Bis(indoline-2,3-diones): Versatile precursors for novel bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) derivatives

Amr M. Abdelmoniem, Ahmed H. M. Elwahy,* and Ismail A. Abdelhamid*

Chemistry Department, Faculty of Science, Cairo University, Giza-Egypt
E-mail: aelwahy@hotmail.com, ismail_shafy@yahoo.com

DOI: http://dx.doi.org/10.3998/ark.5550190.0017.324

Abstract
Reaction of 3-aminocrotononitrile with a series of bis(indoline-2,3-diones) afforded the corresponding bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) derivatives in good to excellent yields.

Keywords: Bis(indoline-2,3-diones), bis(spirooxindole), 1,4-dihydropyridine-3,5-dicarbonitrile, alkylation, condensation

Introduction
Spiroheterocycles are of considerable interest because the structural rigidity affects considerably their biological activity. Among them, spirooxindoles constitute the core structural element of many natural and biologically active molecules such as spirotryprostatin B I, pteropodine II, gelsemine III, and horsfiline IV (Fig. 1).

Moreover, the 1,4-dihydropyridine-3,5-dicarbonitrile scaffold represents a class of medicinally significant compounds, which has demonstrated a diverse range of biological activities dependent upon substitutions around the core pyridine ring. Dihydropyridine drug molecules, as nifedipine V and nicardipine VI are clinically effective as calcium Ca2+ channel blockers for treatment of coronary heart diseases and for the treatment of hypertension. Furthermore, bis-heterocyclic compounds have been reported to possess interesting biological properties including antihypertensive and antiallergenic activities.

As a part of an ongoing research program on bis-heterocycles as well as on the utility of enamines in organic synthesis, we report the results of our investigations concerning the reactivity patterns of bis-isatin derivatives towards 3-aminocrotononitrile aiming at synthesis of bis(spirooxindole) incorporating 1',4'-
dihydropyridine-3’,5’-dicarbonitrile derivatives. It is anticipated that the combination of
the two scaffolds in a single molecule can lead to the discovery of new active drugs.

![Molecular structures](image)

Figure 1

Results and Discussion

The bis(indoline-2,3-diones) **3a-f** were chosen as precursors to a variety of novel
bis(spirooxindole) incorporating 1’,4’-dihydopyridine-3’,5’-dicarbonitrile derivatives. They can be prepared by the reaction of indoline-2,3-dione **1** with the appropriate
dibromo compounds **2a-f** in the presence of anhydrous K$_2$CO$_3$ (Scheme 1).$^{35-37}$

The reactivity of **3a-c** towards 3-aminocrotononitrile **4** was investigated. Thus,
reaction of an AcOH solution of one equivalent of each of the bis(indoline-2,3-diones)
3a-c with four equivalents of **4** afforded the respective bis(2',6'-dimethyl-2-oxo-1'H-
spiro[indoline-3,4'-pyridine]-3’,5’-dicarbonitriles) **5a-c** which are tethered to alkyl
linkage (Scheme 2).
Scheme 1. Synthesis of bis(indoline-2,3-diones) 3a-f. Reaction condition: isatin (25 mmol), dibromo derivatives 2a-f (10 mmol), K$_2$CO$_3$ (30 mmol), dioxane (10 mL), reflux 30 min. Yields: 75-84%.

Scheme 2. Synthesis of compounds 5a-c. Reaction condition: bis(indoline-2,3-diones) 3a-c (10 mmol), 3-aminocrotononitrile (45 mmol), AcOH, reflux 1 h. Yields: 75-82%.

Encouraged by the above results, the bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitriles) which are linked to xylyl linkage 5d-f were prepared via the direct reaction of one equivalent of the bis(indoline-2,3-diones) 3d-f with four moles of 3-aminocrotononitrile 4 (Fig. 2).

Figure 2. Bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) linked to xylyl linkage 5d-f.

The structure of compounds 5a-f was supported based on IR, NMR and mass spectral studies. Thus, the 1H NMR spectrum of 5b revealed characteristic multiplet at δ 1.68 ppm for -
CH₂. It also showed singlet integrated by 12H at δ 2.12 ppm for the four methyl groups. It revealed multiplet signal at δ 3.73 ppm for NCH₂. In addition, the singlet signal at δ 9.98 is assigned to NH group. The aromatic protons appear at the expected position at δ 7.12-7.37 ppm.

On the other hand, the ¹H-NMR spectrum of 1,1''-(1,4 phenylenebis(methylene))bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) 5f exhibited three singlet signals at δ 2.13, 4.92 and 10.02 ppm assigned to CH₃, CH₂ and NH, respectively. Furthermore, ¹³C NMR spectrum of 5f was found to be in agreement with proposed structure; it showed the methyl signal at δ 17.9 ppm and the spiro carbon at δ 42.8 ppm. It also featured a CN signal at δ = 117.2 ppm. The C=O group appeared at δ = 175.8 ppm. All other carbon signals appeared at their expected positions.

Apparently, the reaction pathway involves initial condensation of the bis(indoline-2,3-diones) 3 with two equivalents of the 3-aminocrotononitrile 4 to yield the unstable bis-ylidene derivatives 6. The bis-ylidenes then react with another two moles of 4, yielding the bis-diamines 7, which cyclize into 8. Finally the intermediates 8 lose two moles of NH₃ yielding the final isolable products 5 (Scheme 3).

Scheme 3: Proposed pathway for the synthesis of compounds 5a-f

In search for another pathway for synthesis of compounds 5, our attention focused on 2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile 9 as a precursor which should then undergo bis(alkylation) with the appropriate dibromoalkanes to give 5. Unfortunately, repeated attempts to obtain the target compound 5a through the direct alkylation reaction of 9 with the dibromopropane under different basic conditions were unsuccessful. Instead, the starting materials were recovered completely unreacted (Scheme 4).
Conclusions

We have developed an efficient synthetic strategy for novel bis(spirooxindoles) incorporating 1,4-dihydropyridine-3,5-dicarbonitrile derivatives using the bis(indoline-2,3-diones). The two dihydropyridine units were tethered to isatin via alkyl or aryl groups. The newly synthesized compounds are interesting both in their own right as unusual molecules and for their promising pharmacological and biological activities.

Acknowledgements

The authors gratefully acknowledge the Alexander von Humboldt Foundation for a research fellowship.

Experimental Section

General. Melting points were measured with a Stuart melting point apparatus and are uncorrected. The IR spectra were recorded using a FTIR Bruker–vector 22 spectrophotometer as KBr pellets. The 1H NMR spectrum were recorded in DMSO–d6 as solvent on Varian Gemini NMR spectrometer at 400 MHz using TMS as internal standard. Chemical shifts are reported as δ values in ppm. Mass spectra were recorded with a Shimadzu GCMS–QP–1000 EX mass spectrometer in EI (70 eV) model. The elemental analyses were performed at the Micro analytical center, Cairo University.

General method for synthesis of compounds 3a-f. Compounds 3a-f were prepared according to the reported procedures.35–37 A mixture of isatin 1 (0.025 mol) and anhydrous K2CO3 (0.03 mol) was stirred at room temperature in dioxane (10 mL) for 15 min. A solution of the dibromo derivatives 2a-f (0.01 mol) in dioxane (5 mL) was then added and the reaction was heated at reflux for 30 min. The reaction mixture was poured on iced water and the collected solid was crystallized from ethanol-dioxane mixture (1:1).
General method for synthesis of compounds 5a-f. A mixture of bis-isatin derivatives 3a-f (1 mmol) and 3-aminocrotononitrile 4 (4.5 mmol) in AcOH (10 mL) was heated at reflux for 1 h. The collected precipitate was washed thoroughly with distilled water (25 mL), air-dried and crystallized from dioxane-DMF (5:1).

1,1''-(Propane-1,3-diyl)bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5a). Faint pink. Yield: 0.44 g (75%). mp > 300 °C. IR (KBr) 3292, 3214, 2204, 1700. 1H NMR (400 MHz, DMSO-d6) δ 1.64 (m, 4H, 2CH2), 2.10 (s, 12H, 4 Me), 3.69 (m, 4H, 2 NCH2), 7.08-7.36 (m, 8H, arom.H), 9.96 (br s, 2H, 2NH); 13C NMR (100 MHz, DMSO-d6) δ 18.1, 25.1, 37.8, 50.8, 80.3, 108.8, 117.5, 123.5, 125.4, 129.9, 133.4, 140.9, 149.2, 175.8. MS (EI, 70 eV) m/z 592 [M]+. Anal. Calc. for C35H28N6O2 (592.66): C, 70.93; H, 4.76; N, 18.91. Found: C, 70.86; H, 4.61; N, 18.79.

1,1''-(Butane-1,4-diyl)bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5b). Faint pink. Yield: 0.48 g (80%). mp > 300 °C. IR (KBr) 3298, 3214, 2204, 1700. 1H NMR (400 MHz, DMSO-d6) δ 1.68 (m, 4H, 2CH2), 2.12 (s, 12H, 4 Me) 3.73 (m, 4H, 2NCH2), 7.12-7.37 (m, 8H, arom.H), 9.98 (br s, 2H, 2NH); 13C NMR (100 MHz, DMSO-d6) δ 17.9, 24.1, 38.7, 50.8, 81.0, 109.2, 117.2, 123.3, 125.2, 130.0, 133.1, 141.3, 148.5, 175.7. MS (EI, 70 eV) m/z 606 [M]+. Anal. Calc. for C36H30N6O2 (606.69): C, 71.27; H, 4.98; N, 18.47. Found: C, 71.18; H, 4.85; N, 18.39.

1,1''-(Hexane-1,6-diyl)bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5c). Faint pink. Yield: 0.52 g (82%). mp > 300 °C. IR (KBr) 3295, 3220, 2203, 1702. 1H NMR (400 MHz, DMSO-d6) δ 1.34 (m, 4H, 2CH2), 1.56 (m, 4H, 2CH2), 2.10 (s, 12H, 4 Me), 3.65 (m, 4H, 2NCH2), 7.06-7.36 (m, 8H, arom.H), 9.95 (br s, 2H, 2NH); 13C NMR (100 MHz, DMSO-d6) δ 17.9, 25.6, 26.6, 38.7, 50.7, 81.0, 109.0, 117.1, 123.2, 125.3, 129.9, 133.2, 141.4, 148.4, 175.5. MS (EI, 70 eV) m/z 634 [M]+. Anal. Calc. for C38H32N6O2 (634.74): C, 71.91; H, 5.40; N, 17.65. Found: C, 71.83; H, 5.35; N, 17.55.

1,1''-(1,2-Phenylenebis(methylene))bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5d). Faint pink. Yield: 0.50 g (76%). mp > 300 °C. IR (KBr) 3293, 3223, 2205, 1701. 1H NMR (400 MHz, DMSO-d6) δ 2.16 (s, 12 H, 4 Me), 5.20 (s, 4H, 4 CH2), 6.96-7.47 (m, 12 H, arom.H), 10.07 (br s, 2H, 2 NH); 13C NMR (100 MHz, DMSO-d6) δ 18.0, 40.7, 51.1, 80.9, 109.8, 117.5, 123.8, 125.5, 127.0, 130.0, 132.4, 133.0, 141.3, 148.8, 176.0. MS (EI, 70 eV) m/z 654 [M]+. Anal. Calc. for C40H30N6O2 (654.73): C, 73.38; H, 4.62; N, 17.11. Found: C, 73.29; H, 4.55; N, 17.03.

1,1''-(1,3-Phenylenebis(methylene))bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5e). Faint pink. Yield: 0.51 g (78%). mp > 300 °C. IR (KBr) 3304, 3242, 2205, 1723. 1H NMR (400 MHz, DMSO-d6) δ 2.15 (s, 12H, 4 Me), 4.91 (s, 4H, 4CH2), 6.73-7.42 (m, 12H, arom.H), 10.05 (br s, 2H, 2NH); 13C NMR (100 MHz, DMSO-d6) δ 17.9, 42.8, 50.9, 80.9, 109.5, 117.4, 123.7, 125.4, 125.7, 128.8, 129.9, 133.0, 135.8, 140.9, 148.7, 175.8. MS (EI, 70 eV) m/z 654 [M]+. Anal. Calc. for C40H30N6O2 (654.73): C, 73.38; H, 4.62; N, 17.11. Found: C, 73.31; H, 4.53; N, 16.99.
1,1''-(1,4-Phenylenebis(methylene))bis(2',6'-dimethyl-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-3',5'-dicarbonitrile) (5f). Faint pink. Yield: 0.54 g (83%). mp > 300 °C. IR (KBr) 3305, 3228, 2202, 1705. 1H NMR (400 MHz, DMSO-d6) δ 2.13 (s, 12H, 4Me), 4.92 (s, 4H, 2CH2), 6.84-7.39 (m, 12H, arom.H), 10.02 (br s, 2H, 2NH); 13C NMR (100 MHz, DMSO-d6) δ 17.9, 42.8, 50.9, 80.9, 109.5, 117.2, 123.7, 125.3, 127.1, 129.9, 133.0, 134.7, 141.0, 148.6, 175.8. MS (EI, 70 eV) m/z 654 [M]+. Anal. Calc. for C40H30N8O2 (654.73): C, 73.38; H, 4.62; N, 17.11. Found: C, 73.33; H, 4.50; N, 17.15.

References

 http://dx.doi.org/10.1016/S0304-3835(75)95362-8
 http://dx.doi.org/10.1073/pnas.67.1.185
 http://dx.doi.org/10.1073/pnas.58.3.1004
 http://dx.doi.org/10.3390/ijms13033661
 http://dx.doi.org/10.1016/j.ejmech.2010.05.072
 http://dx.doi.org/10.2174/1570179413106660076
 http://dx.doi.org/10.1002/jhet.2012
 http://dx.doi.org/10.1080/17415993.2014.975131
 http://dx.doi.org/10.1002/jhet.2373
 http://dx.doi.org/10.1016/S0040-4020(99)01068-6
 http://dx.doi.org/10.1080/00399791000807441
 http://dx.doi.org/10.1002/jhet.5570440118
 http://dx.doi.org/10.1002/ardp.201400304
 http://dx.doi.org/10.1016/j.tet.2009.09.081
 http://dx.doi.org/10.1002/jhet.2341
 http://dx.doi.org/10.1016/j.tet.2015.01.026

 http://www.arkat-usa.org/get-file/29226/

 http://dx.doi.org/10.1002/jhet.2124

 http://dx.doi.org/10.1016/j.tetlet.2015.03.084