C$_{14}$H$_{12}$OS (M$^+$) 228.0609, found 228.0609.

4-(Furan-2-yl)-2-methyl-2,3-dihydro-1H-inden-1-one (9b). Yield 90%, 190 mg, colorless oil. 1H NMR (CDCl$_3$, 400 MHz) δ: 7.93 (1H, d, 3J$_{HH}$ 7.6 Hz, ArH), 7.64 (1H, d, 3J$_{HH}$ 7.5 Hz, ArH), 7.52 (1H, d, 3J$_{HH}$ 1.5 Hz, ArH), 7.38 (1H, t, 3J$_{HH}$ 7.6 Hz, ArH), 6.64 (1H, d, 3J$_{HH}$ 3.4 Hz, ArH), 6.50-6.52 (1H, m, ArH), 3.50-3.56 (1H, dd, 3J$_{HH}$ 8.0 Hz, 3J$_{HH}$ 17.6 Hz, CH$_2$C), 2.87 (1H, dd, 3J$_{HH}$
Typical procedure for 7-aryl-2-methyl-1H-indene synthesis

To a solution of 2,3-dihydro-2-methyl-4-phenyl-1H-inden-1-one 9a (222.3 mg, 1.0 mmol) in 15 mL of THF/MeOH (2:1), was added 114 mg (3.0 mmol, 3.0 eq.) of NaBH₄ in portions at 0 °C. The reaction mixture was warmed slowly to rt and stirred till completion (TLC). The solvent was evaporated and 10 mL of water was added. The mixture was extracted with EtOAc (10 mL X 2). The combined organic extracts were dried and evaporated. The residue was taken up in 50 mL of toluene and mixed with 100 mg of TsOH monohydrate. The formed mixture was refluxed with Dean-Stark head for 2 h. 30 mL of ethyl acetate was added and the resulting solution was washed with Na₂CO₃ (10%). The organic layer was separated and the aqueous layer was extracted with EtOAc (30 mL × 2). The combined organic extracts were dried and then filtered through a short pad of silica gel. The solvent was evaporated to give pure 2-methyl-7-phenyl-1H-indene 10a. yield: 73 %, 151 mg, colorless oil. 1H NMR (CDCl₃, 400 MHz) δH: 7.53 (2H, d, 3JHH 7.1 Hz, ArH), 7.44 (2H, t, 3JHH 7.5 Hz, ArH), 7.35 (H, t, 3JHH 7.4 Hz, ArH), 7.30 (H, d, 3JHH 7.4 Hz, ArH), 7.25 (H, d, 3JHH 5.8 Hz, ArH), 7.13 (1 H, t, 3JHH 7.5 Hz, ArH), 6.54 (1H, s, ArCH), 3.38 (2H, s, ArCH₂), 2.14 (3H, s, CH₃).

2-Methyl-7-(o-toly)-1H-indene (10a₁). Yield 82%, 180 mg, colorless oil. 1H NMR (CDCl₃, 400 MHz) δH: 7.15-7.30 (6H, m, ArH), 7.03 (1H, dd, 3JHH 6.7 Hz, 4JHH 1.8 Hz, ArH), 6.62 (1H, q, 4JHH 1.6 Hz, ArCH), 3.13 (2H, s, ArCH₂), 2.22 (3H, s, ArCH₃), 2.17 (3H, s, CH₃).

2-Methyl-7-(m-toly)-1H-indene (10a₂). Yield 85%, 187 mg, colorless oil. 1H NMR (CDCl₃, 400 MHz) δH: 7.20-7.60 (7H, m, ArH), 6.67 (1H, s, ArCH), 3.51 (2H, s, ArCH₂), 2.55 (3H, s, ArCH₃), 2.27 (3H, s, CH₃). 13C NMR (CDCl₃, 100 MHz) δC: 146.4, 146.2, 141.30, 140.7, 137.8, 137.4, 129.2, 128.2, 127.7, 127.2, 126.9, 125.5, 124.2, 118.8, 42.7, 21.5, 16.6. EI-HRMS (m/z) caledd for C₂₃H₁₉(M⁺) 220.1252, found 220.1260.

7-(2-Methoxyphenyl)-2-methyl-1H-indene (10a₃). Yield 79%, 186 mg, white solid, Mp 102 - 104 °C. 1H NMR (CDCl₃, 400 MHz) δH: 7.20-7.40 (4H, m, ArH), 6.95-7.08 (3H, m, ArH), 6.50 (1H, q, 4JHH 1.6 Hz, ArCH), 3.75 (3H, s, OCH₃), 3.18 (2H, s, ArCH₂), 2.10 (3H, s, CH₃).

7-(3-Methoxyphenyl)-2-methyl-1H-indene (10a₄). Yield 90%, 212 mg, white solid, Mp 82 - 84 °C. 1H NMR (CDCl₃, 400 MHz) δH: 7.20-7.38 (3H, m, ArH), 7.02-7.15 (3H, m, ArH), 6.88 (1H, dd, 3JHH 8.4 Hz, 4JHH 2.0 Hz, ArH), 6.60 (1H, q, 4JHH 1.2 Hz, ArCH), 3.91 (3H, s, OCH₃), 3.45 (2H, s, ArCH₂), 2.20 (3H, s, CH₃). 13C NMR (CDCl₃, 100 MHz) δC: 159.5, 146.4, 146.3, 142.8, 140.7, 137.2, 129.3, 127.1, 126.9, 124.1, 120.9, 118.9, 114.2, 112.4, 55.2, 42.7, 16.6. EI-HRMS (m/z) caledd for C₁₇H₁₆O (M⁺) 236.1201, found 236.1210.

7-(4-Methoxyphenyl)-2-methyl-1H-indene (10a₅). Yield 95%, 224 mg, white solid, Mp 85 - 87 °C. 1H NMR (CDCl₃, 400 MHz) δH: 7.43-7.46 (2H, m, ArH), 7.27-7.31 (1H, m, ArH), 7.20-7.22 (1H, m, ArH), 7.09-7.12 (1H, m, ArH), 7.94-7.97 (2H, m, ArH), 6.51 (1H, s, ArCH), 3.81 (3H, s, OCH₃), 3.34 (2H, s, ArCH₂), 2.11 (3H, s, CH₃). 13C NMR (CDCl₃, 100 MHz) δC: 158.6, 146.3,
146.1, 140.6, 136.9, 133.7, 129.4, 127.1, 126.9, 124.1, 118.5, 113.7, 55.1, 42.7, 16.6. El-HRMS (m/z) calcd for C_{17}H_{16}O (M^+) 236.1201, found 236.1204.

7-(3,5-Dimethylphenyl)-2-methyl-1H-indene (10a6). Yield 93%, 217 mg, white solid, Mp 57 - 59 °C. 1^H NMR (CDCl_3, 400 MHz) δ_H: 7.25-7.50 (5H, m, ArH), 7.16 (1H, s, ArH), 6.69 (1H, s, ArCH). 3.54 (2H, s, ArCH_2), 2.55 (6H, s, CCH_3). 13^C NMR (CDCl_3, 100 MHz) δ_C: 146.3, 146.1, 141.3, 140.7, 137.7, 137.5, 128.6, 127.2, 126.8, 126.3, 124.2, 118.7, 42.7, 21.4, 16.6. El-HRMS (m/z) calcd for C_{18}H_{18} (M^+) 234.1409, found 234.1415

7-(3-(tert-Butyl)phenyl)-2-methyl-1H-indene (10a7). Yield 94%, 246 mg, white solid, Mp 66 - 68 °C. 1^H NMR (CDCl_3, 400 MHz) δ_H: 7.51-7.54 (4H, m, ArH), 7.15-7.40 (3H, m, ArH), 6.60 (1H, s, ArCH). 3.47 (2H, s, ArCH_2), 2.20 (3H, s, CCH_3), 1.45 (9H, s, tBu). 13^C NMR (CDCl_3, 100 MHz) δ_C: 149.9, 146.5, 146.3, 140.9, 135.9, 129.7, 127.2, 127.1, 124.1, 120.8, 120.7 (q, J_{HF} 255.5 Hz), 119.3, 42.6, 29.8, 16.5. El-HRMS (m/z) calcd for C_{20}H_{22} (M^+) 262.1722, found 262.1713

7-(4-Fluorophenyl)-2-methyl-1H-indene (10a8). Yield 96%, 278 mg, colorless oil. 1^H NMR (CDCl_3, 400 MHz) δ_H: 7.40-7.52 (2H, ArH), 7.17-7.53 (4H, m, ArH), 7.19 (1H, s, ArH), 6.61 (1H, s, ArCH), 3.82 (2H, s, ArCH_2), 2.24 (3H, s, CCH_3).

7-(4-Chlorophenyl)-2-methyl-1H-indene (10a11). contains indene double bond isomers (1:1.2). Yield 96%, 201 mg, white solid. 1^H NMR (CDCl_3, 400 MHz) δ_H: 7.40-7.55 (2H, ArH), 7.05-7.39 (5H, ArH), 6.61 (0.55H, s ArCH), 6.53 (0.45H, m ArCH) 3.36 (1.1H, s, ArCH_2), 3.35 (0.9H, s, ArCH_2), 2.14 (3H, s, CCH_3). 13^C NMR (CDCl_3, 100 MHz) δ_C: 162.0 (d, J_{FC} 241.8 Hz), 146.9, 146.5 (d, J_{FC} 11.2 Hz), 144.0, 143.5, 140.8, 136.3, 132.8, 130.2 (d, J_{FC} 7.8 Hz), 130.0 (d, J_{FC} 7.9 Hz), 127.1 (d, J_{FC} 11.2 Hz), 126.6, 125.9, 124.1, 123.9, 123.4, 119.0, 115.2 (d, J_{FC} 21.1 Hz), 115.1 (d, J_{FC} 21.2 Hz), 42.9, 16.9. El-HRMS (m/z) calcd for C_{16}H_{13}F (M^+) 224.1001, found 224.1000.

7-(4-Chlorophenyl)-2-methyl-1H-indene (10a12) contains indene double bond isomers (1:1.4). Yield 77%, 184 mg, colorless oil. 1^H NMR (CDCl_3, 400 MHz) δ_H: 7.17-7.53 (6.6H, m, ArH), 7.13 (0.41H, dd, J_{HH} 7.6 Hz, J_{HH} 1.2 Hz, ArH), 6.61 (0.59H, s, ArCH), 6.53 (0.41H, q, J_{HH} 1.6 Hz, ArCH), 3.35 (1.22H, s, ArCH_2), 3.32 (0.87H, s, ArCH_2), 2.14 (1.79H, CCH_3), 2.13
(1.29H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 147.0, 144.1, 143.5, 139.6, 130.1, 128.5, 127.2, 126.5, 125.9, 123.9, 122.6, 119.2, 42.9, 16.8. EI-HRMS (m/z) cale for C₁₆H₁₃Cl (M⁺) 240.0706, found 240.0715

2-Methyl-7-(3-(trifluoromethyl)phenyl)-1H-indene (10a₁₃). Yield 90%, 246 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.86 (1H, s ArH), 7.75 (1H, d, t, 3JHH 7.6 Hz, ArH), 7.67 (1H, d, 3JHH 7.8 Hz, ArH), 7.59 (1H, t, 3JHH 7.7 Hz, ArH), 7.39 (1H, t, 3JHH 7.4 Hz, ArH), 7.33 (1H, d, 3JHH 7.3 Hz, ArH), 7.17 (1H, d, 3JHH 7.3 Hz, ArH), 6.61 (1H, s ArCH), 3.40 (2H, s, ArCH₂), 2.20 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.7, 146.4, 142.1, 140.8, 135.9, 131.7, 130.8 (q, 3JCFC 31.9 Hz), 128.8, 127.2, 127.2, 125.3 (q, 3JCFC 3.7 Hz), 124.4 (q, 1JCFC 270.5 Hz), 124.1, 123.8 (q, 3JCFC 3.7 Hz), 119.6, 42.5, 16.6. EI-HRMS (m/z) cale for C₁₇H₁₃F₃ (M⁺) 274.0969, found 274.0978.

2-Methyl-7-(4-(trifluoromethyl)phenyl)-1H-indene (10a₁₄). Yield 97%, 265 mg, white solid, Mp 145–147 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 7.68 (2H, d, 3JHH 8.0 Hz, ArH), 7.62 (2.40H, d, 3JHH 8.4 Hz, ArH), 7.10 (0.78H, d, 3JHH 7.6 Hz, ArH), 6.62 (0.22H, s, ArCH), 6.54 (0.78H, s, ArCH), 3.37 (0.48H, s, ArCH₂), 3.34 (1.61H, s, ArCH₂), 2.14 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 147.0, 146.6, 140.8, 135.9, 129.2 (q, 3JCFC 32.7 Hz) 129.1, 128.7, 127.2, 127.2, 125.3 (q, 3JCFC 3.8 Hz), 124.4 (q, 1JCFC 266.1 Hz), 124.1, 119.6, 42.6, 16.7. EI-HRMS (m/z) cale for C₁₇H₁₃F₃ (M⁺) 274.0969, found 274.0979.

7-(3,5-Bis(trifluoromethyl)phenyl)-2-methyl-1H-indene (10a₁₅). Yield 87%, 297 mg, white solid, Mp 65–67 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 8.01 (2H, s ArH), 7.91 (1H, s ArH), 7.33–7.40 (2H, m ArH), 7.14 (1H, d, 3JHH 7.2 Hz, ArH), 6.59 (1H, s, ArCH), 3.35 (2H, s, ArCH₂), 2.19 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 147.0, 146.6, 143.5, 140.8, 134.4, 131.8 (q, 3JCFC 27.1 Hz), 128.5 (m), 127.5, 127.3, 123.9, 123.4 (q, 1JCFC 271.2 Hz), 120.8 (m), 120.3, 42.3, 16.6. EI-HRMS (m/z) cale for C₁₈H₁₂F₆ (M⁺) 342.0843, found 342.0835.

3-(2-Methyl-1H-inden-7-yl)benzonitrile (10a₁₆). Yield 93%, 214 mg, white solid, Mp 91 - 93 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 7.82 (1H, t, 3JHH 1.4 Hz, ArH), 7.75 (1H, dt, 3JHH 8.4 Hz, 4JHH 1.6 Hz, ArH), 7.65 (1H, t, 3JHH 7.6 Hz, 4JHH 1.6 Hz, ArH), 7.55 (1H, t, 4JHH 7.9 Hz, ArH), 7.29-7.36 (2H, m ArH), 7.09 (1H, dd, 3JHH 7.2 Hz, 4JHH 1.4 Hz, ArH), 6.56 (1H, q, 4JHH 1.6 Hz, ArCH), 3.33 (2H, s, ArCH₂), 2.17 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.7, 146.4, 142.4, 140.6, 134.8, 132.7, 131.7, 130.5, 129.2, 127.3, 127.1, 123.8, 119.8, 118.8, 42.4, 16.6. EI-HRMS (m/z) cale for C₁₉H₁₃N (M⁺) 231.1048, found 231.1053.

4-(2-Methyl-1H-inden-7-yl)benzonitrile (10a₁₇). Yield 75%, 173 mg, white solid. (Major) ¹H NMR (CDCl₃, 400 MHz) δH: 7.73 (2H, d, 3JHH 8.3 Hz, ArH), 7.62 (2H, d, 3JHH 7.2 Hz, ArH), 7.15–7.45 (2H, m, ArH), 7.10 (1H, dd, 3JHH 7.2 Hz, 4JHH 1.2 Hz, ArH), 6.55 (1H, q, 1.6 Hz, ArCH), 3.35 (2H, s, ArCH₂), 2.16 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.8, 146.5, 146.1, 140.7, 135.4, 132.2, 129.4, 129.1, 127.3, 127.1, 123.9, 120.0, 110.7, 42.6, 16.6. EI-HRMS (m/z) cale for C₁₉H₁₃N (M⁺) 231.1048, found 231.1053.

7-[(1,1’-Biphenyl)-4-yl]-2-methyl-1H-indene (10a₁₈). Yield 91%, 256 mg, white solid, Mp 138–140 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 7.65 (5H, m, ArH), 7.47 (2H, t, 3JHH 7.6 Hz, ArH), 7.25-7.40 (3H, m, ArH), 7.19 (1H, d, 3JHH 7.2 Hz, ArH), 6.56 (1H, s, ArCH), 3.44 (2H, s, ArCH₂), 2.16
(3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.5, 146.3, 140.8, 140.8, 140.3, 139.8, 136.9, 128.8, 128.8, 127.3, 127.2, 127.1, 127.0, 124.2, 119.0, 42.8, 16.7. EI-HRMS (m/z) calcd for C₂₂H₁₈ (M⁺) 282.1409, found 282.1419.

7-(3-Chlorophenyl)-2-methyl-1H-indene (10a₂₀). Yield 89%, 213 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 7.46 (1H, s, ArH), 7.16-7.35 (5H, m, ArH), 7.04 (1H, dd, 3JHH 7.4 Hz, 4JHH 1.2 Hz, ArH), 6.47-6.49 (1H, q, 4JHH 1.6 Hz, ArCH), 3.29 (2H, s, ArCH₂), 2.09 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.6, 146.4, 143.1, 140.7, 135.9, 134.2, 129.6, 128.5, 127.1, 127.1, 127.0, 126.6, 124.0, 119.4, 42.6, 16.6. EI-HRMS (m/z) calcd for C₁₆H₁₃Cl (M⁺) 240.0706, found 240.0717.

2-(2-Methyl-1H-inden-7-yl)naphthalene (10a₂₅). Yield 94%, 240 mg, light yellow solid, Mp 81 - 83 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 8.01 (1H, s, ArH), 7.90-7.95 (3H, m, ArH), 7.71 (1H, dd, 3JHH 8.4 Hz, 4JHH 1.8 Hz, ArH), 7.51-7.56 (2H, m, ArH), 7.39 (1H, t, 3JHH 7.5 Hz, ArH), 7.26-7.34 (2H, m, ArH), 6.60 (1H, q, 4JHH 1.6 Hz, ArCH), 3.46 (2H, s, ArCH₂), 2.18 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 146.5, 146.4, 141.0, 138.8, 137.3, 133.4, 132.4, 128.0, 127.9, 127.7, 127.2, 127.1, 126.9, 126.2, 125.9, 124.9, 115.0, 42.8, 16.7. EI-HRMS (m/z) calcd for C₂₀H₁₆ (M⁺) 256.1252, found 256.1258.

3-(2-Methyl-1H-inden-7-yl)pyridine (10b₁). Yield 89%, 184 mg, colorless oil. (Major) ¹H NMR (CDCl₃, 400 MHz) δH: 8.77 (1H, s, ArH), 8.56 (1H, d, 3JHH 8.0 Hz, ArH), 7.81 (1H, dd, 3JHH 7.6 Hz, 4JHH 1.8 Hz, ArH), 7.15-7.40 (3H, m, ArH), 7.09 (1H, dd, 3JHH 7.2 Hz, 4JHH 0.8 Hz, ArH), 6.53 (1H, q, 4JHH 1.6 Hz, ArCH), 3.33 (2H, s, ArCH₂), 2.13 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 149.2, 148.1, 148.7, 146.5, 141.0, 135.6, 133.6, 127.2, 127.1, 124.0, 123.3, 119.6, 42.5, 16.6. EI-HRMS (m/z) calcd for C₁₅H₁₂N (M⁺) 207.1048, found 207.1057.

4-(2-Methyl-1H-inden-7-yl)pyridine (10b₂). Yield 98%, 202 mg, colorless oil. ¹H NMR (CDCl₃, 400 MHz) δH: 8.66 (2H, d, 3JHH 6.0 Hz, ArH), 7.43-7.45 (2H, m, ArH), 7.29-7.36 (2H, m, ArH), 7.13 (1H, dd, 3JHH 7.2 Hz, 4JHH 1.6 Hz, ArH), 6.54 (1H, q, 4JHH 1.6 Hz, ArCH), 3.37 (2H, s, ArCH₂), 2.15 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 149.8, 148.9, 148.6, 146.5, 140.7, 134.3, 127.3, 127.1, 123.6, 123.2, 120.1, 42.5, 16.6. EI-HRMS (m/z) calcd for C₁₅H₁₂N (M⁺) 207.1048, found 207.1053.

5-(2-Methyl-1H-inden-7-yl)pyrimidine (10b₃). Yield 79%, 164 mg, light yellow solid, Mp 70-72 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 9.20 (1H, s, ArH), 8.90 (2H, s, ArH), 7.31-7.38 (2H, m, ArH), 7.09 (1H, dd, 3JHH 7.2 Hz, 4JHH 0.8 Hz, ArH), 6.55 (1H, q, 4JHH 1.6 Hz, ArCH), 3.35 (2H, s, ArCH₂), 2.15 (3H, CCH₃). ¹³C NMR (CDCl₃, 100 MHz) δC: 157.2, 155.9, 147.0, 146.6, 141.1, 134.7, 129.9, 127.6, 127.1, 123.8, 120.4, 42.3, 16.6. EI-HRMS (m/z) calcd for C₁₄H₁₂N₂ (M⁺) 208.1000, found 208.1008.

3-(2-Methyl-1H-inden-7-yl)quinoline (10b₄). Yield 53%, 136 mg, white solid, Mp 190-192 °C. ¹H NMR (CDCl₃, 400 MHz) δH: 9.12 (1H, d, 4JHH 2.0 Hz, ArH), 8.24 (1H, d, 4JHH 2.0 Hz, ArH), 8.16 (1H, d, 3JHH 8.4 Hz, ArH), 7.85 (1H, d, 3JHH 8.4 Hz, ArH), 7.73 (1H, dt, 3JHH 7.6 Hz, 4JHH 1.6 Hz, ArH), 7.57 (1H, dt, 3JHH 7.6 Hz, 4JHH 1.2 Hz, ArH), 7.37 (1H, d, 3JHH 7.6 Hz, ArH), 7.33 (1H, dd, 3JHH 7.2 Hz, 4JHH 0.8 Hz, ArH), 7.22 (1H, dd, 3JHH 7.6 Hz, 4JHH 1.0 Hz, ArH), 6.58 (1H, q,
4\(^1\)H \(1.6\) Hz, ArCH), 3.41 (2H, s, ArCH\(_2\)), 2.16 (3H, CCH\(_3\)). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) δ\(_C\): 150.8, 147.1, 146.8, 146.5, 141.3, 134.5, 134.1, 133.7, 129.3, 129.2, 127.9, 127.3, 127.1, 126.9, 124.4, 119.7, 42.6, 16.6. EI-HRMS (\(m/z\)) calcd for C\(_{19}\)H\(_{15}\)N (M\(^+\)) 257.1204, found 257.1205.

2-(2-Methyl-1\(^H\)-inden-7-yl)thiophene (10b\(_3\)). Yield 77%, 163 mg, brown oil. \(^1\)H NMR (CDCl\(_3\), 400 MHz) δ\(_H\): 7.33-7.39 (2H, m, ArH), 7.29-7.32 (1H, m, ArH), 7.26 (1H, d, \(3^J_{HH} 7.6\) Hz, ArH), 7.19 (1H, d, \(3^J_{HH} 8.0\) Hz, ArH), 7.08-7.12 (1H, m, ArH), 6.57 (1H, s, ArCH), 3.37 (2H, s, ArCH\(_2\)), 2.17 (3H, CCH\(_3\)).

2-(2-Methyl-1\(^H\)-inden-7-yl)furan (10b\(_6\)). Yield 63%, 123 mg, colorless oil. \(^1\)H NMR (CDCl\(_3\), 400 MHz) δ\(_H\): 7.50 (1H, d, \(3^J_{HH} 7.8\) Hz, ArH), 7.47 (1H, d, \(4^J_{HH} 1.3\) Hz, ArH), 7.25 (1H, t, \(3^J_{HH} 7.6\) Hz, ArH), 7.16 (1H, d, \(3^J_{HH} 7.2\) Hz, ArH), 6.61 (1H, d, \(4^J_{HH} 3.2\) Hz, ArH), 6.46-6.48 (2H, m, ArH, ArCH), 3.44 (2H, s, ArCH\(_2\)), 2.12 (3H, CCH\(_3\)). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) δ\(_C\): 153.7, 146.7, 146.2, 141.6, 137.9, 126.8, 126.7, 125.9, 120.1, 119.0, 111.4, 106.7, 43.8, 16.7. EI-HRMS (\(m/z\)) calcd for C\(_{14}\)H\(_{12}\)O (M\(^+\)) 196.0888, found 196.0897.

Multi-gram scale synthesis of 10a\(_{15}\) without fraction distillation or column chromatography

Into a 100 mL round-bottom flask, was filled with a mixture of 4-bromo-2-methyl 1-indanone 7 (4.50 g, 20 mmol), 3,5-ditrifluoromethyl phenylboronic acid 8a\(_{15}\) (5.40 g, 21 mmol, 1.05 eq.), Pd(OAc)\(_2\) (0.225 mg, 1.0 umol, 0.005 mol%), TBAB (7.16 g, 20 mmol, 1.0 eq.), K\(_2\)CO\(_3\) (5.53 g, 40 mmol, 2.0 eq.) and PEG400 50 g. The mixture was stirred at 110 °C till completion (TLC). 50 mL of water was added and the contents were extracted with EtOAc (100 mL X 3). The organic phase was washed with brine (100 mL X 2), dried over Na\(_2\)SO\(_4\) and concentrated to dryness. 20 mL of methanol was added and the suspension was stirred overnight. After filtration, the white solid was dissolved in 300 mL of THF/MeOH (2:1) and 1.14 g (30 mmol, 1.5 eq.) of NaBH\(_4\) was added in portions at 0 °C. The reaction was stirred at rt till completion (TLC). After evaporation, the residue was partitioned between EtOAc and H\(_2\)O (200 mL, 1:1). The aqueous phase was extracted with EtOAc (100 mL × 2). The combined organic extracts were dried and evaporated to dryness. The crude product was taken up in 350 mL of toluene and mixed with 200 mg of TsOH monohydrate. The formed mixture was refluxed with Dean-Stark head for 5 h. Toluene was removed under reduce pressure and the residue was re-dissolved in EtOAc/MeOH (200 mL, 1:1). The aqueous phase was extracted with EtOAc (100 mL × 2). The combined organic extracts were washed subsequently with saturated NaHCO\(_3\) (100 mL × 2), brine (100 mL × 2) and dried over Na\(_2\)SO\(_4\). After evaporation, the residue was suspended in methanol (15 mL) and stirred overnight. The slurry was filtered to yield 2-methyl-7-(3,5-bistrifluoromethylphenyl)indene 10a\(_{15}\) 5.9 g (17.2 mmol) in 85.8% yield.
Acknowledgements

The authors thank the Fundamental Research Funds for the Central Universities (No. DUT14LAB19) and CNPC (Project No. 2011B-2703-0104) for financial support. We also thank Prof. Baomin Wang, Prof. Yuhan Zhou, and Prof. Ying Peng for valuable discussions.

References

 http://dx.doi.org/10.1021/acs.macromol.5b00439

 http://dx.doi.org/10.1021/om200610b

 http://dx.doi.org/10.1021/ja010160z

 http://dx.doi.org/10.1021/om300160v

 http://dx.doi.org/10.1021/om010160z

 http://dx.doi.org/10.1007/s11172-008-0217-2

 http://dx.doi.org/10.1021/om050937e

 http://dx.doi.org/10.1007/s11172-008-0325-z

 http://dx.doi.org/10.1002/chem.201103547

 http://dx.doi.org/10.1021/om900353m

 http://dx.doi.org/10.1021/om900939v

 http://dx.doi.org/10.1016/j.ccr.2015.03.007

 http://dx.doi.org/10.1021/om100761p

 http://dx.doi.org/10.1021/om5003655
 http://dx.doi.org/10.1002/ejic.201500862
 http://dx.doi.org/10.1021/om501185x
 http://dx.doi.org/10.1021/cr00039a007
 http://dx.doi.org:10.1016/S0040-4020(02)01188-2
 http://dx.doi.org/10.1002/ejoc.200600519
 http://dx.doi.org/10.1021/jo050724z
 http://dx.doi.org/10.1055/s-2006-926323
 http://dx.doi.org/10.1021/ol701709q
 http://dx.doi.org/10.1021/jo802277z