Supplementary Material

Acylation of \textit{trans}-2-substituted cyclohexanols: the impact of substituent variation on the pyridine-induced reversal of diastereoselectivity

Sven Hackbusch and Andreas H. Franz*

\textit{Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA}
\textit{E-mail: afranz@pacific.edu}

Table of Contents

1. 1H NMR Spectra \hspace{1cm} S2
2. 13C NMR Spectra \hspace{1cm} S33
3. HRMS Spectra \hspace{1cm} S64
4. Summary of Molecular Modeling Results \hspace{1cm} S95
5. LUMO representations and Cartesian coordinates of computed transition states \hspace{1cm} S97
1H NMR of **Compound 1** [(±)-trans-2-(p-tolylsulfanyl)cyclohexanol]
1H NMR of **Compound 2** [(±)-trans-2-(p-tolyloxy)cyclohexanol]
1H NMR of **Compound 3** [(±)-trans-2-(phenyloxy)cyclohexanol]
1H NMR of **Compound 4** [(±)-trans-2-(napthalen-2-yl)oxy)cyclohexanol]
1H NMR of Compound 5 [(±)-trans-2-(3,4,5-trimethylphenyloxy)cyclohexanol]
1H NMR of Compound 6 [(±)-trans-2-(p-(tert-butoxy)phenyloxy)cyclohexanol]
1H NMR of **Compound 7** [(±)-*trans*-2-(2,6-dimethylphenyloxy)cyclohexanol]
1H NMR of Compound 8 [(±)-trans-2-(cyclohexyloxy)cyclohexanol]
1H NMR of **Compound 9** [(±)-trans-2-(t-butoxy)cyclohexanol]
1H NMR of **Compound 10** [(±)-*trans*-2-(pyridine-2-ylthio)cyclohexanol]
1H NMR of **Compound 11** [$(\pm)-\text{trans-2-}(p$-tolylsulfonyl)cy clohexanol]
\[^1H \text{NMR of Compound 12 [}(\pm)-\text{trans-2-(benzyl)cyclohexanol}] \]
1H NMR of **Compound 16a+b** [(±)-(trans-2-(p-tolylsulfanyl)cyclohexyl) 2-chloropropanoate]
1H NMR of Compound 17a+b[(±)-(trans-2-(p-tolyloxy)cyclohexyl) 2-chloropropanoate]
1H NMR of **Compound 18a+b** [(±)-(trans-2-(phenyloxy)cyclohexyl 2-chloropropanoate)]
1H NMR of Compound 19a+b [(±)-trans-2-(napthalen-2-yloxy)cyclohexyl) 2-chloropropanoate]
1H NMR of **Compound 20a+b** [(±)-(*trans*-2-(3,4,5-trimethoxyphenyloxy)cyclohexanol]
1H NMR of **Compound 21a+b** [(±)-(trans-2-(p-tert-butyl-phenyloxy)cyclohexyl 2-chloropropanoate]
1H NMR of **Compound 22a+b** [(±)-(trans-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloropropanoate)]
1H NMR of **Compound 23a+b** [(±)-\textit{trans}-2-(cyclohexyloxy)cyclohexyl 2-chloropropanoate]
1H NMR of **Compound 24a+b** [(±)-(trans-2-(tert-butoxy)cyclohexyl 2-chloropropanoate)]
1H NMR of Compound 25a+b [(±)-trans-2-(pyridin-2-ylthio)cyclohexyl 2-chloropropanoate]
1H NMR of **Compound 26a+b** [(±)-\(trans\)-2-(\(p\)-tolylsulfonyl)cyclohexyl 2-chloropropanoate]
1H NMR of Compound 27a+b [(±)-(trans-2-benzylcyclohexyl) 2-chloropropanoate]
1H NMR of **Compound 28a+b** [(±)-(trans-2-methylcyclohexyl) 2-chloropropanoate]
1H NMR of **Compound 29a+b** [(±)-(trans-2-(p-tolylsulfanyl)cyclohexyl 2-chloro-2-phenylethanoate)]
1H NMR of **Compound 30a+b** [(±)-(trans-2-(p-tolyloxy)cyclohexyl 2-chloro-2-phenylethanoate)]
1H NMR of Compound 31a+b [(±)-(trans-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloro-2-phenylethanoate]
1H NMR of **Compound 32a+b [(±)-(trans-2-(cyclohexyloxy)cyclohexyl 2-chloro-2-phenylethanoate)]
1H NMR of **Compound 33a+b** [(±)-(trans-2-(p-tolylsulfonyl)cyclohexyl 2-chloro-2-phenylethanoate]
1H NMR of **Compound 34a+b** [(\pm)-trans-2-(methyl)cyclohexyl 2-chloro-2-phenylethanoate]
13C NMR of Compound 1 [(±)-trans-2-(p-tolylsulfanyl)cyclohexanol]
13C NMR of **Compound 2** [(±)-trans-2-(p-tolyloxy)cyclohexanol]
13C NMR of Compound 3 [(±)-trans-2-(phenyloxy)cyclohexanol]
13C NMR of Compound 4 [(±)-trans-2-(napthalen-2-yloxy)cyclohexanol]
13C NMR of **Compound 5** [(±)-*trans*-2-(3,4,5-trimethylphenyloxy) cyclohexanol]
13C NMR of Compound 6 [(±)-trans-2-(p-(tert-butoxy)phenyloxy)cyclohexanol]
13C NMR of **Compound 7** [(±)-trans-2-(2,6-dimethylphenyloxy)cyclohexanol]
13C NMR of **Compound 8** [(±)-trans-2-(cyclohexyloxy)cyclohexanol]
\[13\text{C NMR of Compound 9 [(±)-\textit{trans}-2-(t-butoxy)cyclohexanol]}\]
13C NMR of **Compound 10** [(±)-trans-2-(pyridine-2-yithio)cyclohexanol]
^{13}C NMR of Compound 11 [(±)-trans-2-(p-tolylsulfonyl)cyclohexanol]
13C NMR of **Compound 12** [(\pm)-*trans*-2-(benzyl)cyclohexanol]
13C NMR of Compound 16a+b [(±)-(trans-2-(p-tolylsulfanyl)cyclohexyl) 2-chloropropanoate]
13C NMR of Compound 17a+b [(±)-trans-2-(p-tolyloxy)cyclohexyl) 2-chloropropanoate]
13C NMR of **Compound 18a+b** [(±)-(trans-2-(phenyloxy)cyclohexyl 2-chloropropanoate)]

13C NMR of **Compound 19a+b** [(±)-(trans-2-(napthalen-2-ylxy)cyclohexyl) 2-chloropropanoate]
13C NMR of Compound 20a+b [(±)-trans-2-(3,4,5-trimethoxyphenyloxy)cyclohexanol]
\(^{13}\)C NMR of **Compound 21a+b**\([(\pm)-(trans-2-(p-tert-butyl-phenyloxy)cyclohexyl 2-chloropropanoate)]\)
13C NMR of Compound 22a+b [(±)-$(trans)$-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloropropanoate]
13C NMR of **Compound 23a+b** [(±)-\(\text{trans}-2\)-(cyclohexyloxy)cyclohexyl 2-chloropropanoate]
13C NMR of **Compound 24a+b** [(±)-(*trans*-2-(*tert*-butoxy)cyclohexyl 2-chloropropanoate)]
13C NMR of Compound 25a+b [(±)-trans-2-(pyridin-2-ylthio)cyclohexyl 2-chloropropanoate]
13C NMR of Compound 26a+b [(±)-trans-2-(p-tolylsulfonyl)cyclohexyl 2-chloropropanoate]
13C NMR of **Compound 27a+b** [(±)-(trans-2-benzylcyclohexyl) 2-chloropropanoate]
13C NMR of Compound 28a+b [(±)-trans-2-methylcyclohexyl 2-chloropropanoate]
13C NMR of **Compound 29a+b** [(±)-(*trans*-2-(*p*-tolylsulfanyl)cyclohexyl 2-chloro-2-phenylethanoate)]

Page S58
13C NMR of **Compound 30a+b** [(±)-trans-2-(p-tolyloxy)cyclohexyl 2-chloro-2-phenylethanoate]
13C NMR of **Compound 31a+b** [(±)-trans-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloro-2-phenylethanoate]
13C NMR of **Compound 32a+b** [(±)-*trans*-2-(cyclohexyloxy)cyclohexyl 2-chloro-2-phenylethanoate]
13C NMR of **Compound 33a+b** [(±)-(*trans*-2-(*p*-tolylsulfonyl)cyclohexyl 2-chloro-2-phenylethanoate)]
13C NMR of **Compound 34a+b [(±)-trans-2-(methyl)cyclohexyl 2-chloro-2-phenylethanoate]**

Page S63

©ARKAT-USA, Inc.
HRMS of Compound 1 [(±)-trans-2-(p-tolylsulfanyl)cyclohexanol]
HRMS of Compound 2 [(±)-trans-2-(p-tolyloxy)cyclohexanol]
HRMS of **Compound 3** [(±)-*trans*-2-(phenyloxy)cyclohexanol]
HRMS of **Compound 4** [(±)-*trans*-2-(napthalen-2-yloxy)cyclohexanol]
HRMS of Compound 5 [(±)-trans-2-(3,4,5-trimethylphenyloxy)cyclohexanol]
HRMS of **Compound 6** [(±)-*trans*-2-(*tert*-butoxy)phenyloxy)cyclohexanol]
The graph shows the relative intensity (y-axis) plotted against mass-to-charge ratio (m/z) on the x-axis. Key m/z values are labeled:

- 203.1440
- 221.1513
- 238.1846
- 441.2979
HRMS of **Compound 7** [(±)-*trans*-2-(2,6-dimethylphenyloxy)cyclohexanol]
HRMS of Compound 8 [(±)-trans-2-(cyclohexyloxy)cyclohexanol]
HRMS of **Compound 9** [(±)-*trans*-2-(*t*-butoxy)cyclohexanol]
HRMS of **Compound 10** [(±)-*trans*-2-(pyridine-2-ylthio)cyclohexanol]
The mass spectrum shows a peak at m/z 255.079 with relative intensity.
HRMS of **Compound 11** [(±)-trans-2-(p-tolylsulfonyl)cyclohexanol]
The diagram shows a mass spectroscopy graph with the y-axis labeled 'Rel. Intensity' and the x-axis labeled 'm/z'. Key peaks are labeled at their respective m/z values: 173.1319, 191.1432, 208.1712, and 381.2769.
HRMS of Compound 12 [(+)-trans-2-(benzyl)cyclohexanol]
HRMS of Compound 16a+b [(±)-(trans-2-(p-tolylsulfanyl)cyclohexyl) 2-chloropropanoate]
HRMS of Compound 17a+b [(±)-(trans-2-(p-tolyloxy)cyclohexyl) 2-chloropropanoate]
HRMS NMR of **Compound 18a+b** [(±)-(trans-2-(phenyloxy)cyclohexyl 2-chloropropanoate)]
HRMS of **Compound 19a+b** [(±)-(trans-2-(napthalen-2-yloxy)cyclohexyl) 2-chloropropanoate]
HRMS of Compound 20a+b [(±)-(trans-2-(3,4,5-trimethoxyphenyloxy)cyclohexanol]
HRMS of **Compound 21a+b** [(±)-**(trans-2-(p-tert-butyl-phenyloxy)cyclohexyl 2-chloropropanoate)**]
HRMS of Compound 22a+b [(±)-(trans-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloropropanoate]
HRMS of **Compound 23a+b** [(±)-(trans-2-(cyclohexyloxy)cyclohexyl 2-chloropropanoate]
207.0774
263.1426
HRMS of **Compound 24a+b** [(±)-(trans-2-(tert-butoxy)cyclohexyl 2-chloropropanoate)
HRMS of Compound 25a+b [(±)-trans-2-(pyridin-2-ylthio)cyclohexyl 2-chloropropanoate]
HRMS of **Compound 26a+b** [(±)-(trans-2-(p-tolylsulfonyl)cyclohexyl 2-chloropropanoate)]
HRMS of Compound 27a+b [(±)-trans-2-benzylcyclohexyl) 2-chloropropanoate]
HRMS of **Compound 28a+b** [(±)-(trans-2-methylcyclohexyl) 2-chloropropanoate]
HRMS of Compound 29a+b [(±)-(trans-2-(p-tolylsulfanyl)cyclohexyl 2-chloro-2-phenylethanoate]
HRMS of **Compound 30a+b** [(±)-(trans-2-(p-tolyloxy)cyclohexyl 2-chloro-2-phenylethanoate)]
HRMS of **Compound 31a+b** [(±)-**(trans-2-(2,6-dimethylphenyloxy)cyclohexyl 2-chloro-2-phenylethanoate)**]
HRMS of **Compound 32a+b** [(±)-*trans*-2-(cyclohexyloxy)cyclohexyl 2-chloro-2-phenylethanoate]
HRMS of Compound 33a+b [(±)-(trans-2-(p-tolylsulfonyl)cyclohexyl 2-chloro-2-phenylethanoate]
HRMS of **Compound 34a+b** [(±)-*trans*-2-(methyl)cyclohexyl 2-chloro-2-phenylethanoate]
Summary of Molecular Modeling results – computed energies:

Absolute energies of transition states:

<table>
<thead>
<tr>
<th></th>
<th>Methyl</th>
<th>Tolyloxy</th>
<th>Tolylsulfanyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
</tr>
<tr>
<td>without pyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e,e)</td>
<td>(-917238.2163)</td>
<td>(-1109293.7038)</td>
<td>(-1311939.2743)</td>
</tr>
<tr>
<td>(a,a)</td>
<td>(-917236.5461)</td>
<td>(-1109306.7131)</td>
<td>(-1311953.5759)</td>
</tr>
<tr>
<td>(e,e)</td>
<td>(-917240.6841)</td>
<td>(-1109298.7502)</td>
<td>(-1311948.2415)</td>
</tr>
<tr>
<td>(a,a)</td>
<td>(-917239.2913)</td>
<td>(-1109304.6038)</td>
<td>(-1311953.8853)</td>
</tr>
<tr>
<td>with pyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e,e)</td>
<td>(-784131.576)</td>
<td>(-976177.6536)</td>
<td>(-1178830.9975)</td>
</tr>
<tr>
<td>(a,a)</td>
<td>(-784133.0195)</td>
<td>(-976184.6173)</td>
<td>(-1178847.5079)</td>
</tr>
<tr>
<td>(e,e)</td>
<td>(-784127.1259)</td>
<td>(-976190.7173)</td>
<td>(-1178845.9168)</td>
</tr>
<tr>
<td>(a,a)</td>
<td>(-784128.8834)</td>
<td>(-976190.6056)</td>
<td>(-1178843.0616)</td>
</tr>
</tbody>
</table>

Relative energies (lowest respective diastereomeric transition state in bold) of transition states:

<table>
<thead>
<tr>
<th></th>
<th>Methyl</th>
<th>Tolyloxy</th>
<th>Tolylsulfanyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
<td>(\Delta E_{\text{B3LYP}})/kcal/mol</td>
</tr>
<tr>
<td>without pyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e,e)</td>
<td>2.47</td>
<td>15.46</td>
<td>16.67</td>
</tr>
<tr>
<td>(a,a)</td>
<td>4.14</td>
<td>2.45</td>
<td>2.37</td>
</tr>
<tr>
<td>(e,e)</td>
<td>0.00</td>
<td>10.41</td>
<td>7.70</td>
</tr>
<tr>
<td>(a,a)</td>
<td>1.39</td>
<td>4.56</td>
<td>2.06</td>
</tr>
<tr>
<td>with pyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e,e)</td>
<td>1.44</td>
<td>16.23</td>
<td>19.82</td>
</tr>
<tr>
<td>(a,a)</td>
<td>0.00</td>
<td>9.27</td>
<td>3.31</td>
</tr>
<tr>
<td>(e,e)</td>
<td>5.89</td>
<td>3.17</td>
<td>4.90</td>
</tr>
<tr>
<td>(a,a)</td>
<td>4.14</td>
<td>3.28</td>
<td>7.75</td>
</tr>
</tbody>
</table>
Nomenclature examples:

2-Methyl \((R,R,S,R)\)

\((1S,2R)-1,2\)-dichloro-1-\(((1R,2R)-2\text{-methylcyclohexyl})\)propan-1-olate

2-Methyl \((R,R,R)-(a,a)\)
LUMO representation and Cartesian coordinates of pyridinium transition state structures (catalyzed reaction):

2-Methyl \((R,R,R,R)\)-(a,a)

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-7.2879</td>
<td>-5.6833</td>
<td>-7.6697</td>
</tr>
<tr>
<td>C(2)</td>
<td>-8.1287</td>
<td>-5.3072</td>
<td>-8.7186</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.5039</td>
<td>-3.9676</td>
<td>-8.8318</td>
</tr>
<tr>
<td>C(4)</td>
<td>-8.0287</td>
<td>-3.0448</td>
<td>-7.8971</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.1936</td>
<td>-3.3733</td>
<td>-6.8436</td>
</tr>
<tr>
<td>C(6)</td>
<td>-6.8498</td>
<td>-4.7114</td>
<td>-6.7676</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.695</td>
<td>-2.3503</td>
<td>-8.7186</td>
</tr>
<tr>
<td>O(8)</td>
<td>-7.036</td>
<td>-1.0381</td>
<td>-6.1974</td>
</tr>
<tr>
<td>O(9)</td>
<td>-5.3026</td>
<td>-2.4698</td>
<td>-5.6295</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.3602</td>
<td>-2.6053</td>
<td>-4.4633</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.5188</td>
<td>-2.143</td>
<td>-6.7488</td>
</tr>
<tr>
<td>C(12)</td>
<td>-6.9559</td>
<td>-1.5986</td>
<td>-3.3833</td>
</tr>
<tr>
<td>Cl(13)</td>
<td>-9.1393</td>
<td>-2.6053</td>
<td>-4.4633</td>
</tr>
<tr>
<td>H(14)</td>
<td>-6.9774</td>
<td>-6.7339</td>
<td>-7.5541</td>
</tr>
<tr>
<td>H(15)</td>
<td>-8.4923</td>
<td>-6.0542</td>
<td>-9.4418</td>
</tr>
<tr>
<td>H(16)</td>
<td>-9.1703</td>
<td>-3.6437</td>
<td>-9.6474</td>
</tr>
<tr>
<td>H(17)</td>
<td>-8.3416</td>
<td>-1.9942</td>
<td>-7.9997</td>
</tr>
<tr>
<td>H(18)</td>
<td>-6.1898</td>
<td>-5.0191</td>
<td>-5.941</td>
</tr>
<tr>
<td>H(19)</td>
<td>-7.0813</td>
<td>-3.6214</td>
<td>-4.1067</td>
</tr>
<tr>
<td>C(20)</td>
<td>-3.3705</td>
<td>-3.1566</td>
<td>-6.836</td>
</tr>
<tr>
<td>C(21)</td>
<td>-5.131</td>
<td>-2.2344</td>
<td>-7.6761</td>
</tr>
<tr>
<td>C(22)</td>
<td>-3.9789</td>
<td>-0.7076</td>
<td>-6.62</td>
</tr>
<tr>
<td>H(23)</td>
<td>-7.4271</td>
<td>-1.8418</td>
<td>-2.4031</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.8551</td>
<td>-1.5974</td>
<td>-3.2161</td>
</tr>
<tr>
<td>H(25)</td>
<td>-7.2552</td>
<td>-0.5599</td>
<td>-3.6503</td>
</tr>
<tr>
<td>H(26)</td>
<td>-2.9805</td>
<td>-0.587</td>
<td>-5.4531</td>
</tr>
<tr>
<td>H(27)</td>
<td>-4.8332</td>
<td>-0.021</td>
<td>-6.3918</td>
</tr>
<tr>
<td>C(28)</td>
<td>-3.3849</td>
<td>-0.1912</td>
<td>-7.943</td>
</tr>
<tr>
<td>C(29)</td>
<td>-2.4075</td>
<td>-3.0381</td>
<td>-5.6463</td>
</tr>
<tr>
<td>H(30)</td>
<td>-2.8031</td>
<td>-3.0115</td>
<td>-7.7846</td>
</tr>
<tr>
<td>H(31)</td>
<td>-3.7826</td>
<td>-4.1931</td>
<td>-6.8815</td>
</tr>
<tr>
<td>H(32)</td>
<td>-3.5223</td>
<td>-0.7382</td>
<td>-4.4886</td>
</tr>
<tr>
<td>H(33)</td>
<td>-2.5575</td>
<td>0.4447</td>
<td>-5.4162</td>
</tr>
<tr>
<td>C(34)</td>
<td>-1.8447</td>
<td>-1.6151</td>
<td>-5.5394</td>
</tr>
<tr>
<td>H(35)</td>
<td>-1.571</td>
<td>-3.7688</td>
<td>-5.7588</td>
</tr>
<tr>
<td>H(36)</td>
<td>-3.0601</td>
<td>0.8703</td>
<td>-7.8488</td>
</tr>
<tr>
<td>H(37)</td>
<td>-2.9419</td>
<td>-3.2994</td>
<td>-4.7022</td>
</tr>
<tr>
<td>H(38)</td>
<td>-1.2003</td>
<td>-1.3989</td>
<td>-6.4231</td>
</tr>
<tr>
<td>H(39)</td>
<td>-4.1376</td>
<td>-0.2334</td>
<td>-8.7631</td>
</tr>
<tr>
<td>H(40)</td>
<td>-1.1899</td>
<td>-1.5333</td>
<td>-4.6388</td>
</tr>
</tbody>
</table>
2-Methyl (R,R,R,R)-(e,e)
2-Methyl (R,R,R,S)-(a,a)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-7.1361</td>
<td>-5.9605</td>
<td>-7.4022</td>
</tr>
<tr>
<td>C(2)</td>
<td>-7.8963</td>
<td>-5.7144</td>
<td>-8.5468</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.2364</td>
<td>-4.3969</td>
<td>-8.8573</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.8069</td>
<td>-3.3654</td>
<td>-8.0186</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.0493</td>
<td>-3.5635</td>
<td>-6.8776</td>
</tr>
<tr>
<td>C(6)</td>
<td>-6.7386</td>
<td>-4.8843</td>
<td>-6.6062</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.5885</td>
<td>-2.4216</td>
<td>-5.9666</td>
</tr>
<tr>
<td>O(8)</td>
<td>-6.921</td>
<td>-1.169</td>
<td>-6.5154</td>
</tr>
<tr>
<td>O(9)</td>
<td>-5.204</td>
<td>-2.5234</td>
<td>-5.7165</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.3154</td>
<td>-2.5279</td>
<td>-4.6218</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.3814</td>
<td>-2.3619</td>
<td>-6.844</td>
</tr>
<tr>
<td>C(12)</td>
<td>-8.8387</td>
<td>-2.5785</td>
<td>-4.7613</td>
</tr>
<tr>
<td>C(13)</td>
<td>-6.863</td>
<td>-1.1881</td>
<td>-3.5258</td>
</tr>
<tr>
<td>H(14)</td>
<td>-6.8545</td>
<td>-6.9906</td>
<td>-7.1313</td>
</tr>
<tr>
<td>H(15)</td>
<td>-8.2237</td>
<td>-6.545</td>
<td>-9.192</td>
</tr>
<tr>
<td>H(16)</td>
<td>-8.8382</td>
<td>-4.1742</td>
<td>-9.7529</td>
</tr>
<tr>
<td>H(17)</td>
<td>-8.0898</td>
<td>-2.3338</td>
<td>-8.2785</td>
</tr>
<tr>
<td>H(18)</td>
<td>-6.1385</td>
<td>-5.089</td>
<td>-5.7053</td>
</tr>
<tr>
<td>H(19)</td>
<td>-6.983</td>
<td>-3.4482</td>
<td>-4.0931</td>
</tr>
<tr>
<td>C(20)</td>
<td>-3.25</td>
<td>-3.394</td>
<td>-6.7522</td>
</tr>
<tr>
<td>H(21)</td>
<td>-4.9651</td>
<td>-2.5708</td>
<td>-7.7705</td>
</tr>
<tr>
<td>C(22)</td>
<td>-3.8227</td>
<td>-0.9293</td>
<td>-6.8983</td>
</tr>
<tr>
<td>H(23)</td>
<td>-9.3355</td>
<td>-2.6853</td>
<td>-3.7695</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.2398</td>
<td>-1.6588</td>
<td>-5.2443</td>
</tr>
<tr>
<td>H(25)</td>
<td>-9.1674</td>
<td>-3.4491</td>
<td>-5.3722</td>
</tr>
<tr>
<td>C(26)</td>
<td>-2.8556</td>
<td>-0.6608</td>
<td>-5.7298</td>
</tr>
<tr>
<td>H(27)</td>
<td>-4.6731</td>
<td>-0.2084</td>
<td>-6.7941</td>
</tr>
<tr>
<td>C(28)</td>
<td>-3.1807</td>
<td>-0.6096</td>
<td>-8.2607</td>
</tr>
<tr>
<td>C(29)</td>
<td>-2.3195</td>
<td>-3.1215</td>
<td>-5.562</td>
</tr>
<tr>
<td>H(30)</td>
<td>-2.6538</td>
<td>-3.3944</td>
<td>-7.6941</td>
</tr>
<tr>
<td>H(31)</td>
<td>-3.6804</td>
<td>-4.4202</td>
<td>-6.6623</td>
</tr>
<tr>
<td>H(32)</td>
<td>-3.4268</td>
<td>-0.6703</td>
<td>-4.7704</td>
</tr>
<tr>
<td>C(33)</td>
<td>-2.4167</td>
<td>0.3606</td>
<td>-5.8229</td>
</tr>
<tr>
<td>C(34)</td>
<td>-1.7352</td>
<td>-1.7054</td>
<td>-5.6403</td>
</tr>
<tr>
<td>H(35)</td>
<td>-1.4935</td>
<td>-3.8722</td>
<td>-5.5445</td>
</tr>
<tr>
<td>H(36)</td>
<td>-2.8252</td>
<td>0.4455</td>
<td>-8.2986</td>
</tr>
<tr>
<td>H(37)</td>
<td>-2.8849</td>
<td>-3.2387</td>
<td>-4.6071</td>
</tr>
<tr>
<td>H(38)</td>
<td>-1.0654</td>
<td>-1.6244</td>
<td>-6.5279</td>
</tr>
<tr>
<td>H(39)</td>
<td>-3.9138</td>
<td>-0.7397</td>
<td>-9.0894</td>
</tr>
<tr>
<td>H(40)</td>
<td>-1.1019</td>
<td>-1.5064</td>
<td>-4.7428</td>
</tr>
<tr>
<td>H(41)</td>
<td>-2.3073</td>
<td>-1.2587</td>
<td>-8.4858</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,R,S)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-9.2126</td>
<td>-4.7545</td>
<td>-7.6468</td>
</tr>
<tr>
<td>C(2)</td>
<td>-9.2303</td>
<td>-4.7368</td>
<td>-9.0426</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.4903</td>
<td>-3.7606</td>
<td>-9.7105</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.7603</td>
<td>-2.8295</td>
<td>-8.9669</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.7172</td>
<td>-2.8061</td>
<td>-7.5843</td>
</tr>
<tr>
<td>C(6)</td>
<td>-8.4594</td>
<td>-3.7973</td>
<td>-6.9645</td>
</tr>
<tr>
<td>C(7)</td>
<td>-9.2303</td>
<td>-4.7368</td>
<td>-9.0426</td>
</tr>
<tr>
<td>O(8)</td>
<td>-5.8798</td>
<td>-2.4184</td>
<td>-6.0644</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.8067</td>
<td>-1.0473</td>
<td>-5.7839</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.9095</td>
<td>-3.0617</td>
<td>-6.8524</td>
</tr>
<tr>
<td>C(12)</td>
<td>-9.0685</td>
<td>-0.4616</td>
<td>-6.4231</td>
</tr>
<tr>
<td>Cl(13)</td>
<td>-6.9204</td>
<td>0.2545</td>
<td>-4.9336</td>
</tr>
<tr>
<td>H(14)</td>
<td>-9.7801</td>
<td>-5.5191</td>
<td>-7.0924</td>
</tr>
<tr>
<td>H(15)</td>
<td>-9.8126</td>
<td>-5.4833</td>
<td>-9.6059</td>
</tr>
<tr>
<td>H(16)</td>
<td>-8.4808</td>
<td>-3.7268</td>
<td>-10.8118</td>
</tr>
<tr>
<td>H(17)</td>
<td>-7.1803</td>
<td>-2.0713</td>
<td>-9.5156</td>
</tr>
<tr>
<td>H(18)</td>
<td>-8.4381</td>
<td>-3.8342</td>
<td>-5.8643</td>
</tr>
<tr>
<td>C(20)</td>
<td>-8.1139</td>
<td>-1.743</td>
<td>-4.973</td>
</tr>
<tr>
<td>H(21)</td>
<td>-5.0543</td>
<td>-4.5802</td>
<td>-6.6958</td>
</tr>
<tr>
<td>H(22)</td>
<td>-5.0297</td>
<td>-2.797</td>
<td>-7.9275</td>
</tr>
<tr>
<td>C(23)</td>
<td>-3.5085</td>
<td>-2.6132</td>
<td>-6.4011</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.6995</td>
<td>0.0668</td>
<td>-5.6716</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.8229</td>
<td>0.2647</td>
<td>-7.2306</td>
</tr>
<tr>
<td>C(26)</td>
<td>-9.7105</td>
<td>-1.2535</td>
<td>-6.8698</td>
</tr>
<tr>
<td>H(27)</td>
<td>-2.4169</td>
<td>-3.3795</td>
<td>-7.1718</td>
</tr>
<tr>
<td>C(28)</td>
<td>-3.3968</td>
<td>-2.8505</td>
<td>-5.313</td>
</tr>
<tr>
<td>H(29)</td>
<td>-3.298</td>
<td>-1.0986</td>
<td>-6.5788</td>
</tr>
<tr>
<td>C(34)</td>
<td>-3.9702</td>
<td>-5.3372</td>
<td>-7.4743</td>
</tr>
<tr>
<td>H(30)</td>
<td>-6.0532</td>
<td>-4.9159</td>
<td>-7.059</td>
</tr>
<tr>
<td>H(31)</td>
<td>-4.9925</td>
<td>-4.8529</td>
<td>-5.6155</td>
</tr>
<tr>
<td>H(32)</td>
<td>-1.4066</td>
<td>-3.0754</td>
<td>-6.8075</td>
</tr>
<tr>
<td>H(33)</td>
<td>-2.4693</td>
<td>-3.1128</td>
<td>-8.2539</td>
</tr>
<tr>
<td>C(34)</td>
<td>-2.575</td>
<td>-4.8973</td>
<td>-7.0155</td>
</tr>
<tr>
<td>H(35)</td>
<td>-4.0899</td>
<td>-6.437</td>
<td>-7.3252</td>
</tr>
<tr>
<td>H(36)</td>
<td>-2.2732</td>
<td>-0.7952</td>
<td>-6.2654</td>
</tr>
<tr>
<td>H(37)</td>
<td>-4.0866</td>
<td>-5.1384</td>
<td>-8.5664</td>
</tr>
<tr>
<td>H(38)</td>
<td>-1.7928</td>
<td>-5.4271</td>
<td>-7.6101</td>
</tr>
<tr>
<td>H(39)</td>
<td>-4.0097</td>
<td>-0.5044</td>
<td>-5.9634</td>
</tr>
<tr>
<td>H(40)</td>
<td>-2.4252</td>
<td>-5.1812</td>
<td>-5.9467</td>
</tr>
<tr>
<td>H(41)</td>
<td>-3.4305</td>
<td>-0.7959</td>
<td>-7.6421</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,S,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-8.2112</td>
<td>-5.4162</td>
<td>-7.9623</td>
</tr>
<tr>
<td>C(2)</td>
<td>-7.6241</td>
<td>-5.3728</td>
<td>-9.228</td>
</tr>
<tr>
<td>C(3)</td>
<td>-6.7217</td>
<td>-4.3476</td>
<td>-9.5155</td>
</tr>
<tr>
<td>C(4)</td>
<td>-6.4311</td>
<td>-3.4026</td>
<td>-8.5295</td>
</tr>
<tr>
<td>N(5)</td>
<td>-6.9848</td>
<td>-3.4102</td>
<td>-7.2611</td>
</tr>
<tr>
<td>C(6)</td>
<td>-7.8776</td>
<td>-4.4393</td>
<td>-7.0211</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.6116</td>
<td>-2.3584</td>
<td>-6.212</td>
</tr>
<tr>
<td>O(8)</td>
<td>-7.2438</td>
<td>-2.6142</td>
<td>-4.98</td>
</tr>
<tr>
<td>O(9)</td>
<td>-5.2098</td>
<td>-2.3154</td>
<td>-6.0656</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.0837</td>
<td>-0.9772</td>
<td>-6.6765</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.6411</td>
<td>-3.4844</td>
<td>-5.5309</td>
</tr>
<tr>
<td>C(12)</td>
<td>-8.574</td>
<td>0.2803</td>
<td>-5.4553</td>
</tr>
<tr>
<td>C(13)</td>
<td>-6.7256</td>
<td>0.2803</td>
<td>-5.4553</td>
</tr>
<tr>
<td>H(14)</td>
<td>-8.9271</td>
<td>-6.2145</td>
<td>-7.7094</td>
</tr>
<tr>
<td>H(15)</td>
<td>-7.8685</td>
<td>-6.1341</td>
<td>-9.9856</td>
</tr>
<tr>
<td>H(16)</td>
<td>-6.2424</td>
<td>-4.2874</td>
<td>-10.5057</td>
</tr>
<tr>
<td>H(17)</td>
<td>-5.7116</td>
<td>-2.6022</td>
<td>-8.7643</td>
</tr>
<tr>
<td>H(18)</td>
<td>-8.349</td>
<td>-4.4925</td>
<td>-6.0276</td>
</tr>
<tr>
<td>H(19)</td>
<td>-6.5075</td>
<td>0.2803</td>
<td>-7.5753</td>
</tr>
<tr>
<td>C(20)</td>
<td>-4.2661</td>
<td>-3.2474</td>
<td>-4.0631</td>
</tr>
<tr>
<td>H(21)</td>
<td>-5.3696</td>
<td>-4.3259</td>
<td>-5.5919</td>
</tr>
<tr>
<td>C(22)</td>
<td>-3.4087</td>
<td>-3.8594</td>
<td>-6.3705</td>
</tr>
<tr>
<td>H(23)</td>
<td>-8.8928</td>
<td>0.07</td>
<td>-7.3612</td>
</tr>
<tr>
<td>H(24)</td>
<td>-8.8176</td>
<td>-1.6435</td>
<td>-7.8533</td>
</tr>
<tr>
<td>H(25)</td>
<td>-9.2067</td>
<td>-1.2238</td>
<td>-6.1509</td>
</tr>
<tr>
<td>C(26)</td>
<td>-2.2923</td>
<td>-2.8119</td>
<td>-6.2067</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.714</td>
<td>-3.8631</td>
<td>-7.4496</td>
</tr>
<tr>
<td>C(28)</td>
<td>-2.9131</td>
<td>-5.287</td>
<td>-6.0785</td>
</tr>
<tr>
<td>C(29)</td>
<td>-3.1557</td>
<td>-2.1977</td>
<td>-3.9124</td>
</tr>
<tr>
<td>H(30)</td>
<td>-3.9306</td>
<td>-4.2048</td>
<td>-3.6007</td>
</tr>
<tr>
<td>H(31)</td>
<td>-5.1619</td>
<td>-2.9255</td>
<td>-3.4817</td>
</tr>
<tr>
<td>H(32)</td>
<td>-2.6321</td>
<td>-1.8425</td>
<td>-6.6445</td>
</tr>
<tr>
<td>H(33)</td>
<td>-1.39</td>
<td>-3.1208</td>
<td>-6.7854</td>
</tr>
<tr>
<td>C(34)</td>
<td>-1.919</td>
<td>-2.5791</td>
<td>-4.7365</td>
</tr>
<tr>
<td>H(35)</td>
<td>-2.8759</td>
<td>-2.0929</td>
<td>-2.8367</td>
</tr>
<tr>
<td>H(36)</td>
<td>-2.058</td>
<td>-5.5561</td>
<td>-6.7398</td>
</tr>
<tr>
<td>H(37)</td>
<td>-3.5315</td>
<td>-1.2017</td>
<td>-4.2465</td>
</tr>
<tr>
<td>H(38)</td>
<td>-1.4534</td>
<td>-3.4984</td>
<td>-4.311</td>
</tr>
<tr>
<td>H(39)</td>
<td>-3.7177</td>
<td>-6.036</td>
<td>-6.2597</td>
</tr>
</tbody>
</table>
2-Methyl (R,R,S,R)-(e,e)

H(40) -1.1524 -1.7707 -4.6639
H(41) -2.5713 -5.4158 -5.029

C(1) -9.2423 -4.4506 -8.6347
C(2) -8.4684 -4.9281 -9.6939
C(3) -7.2028 -4.3781 -9.9021
C(4) -6.7509 -3.3718 -9.0464
N(5) -7.4824 -2.8685 -7.9845
C(6) -8.7305 -3.4415 -7.8154
C(7) -6.9217 -1.7867 -7.0572
O(8) -7.8714 -1.4063 -6.0917
O(9) -7.4537 -2.2122 -6.6624
C(10) -6.6189 -0.5193 -7.8673
C(11) -5.7713 -3.4135 -5.7352
C(12) -7.8224 -0.0239 -6.7375
Cl(13) -6.0235 0.8029 -6.8188
H(14) -10.2429 -4.8709 -8.4446
H(15) -8.8474 -5.7274 -10.1350
H(16) -6.5666 -4.7382 -10.7262
H(17) -5.7458 -2.9543 -9.2125
H(18) -9.3534 -3.0869 -6.9797
H(19) -5.7805 -0.7113 -8.5716
H(20) -6.2621 -3.1704 -4.3026
H(21) -6.4441 -4.1425 -6.2399
C(22) -4.3589 -4.0273 -5.712
H(23) -7.5748 0.8928 -9.2568
H(24) -8.1638 -0.7847 -9.4109
H(25) -8.6886 0.2178 -8.0167
C(26) -4.3294 -5.3118 -4.8629
H(27) -3.6629 -3.2864 -5.2435
C(28) -3.8351 -4.3362 -7.1268
C(29) -6.2313 -4.4554 -3.4631
H(30) -7.3088 -2.7899 -4.2941
H(31) -5.626 -2.3933 -3.8165
H(32) -3.2925 -5.7233 -4.8259
H(33) -4.9739 -6.0882 -5.3389
C(34) -4.8189 -5.0491 -3.4337
H(35) -6.574 -4.2413 -2.4223
H(36) -2.8267 -4.8075 -7.0884
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(37)</td>
<td>-6.9409</td>
<td>-5.2006</td>
<td>-3.8958</td>
</tr>
<tr>
<td>H(38)</td>
<td>-4.815</td>
<td>-5.9982</td>
<td>-2.8461</td>
</tr>
<tr>
<td>H(39)</td>
<td>-3.7322</td>
<td>-3.4152</td>
<td>-7.7431</td>
</tr>
<tr>
<td>H(40)</td>
<td>-4.1244</td>
<td>-4.341</td>
<td>-2.9223</td>
</tr>
<tr>
<td>H(41)</td>
<td>-4.515</td>
<td>-5.0356</td>
<td>-7.664</td>
</tr>
</tbody>
</table>

2-Methyl \((R,R,S,S)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-8.3266</td>
<td>-5.3306</td>
<td>-7.9954</td>
</tr>
<tr>
<td>C(2)</td>
<td>-7.7135</td>
<td>-5.3139</td>
<td>-9.2493</td>
</tr>
<tr>
<td>C(3)</td>
<td>-6.7476</td>
<td>-4.3415</td>
<td>-9.5141</td>
</tr>
<tr>
<td>C(4)</td>
<td>-6.4254</td>
<td>-3.4169</td>
<td>-8.5184</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.0047</td>
<td>-3.3969</td>
<td>-7.2617</td>
</tr>
<tr>
<td>C(6)</td>
<td>-7.9574</td>
<td>-4.3769</td>
<td>-7.0436</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.6182</td>
<td>-2.3513</td>
<td>-6.2106</td>
</tr>
<tr>
<td>O(8)</td>
<td>-7.2248</td>
<td>-2.6163</td>
<td>-4.9678</td>
</tr>
<tr>
<td>O(9)</td>
<td>-5.2169</td>
<td>-2.276</td>
<td>-6.0655</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.1098</td>
<td>-0.9707</td>
<td>-6.6549</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.6101</td>
<td>-3.4461</td>
<td>-5.5772</td>
</tr>
<tr>
<td>C(12)</td>
<td>-6.7597</td>
<td>0.1499</td>
<td>-5.6732</td>
</tr>
<tr>
<td>C(13)</td>
<td>-8.8694</td>
<td>-0.9855</td>
<td>-6.966</td>
</tr>
<tr>
<td>C(14)</td>
<td>-9.0932</td>
<td>-6.0869</td>
<td>-7.7607</td>
</tr>
<tr>
<td>H(15)</td>
<td>-7.9893</td>
<td>-6.0523</td>
<td>-10.0187</td>
</tr>
<tr>
<td>H(16)</td>
<td>-6.2481</td>
<td>-4.3036</td>
<td>-10.4956</td>
</tr>
<tr>
<td>H(17)</td>
<td>-5.6617</td>
<td>-2.6535</td>
<td>-8.7364</td>
</tr>
<tr>
<td>H(18)</td>
<td>-8.4556</td>
<td>-4.4029</td>
<td>-6.0622</td>
</tr>
<tr>
<td>H(19)</td>
<td>-6.6539</td>
<td>-0.7177</td>
<td>-7.6374</td>
</tr>
<tr>
<td>C(20)</td>
<td>-4.3248</td>
<td>-3.3026</td>
<td>-4.0767</td>
</tr>
<tr>
<td>H(21)</td>
<td>-5.287</td>
<td>-4.3164</td>
<td>-5.7415</td>
</tr>
<tr>
<td>C(22)</td>
<td>-3.3152</td>
<td>-3.6955</td>
<td>-6.3703</td>
</tr>
<tr>
<td>H(23)</td>
<td>-7.1015</td>
<td>1.1417</td>
<td>-6.0492</td>
</tr>
<tr>
<td>H(24)</td>
<td>-7.226</td>
<td>-0.0119</td>
<td>-4.6753</td>
</tr>
<tr>
<td>H(25)</td>
<td>-5.6598</td>
<td>0.2301</td>
<td>-5.5197</td>
</tr>
<tr>
<td>C(26)</td>
<td>-2.2487</td>
<td>-2.6312</td>
<td>-6.0526</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.5577</td>
<td>-3.6133</td>
<td>-7.4621</td>
</tr>
<tr>
<td>C(28)</td>
<td>-2.7768</td>
<td>-5.1245</td>
<td>-6.1767</td>
</tr>
<tr>
<td>C(29)</td>
<td>-3.2689</td>
<td>-2.2276</td>
<td>-3.7817</td>
</tr>
<tr>
<td>H(30)</td>
<td>-3.9751</td>
<td>-4.2788</td>
<td>-3.6668</td>
</tr>
<tr>
<td>H(31)</td>
<td>-5.2597</td>
<td>-3.0612</td>
<td>-3.5198</td>
</tr>
<tr>
<td>H(32)</td>
<td>-2.595</td>
<td>-1.641</td>
<td>-6.4347</td>
</tr>
<tr>
<td>H(33)</td>
<td>-1.3017</td>
<td>-2.8641</td>
<td>-6.5945</td>
</tr>
<tr>
<td>C(34)</td>
<td>-1.9704</td>
<td>-2.5071</td>
<td>-4.5487</td>
</tr>
<tr>
<td>H(35)</td>
<td>-3.0592</td>
<td>-2.1918</td>
<td>-2.6857</td>
</tr>
<tr>
<td>H(36)</td>
<td>-1.8625</td>
<td>-5.2959</td>
<td>-6.7899</td>
</tr>
</tbody>
</table>
H(37) -3.6628 -1.2239 -4.0683
H(38) -1.5025 -3.4444 -4.1668
H(39) -3.5297 -5.883 -6.491
H(40) -1.2373 -1.685 -4.3653
H(41) -2.5107 -5.3396 -5.1195

H(37) -3.6628 -1.2239 -4.0683
H(38) -1.5025 -3.4444 -4.1668
H(39) -3.5297 -5.883 -6.491
H(40) -1.2373 -1.685 -4.3653
H(41) -2.5107 -5.3396 -5.1195

2-Methyl (R,R,S,S)-(e,e)

C(1) -9.1639 -4.4263 -8.8309
C(2) -8.3604 -4.8671 -9.8833
C(3) -7.0825 -4.3233 -10.0257
C(4) -6.6516 -3.3553 -10.1172
N(5) -7.4139 -2.8860 -8.0616
C(6) -8.6706 -3.4558 -7.9551
C(7) -8.8905 -1.820 -7.0941
O(8) -7.8541 -1.4974 -6.121
O(9) -5.6775 -2.2147 -10.5873
C(10) -6.6135 -0.5163 -7.8517
C(11) -5.7127 -3.4235 -5.7746
C(12) -6.1427 0.629 -6.9516
Cl(13) -8.0429 -0.0055 -8.7944
H(14) -10.1755 -4.8403 -8.6932
H(15) -8.7267 -5.6311 -10.5873
H(16) -6.4237 -4.6547 -10.8443
H(17) -5.6406 -2.9359 -9.2375
H(18) -9.3203 -3.1243 -7.1306
H(19) -5.8233 -0.691 -8.6142
C(20) -6.1739 -3.1955 -4.329
H(21) -6.3927 -4.148 -6.2764
C(22) -4.2982 -4.0333 -5.7703
H(23) -5.9183 1.5462 -7.5434
H(24) -6.9068 0.902 -6.1892
H(25) -5.2077 0.3621 -6.4091
Lp(26) -5.319 -2.3261 -6.9559
Lp(27) -5.5846 -1.8017 -6.0644
C(28) -4.2804 -5.3465 -4.9654
H(29) -3.6039 -3.31 -5.2728
C(30) -3.7605 -4.2929 -10.1891
C(31) -6.156 -4.4978 -3.5161
H(32) -7.2101 -2.7898 -4.2918
H(33) -5.5122 -2.4419 -3.8398
H(34) -3.2492 -5.7731 -4.9482
|------|-------|

2-OTol \((R,R,R)\)-(a,a)

\[
\begin{align*}
H(35) &\quad -4.9376 & -6.0972 & -5.4648 \\
C(36) &\quad -4.7584 & -5.1268 & -3.5248 \\
H(37) &\quad -6.4734 & -4.2967 & -2.4647 \\
H(38) &\quad -2.7544 & -4.7699 & -7.1563 \\
H(39) &\quad -6.8919 & -5.2163 & -3.9497 \\
H(40) &\quad -4.7736 & -6.0977 & -2.974 \\
H(41) &\quad -3.6446 & -3.3498 & -7.7688 \\
\end{align*}
\]

\[
\begin{align*}
H(35) &\quad -4.9376 & -6.0972 & -5.4648 \\
C(36) &\quad -4.7584 & -5.1268 & -3.5248 \\
H(37) &\quad -6.4734 & -4.2967 & -2.4647 \\
H(38) &\quad -2.7544 & -4.7699 & -7.1563 \\
H(39) &\quad -6.8919 & -5.2163 & -3.9497 \\
H(40) &\quad -4.7736 & -6.0977 & -2.974 \\
H(41) &\quad -3.6446 & -3.3498 & -7.7688 \\
\end{align*}
\]

2-OTol \((R,R,R)\)-(a,a)

\[
\begin{align*}
C(1) &\quad -10.4885 & 2.1198 & -5.8188 \\
C(2) &\quad -11.4643 & 1.3239 & -6.4198 \\
C(3) &\quad -11.0592 & 0.2369 & -7.1958 \\
C(4) &\quad -9.6956 & -0.0191 & -7.3484 \\
N(5) &\quad -8.693 & 0.7448 & -6.775 \\
C(6) &\quad -9.1398 & 1.8109 & -6.0151 \\
C(7) &\quad -7.2087 & 0.4333 & -6.9907 \\
O(8) &\quad -6.3861 & 1.3167 & -6.2649 \\
O(9) &\quad -6.8123 & 0.4574 & -8.3449 \\
C(10) &\quad -6.8773 & -0.9643 & -6.4526 \\
C(11) &\quad -7.3281 & 1.4939 & -9.1395 \\
C(12) &\quad -5.4036 & -1.3504 & -6.6046 \\
C(13) &\quad -7.3844 & -1.1293 & -4.7473 \\
H(14) &\quad -10.7795 & 2.9866 & -5.2046 \\
H(15) &\quad -12.5336 & 1.5526 & -6.288 \\
H(16) &\quad -11.8075 & -0.4053 & -7.6874 \\
H(17) &\quad -9.3865 & -0.8675 & -7.9793 \\
H(18) &\quad -8.388 & 2.4606 & -5.5414 \\
H(19) &\quad -7.4775 & -1.7246 & -6.9984 \\
C(20) &\quad -6.982 & 1.164 & -10.5987 \\
H(21) &\quad -8.4385 & 1.4694 & -9.0628 \\
C(22) &\quad -6.7907 & 2.8773 & -8.7577 \\
H(23) &\quad -5.2136 & -2.3849 & -6.2361 \\
H(24) &\quad -4.7317 & -0.6653 & -6.0402 \\
H(25) &\quad -5.0848 & -1.3292 & -7.6715 \\
C(26) &\quad -5.2923 & 3.0015 & -9.0484 \\
H(27) &\quad -6.9465 & 3.0827 & -7.6741 \\
O(28) &\quad -7.4705 & 3.8861 & -9.457 \\
C(29) &\quad -5.4747 & 1.2682 & -10.8691 \\
H(30) &\quad -7.3385 & 0.1365 & -10.8509 \\
H(31) &\quad -7.5217 & 1.8583 & -11.2852 \\
H(32) &\quad -4.9426 & 4.0341 & -8.8084 \\
\end{align*}
\]
2-OTol (R,R,R)-(e,e)

C(1) -10.2922 -3.4244 -7.6843
C(2) -10.0539 -4.2178 -8.8071
C(3) -8.7509 -4.3078 -9.2979
C(4) -7.7290 -3.6031 -8.6572
N(5) -7.9168 -2.7965 -7.5469
C(6) -9.2255 -2.7428 -7.0938
C(7) -6.7884 -2.0166 -6.8565
O(8) -7.1376 -1.9087 -5.4910
O(9) -6.7183 -0.6744 -7.2926
C(10) -5.4072 -2.6795 -6.8489
C(11) -6.4711 -0.4649 -8.6617
C(12) -4.3713 -1.9558 -5.9815
C(13) -5.5242 -4.3816 -6.3104
H(14) -11.3115 -3.3272 -7.2779
H(15) -10.8785 -4.7578 -9.2985
H(16) -8.5333 -4.9235 -10.1853
H(17) -6.7137 -3.6837 -9.0732
H(18) -9.4424 -2.1007 -6.2256
H(19) -4.9963 -2.7418 -7.8781
C(20) -5.2991 -0.5162 -8.7905
H(21) -6.1822 -1.4147 -9.1701
C(22) -7.7220 -0.1054 -9.3417
H(23) -3.3678 -2.4339 -6.0625
H(24) -4.6516 -1.9546 -4.9042
H(25) -4.2411 -0.8941 -6.2847
C(26) -7.4395 -0.5063 -10.7939
H(27) -8.0689 0.9957 -8.7658
O(28) -8.7119 -0.8779 -9.3059
C(29) -5.0143 0.8829 -10.2522
H(30) -5.5228 1.4447 -8.2132
2-OTol \((R,R,S)-(a,a)\)

\[
\begin{array}{ccc}
C(1) & -10.6181 & 2.01 \\
C(2) & -11.5424 & 1.577 \\
C(3) & -11.0706 & 0.0683 \\
C(4) & -9.6931 & -0.1341 \\
N(5) & 8.421 & 0.6861 \\
C(6) & -9.253 & 1.7538 \\
C(7) & -7.2391 & 0.436 \\
O(8) & 6.826 & 1.3711 \\
O(9) & 6.8315 & 0.4378 \\
C(10) & -6.8794 & -0.9344 \\
C(11) & 7.3469 & 1.4622 \\
C(12) & 7.3468 & 1.1047 \\
C(13) & 5.1205 & 1.25 \\
H(14) & 10.962 & 2.8805 \\
H(15) & 12.6237 & 1.3445 \\
H(16) & 11.7772 & 0.617 \\
H(17) & 9.3299 & -0.9846 \\
H(18) & 8.5423 & 2.4484 \\
H(19) & 7.3391 & -1.7404 \\
C(20) & 7.0719 & 1.076 \\
H(21) & 8.4535 & 1.4771 \\
C(22) & -6.7522 & 2.8386 \\
H(23) & 7.0331 & 2.1154 \\
H(24) & 8.4512 & -0.9993 \\
H(25) & 6.8823 & -0.3512 \\
C(26) & -5.2652 & 2.9079 \\
H(27) & 6.8515 & 3.0792 \\
O(28) & -7.4365 & 3.8472
\end{array}
\]
C(29) -5.5753 1.1248 -10.9492
H(30) -7.4701 0.0531 -10.8178
H(31) -7.6183 1.7655 -11.2997
H(32) -4.8743 3.9358 -9.0035
H(33) -4.6911 2.2199 -8.5296
C(34) -5.0077 2.5194 -10.657
H(35) -5.4172 0.8672 -12.0238
C(36) -8.7166 4.056 -9.0872
H(37) -5.0273 0.3624 -10.3466
H(38) -3.9119 2.5369 -10.8692
C(39) -9.8271 3.6872 -9.8586
H(40) -5.4837 3.2671 -11.3347
C(41) -11.1345 3.9172 -9.4281

2-OTol (R,R,R,S)-(e,e)

C(1) -10.1128 -3.5835 -8.0496
C(2) -9.6656 -4.4425 -9.0541
C(3) -8.2985 -4.4971 -9.3284
C(4) -7.4218 -3.6933 -8.5957
N(5) -7.8175 -2.8238 -7.593
C(6) -9.183 -2.8054 -7.3561
C(7) -6.8509 -1.9238 -6.8102
O(8) -7.4006 -1.7595 -5.5186
O(9) -6.8209 -0.6166 -7.3502
C(10) -5.4519 -2.5041 -6.5661
C(11) -6.3166 -0.4795 -8.6557
C(12) -5.4884 -3.8867 -5.9047
Cl(13) -4.4456 -1.4228 -5.5539
H(14) -11.1876 -3.5085 -7.8193
H(15) -10.3788 -5.0569 -9.6261
H(16) -7.9178 -5.1583 -10.1232
H(17) -6.3516 -3.7398 -8.8467
H(18) -9.5613 -2.1107 -6.5896
H(19) -4.8806 -2.5988 -7.5121
C(20) -5.2511 0.6235 -8.6423
H(21) -5.8419 -1.4207 -9.0063
C(22) -7.4372 -0.1041 -9.6299
H(23) -4.4631 -4.3061 -5.7812
H(24) -6.0578 -4.6267 -6.5086
H(25) -5.9613 -3.855 -4.8972
C(26) -6.8801 0.1553 -11.0339
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(27)</td>
<td>-7.9568</td>
<td>0.8077</td>
<td>-9.2505</td>
</tr>
<tr>
<td>O(28)</td>
<td>-8.3456</td>
<td>-1.1637</td>
<td>-9.6708</td>
</tr>
<tr>
<td>C(29)</td>
<td>-4.6757</td>
<td>0.8689</td>
<td>-10.0428</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.696</td>
<td>1.5699</td>
<td>-8.2525</td>
</tr>
<tr>
<td>H(31)</td>
<td>-4.4198</td>
<td>0.3456</td>
<td>-7.9521</td>
</tr>
<tr>
<td>H(32)</td>
<td>-6.4463</td>
<td>-0.7888</td>
<td>-11.4418</td>
</tr>
<tr>
<td>H(33)</td>
<td>-7.6962</td>
<td>0.4687</td>
<td>-11.7273</td>
</tr>
<tr>
<td>C(34)</td>
<td>-5.797</td>
<td>1.2419</td>
<td>-11.0196</td>
</tr>
<tr>
<td>H(35)</td>
<td>-9.5316</td>
<td>-0.9206</td>
<td>-10.3045</td>
</tr>
<tr>
<td>H(36)</td>
<td>-4.1559</td>
<td>-0.0519</td>
<td>-10.3996</td>
</tr>
<tr>
<td>H(37)</td>
<td>-5.3778</td>
<td>1.3787</td>
<td>-12.0452</td>
</tr>
<tr>
<td>C(39)</td>
<td>-9.8363</td>
<td>-1.5328</td>
<td>-11.5268</td>
</tr>
<tr>
<td>H(40)</td>
<td>-6.2498</td>
<td>2.2154</td>
<td>-10.7152</td>
</tr>
<tr>
<td>C(41)</td>
<td>-11.077</td>
<td>-1.3673</td>
<td>-12.1446</td>
</tr>
</tbody>
</table>

2-OTol \((R,R,S,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-3.0522</td>
<td>3.3203</td>
<td>0.6698</td>
</tr>
<tr>
<td>C(2)</td>
<td>-3.9013</td>
<td>2.5461</td>
<td>1.4619</td>
</tr>
<tr>
<td>C(3)</td>
<td>-3.3644</td>
<td>1.4673</td>
<td>2.1664</td>
</tr>
<tr>
<td>C(4)</td>
<td>-2.001</td>
<td>1.187</td>
<td>2.0512</td>
</tr>
<tr>
<td>N(5)</td>
<td>-1.1252</td>
<td>1.9198</td>
<td>1.2691</td>
</tr>
<tr>
<td>C(6)</td>
<td>-1.6972</td>
<td>2.9889</td>
<td>0.6014</td>
</tr>
<tr>
<td>C(7)</td>
<td>0.3691</td>
<td>1.5922</td>
<td>1.1406</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.6663</td>
<td>0.3813</td>
<td>1.7957</td>
</tr>
<tr>
<td>O(9)</td>
<td>0.721</td>
<td>1.6112</td>
<td>-0.2291</td>
</tr>
<tr>
<td>C(10)</td>
<td>1.169</td>
<td>2.6894</td>
<td>1.8529</td>
</tr>
<tr>
<td>C(11)</td>
<td>0.8986</td>
<td>0.3617</td>
<td>-0.8429</td>
</tr>
<tr>
<td>C(12)</td>
<td>0.7377</td>
<td>2.9047</td>
<td>3.3058</td>
</tr>
<tr>
<td>C(13)</td>
<td>2.923</td>
<td>2.3382</td>
<td>1.8019</td>
</tr>
<tr>
<td>H(14)</td>
<td>-3.447</td>
<td>4.1794</td>
<td>0.1044</td>
</tr>
<tr>
<td>H(15)</td>
<td>-4.9743</td>
<td>2.7845</td>
<td>1.533</td>
</tr>
<tr>
<td>H(16)</td>
<td>-4.0105</td>
<td>0.844</td>
<td>2.8052</td>
</tr>
<tr>
<td>H(17)</td>
<td>-1.5984</td>
<td>0.3323</td>
<td>2.6163</td>
</tr>
<tr>
<td>H(18)</td>
<td>-1.0371</td>
<td>3.6041</td>
<td>-0.0308</td>
</tr>
<tr>
<td>H(19)</td>
<td>1.0545</td>
<td>3.6516</td>
<td>1.3071</td>
</tr>
<tr>
<td>C(20)</td>
<td>1.4828</td>
<td>0.6127</td>
<td>-2.24</td>
</tr>
<tr>
<td>H(21)</td>
<td>1.6719</td>
<td>-0.1965</td>
<td>-0.2637</td>
</tr>
<tr>
<td>C(22)</td>
<td>-0.4091</td>
<td>-0.429</td>
<td>-0.9357</td>
</tr>
<tr>
<td>H(23)</td>
<td>1.3429</td>
<td>3.7001</td>
<td>3.7985</td>
</tr>
<tr>
<td>H(24)</td>
<td>0.8444</td>
<td>1.9757</td>
<td>3.9105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>H(25)</td>
<td>-0.3245</td>
<td>3.2305</td>
<td>3.3751</td>
</tr>
<tr>
<td>C(26)</td>
<td>-1.4108</td>
<td>0.2498</td>
<td>-1.877</td>
</tr>
<tr>
<td>H(27)</td>
<td>-0.8971</td>
<td>-0.5185</td>
<td>0.0629</td>
</tr>
<tr>
<td>O(28)</td>
<td>-0.1871</td>
<td>-1.7307</td>
<td>-1.4058</td>
</tr>
<tr>
<td>C(29)</td>
<td>0.4776</td>
<td>1.3102</td>
<td>-3.1671</td>
</tr>
<tr>
<td>H(30)</td>
<td>2.4096</td>
<td>1.23</td>
<td>-2.1591</td>
</tr>
<tr>
<td>H(31)</td>
<td>-2.3345</td>
<td>-0.371</td>
<td>-1.9623</td>
</tr>
<tr>
<td>H(32)</td>
<td>1.7906</td>
<td>-0.3548</td>
<td>-2.7024</td>
</tr>
<tr>
<td>O(28)</td>
<td>0.1871</td>
<td>-1.7307</td>
<td>-1.4058</td>
</tr>
<tr>
<td>C(34)</td>
<td>0.4776</td>
<td>1.3102</td>
<td>-3.1671</td>
</tr>
<tr>
<td>H(35)</td>
<td>0.9237</td>
<td>1.4441</td>
<td>-4.1815</td>
</tr>
<tr>
<td>C(36)</td>
<td>0.4492</td>
<td>-2.5662</td>
<td>-0.5272</td>
</tr>
<tr>
<td>H(37)</td>
<td>-0.6036</td>
<td>2.3293</td>
<td>-3.7649</td>
</tr>
</tbody>
</table>

2-OTol (R,R,S,R)-(e,e)

C(1) | -10.2541 | -3.3967 | -7.8802 |
C(2) | -9.8851 | -4.3701 | -8.8094 |
C(3) | -8.5288 | -4.5633 | -9.0762 |
C(4) | -7.5838 | -3.7742 | -8.4164 |
N(5) | -7.9031 | -2.7896 | -7.4976 |
C(6) | -9.259 | -2.6408 | -7.2565 |
C(7) | -6.8432 | -1.9158 | -6.8122 |
O(8) | -5.5494 | -2.4505 | -6.9832 |
O(9) | -6.9264 | -0.5976 | -7.3078 |
C(10) | -7.0709 | -1.8595 | -5.2962 |
C(11) | -6.4964 | -0.4284 | -8.6366 |
C(12) | -7.1726 | -3.2469 | -4.6573 |
Cl(13) | -5.7828 | -0.9265 | -4.4742 |
H(14) | -11.3173 | -3.2133 | -7.6574 |
H(15) | -10.6502 | -4.9694 | -9.3276 |
H(16) | -8.2092 | -5.3235 | -9.8068 |
H(17) | -6.5202 | -3.9335 | -8.6524 |
H(18) | -9.5703 | -1.8519 | -6.555 |
H(19) | -7.9994 | -1.293 | -5.069 |
C(20) | -5.3867 | 0.629 | -8.6421 |
H(21) | -6.0824 | -1.3748 | -9.0531 |
C(22) | -7.6691 | 0.0131 | -9.5139 |
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(23)</td>
<td>-7.3536</td>
<td>-3.1789</td>
<td>-3.5598</td>
</tr>
<tr>
<td>H(24)</td>
<td>-6.2434</td>
<td>-3.8409</td>
<td>-4.8117</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.0171</td>
<td>-3.8361</td>
<td>-5.0793</td>
</tr>
<tr>
<td>C(26)</td>
<td>-7.2077</td>
<td>0.3603</td>
<td>-10.9326</td>
</tr>
<tr>
<td>H(27)</td>
<td>-8.15</td>
<td>0.9055</td>
<td>-9.0464</td>
</tr>
<tr>
<td>O(28)</td>
<td>-8.5934</td>
<td>-1.0348</td>
<td>-9.5497</td>
</tr>
<tr>
<td>C(29)</td>
<td>-4.92</td>
<td>0.9562</td>
<td>-10.0662</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.7582</td>
<td>1.562</td>
<td>-8.1551</td>
</tr>
<tr>
<td>H(31)</td>
<td>-4.5191</td>
<td>0.2676</td>
<td>-8.0391</td>
</tr>
<tr>
<td>H(32)</td>
<td>-6.8236</td>
<td>-0.5585</td>
<td>-11.4362</td>
</tr>
<tr>
<td>H(33)</td>
<td>-8.0635</td>
<td>0.7376</td>
<td>-11.5415</td>
</tr>
<tr>
<td>C(34)</td>
<td>-6.1055</td>
<td>1.4277</td>
<td>-10.9168</td>
</tr>
<tr>
<td>H(35)</td>
<td>-4.1327</td>
<td>1.7471</td>
<td>-10.0381</td>
</tr>
<tr>
<td>C(36)</td>
<td>-9.7934</td>
<td>-0.7507</td>
<td>-10.1396</td>
</tr>
<tr>
<td>H(37)</td>
<td>-4.4618</td>
<td>0.0502</td>
<td>-10.5292</td>
</tr>
<tr>
<td>H(38)</td>
<td>-5.7665</td>
<td>1.6442</td>
<td>-11.958</td>
</tr>
<tr>
<td>C(39)</td>
<td>-10.1463</td>
<td>-1.3157</td>
<td>-11.3717</td>
</tr>
<tr>
<td>H(40)</td>
<td>-6.5126</td>
<td>2.3789</td>
<td>-10.4983</td>
</tr>
<tr>
<td>C(41)</td>
<td>-11.3981</td>
<td>-1.0971</td>
<td>-11.9493</td>
</tr>
</tbody>
</table>

2-OTol (R,R,S,S)-(a,a)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-3.2166</td>
<td>2.891</td>
<td>0.4993</td>
</tr>
<tr>
<td>C(2)</td>
<td>-3.9364</td>
<td>2.3231</td>
<td>1.5513</td>
</tr>
<tr>
<td>C(3)</td>
<td>-3.2576</td>
<td>1.5252</td>
<td>2.4735</td>
</tr>
<tr>
<td>C(4)</td>
<td>-1.8856</td>
<td>1.3139</td>
<td>2.3151</td>
</tr>
<tr>
<td>N(5)</td>
<td>-1.1339</td>
<td>1.8422</td>
<td>1.2802</td>
</tr>
<tr>
<td>C(6)</td>
<td>-1.8475</td>
<td>2.6363</td>
<td>0.3974</td>
</tr>
<tr>
<td>C(7)</td>
<td>0.3741</td>
<td>1.5818</td>
<td>1.1348</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.6838</td>
<td>0.3741</td>
<td>1.7947</td>
</tr>
<tr>
<td>O(9)</td>
<td>0.7341</td>
<td>1.6047</td>
<td>-0.2309</td>
</tr>
<tr>
<td>C(10)</td>
<td>1.1425</td>
<td>2.6846</td>
<td>1.8714</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.1763</td>
<td>0.3932</td>
<td>-0.7819</td>
</tr>
<tr>
<td>C(12)</td>
<td>0.9447</td>
<td>4.0934</td>
<td>1.3108</td>
</tr>
<tr>
<td>Cl(13)</td>
<td>2.8893</td>
<td>2.3027</td>
<td>1.9406</td>
</tr>
<tr>
<td>Cl(14)</td>
<td>-3.7215</td>
<td>3.5338</td>
<td>-0.2394</td>
</tr>
<tr>
<td>H(14)</td>
<td>-5.0173</td>
<td>2.5083</td>
<td>1.6555</td>
</tr>
<tr>
<td>H(15)</td>
<td>-3.7994</td>
<td>1.0711</td>
<td>3.3186</td>
</tr>
<tr>
<td>H(17)</td>
<td>-1.3679</td>
<td>0.6899</td>
<td>3.0603</td>
</tr>
<tr>
<td>H(18)</td>
<td>-1.2988</td>
<td>3.1008</td>
<td>-0.4373</td>
</tr>
<tr>
<td>H(19)</td>
<td>0.818</td>
<td>2.6895</td>
<td>2.9363</td>
</tr>
<tr>
<td>C(20)</td>
<td>1.7571</td>
<td>0.7043</td>
<td>-2.1683</td>
</tr>
</tbody>
</table>
2-OTol \((R,R,S)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-10.2648</td>
<td>-3.3422</td>
<td>-7.3717</td>
</tr>
<tr>
<td>C(2)</td>
<td>-10.1004</td>
<td>-4.2473</td>
<td>-8.4208</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.8226</td>
<td>-4.4365</td>
<td>-8.9492</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.7519</td>
<td>-3.7093</td>
<td>-8.4239</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.8688</td>
<td>-2.7925</td>
<td>-7.3935</td>
</tr>
<tr>
<td>C(6)</td>
<td>-9.1515</td>
<td>-2.6489</td>
<td>-6.8911</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.6732</td>
<td>-1.9944</td>
<td>-6.8538</td>
</tr>
<tr>
<td>O(8)</td>
<td>-5.4479</td>
<td>-2.5228</td>
<td>-7.3113</td>
</tr>
<tr>
<td>O(9)</td>
<td>-6.7847</td>
<td>-0.6364</td>
<td>-7.2184</td>
</tr>
<tr>
<td>C(10)</td>
<td>-6.5986</td>
<td>-2.0541</td>
<td>-5.3238</td>
</tr>
<tr>
<td>C(11)</td>
<td>-6.6466</td>
<td>-0.3746</td>
<td>-8.5943</td>
</tr>
<tr>
<td>C(12)</td>
<td>-5.3617</td>
<td>-1.3681</td>
<td>-4.7363</td>
</tr>
<tr>
<td>Cl(13)</td>
<td>-6.6853</td>
<td>-3.7431</td>
<td>-4.7469</td>
</tr>
<tr>
<td>H(14)</td>
<td>-11.2631</td>
<td>-3.1628</td>
<td>-6.9417</td>
</tr>
<tr>
<td>H(15)</td>
<td>-10.9632</td>
<td>-4.7982</td>
<td>-8.8271</td>
</tr>
<tr>
<td>H(16)</td>
<td>-8.6628</td>
<td>-5.1462</td>
<td>-9.7766</td>
</tr>
<tr>
<td>H(17)</td>
<td>-6.7546</td>
<td>-3.866</td>
<td>-8.8633</td>
</tr>
<tr>
<td>H(18)</td>
<td>-9.308</td>
<td>-1.9115</td>
<td>-6.0892</td>
</tr>
</tbody>
</table>
2-STol \((R,R,R,R)-(a,a)\)

\[
\begin{array}{llll}
\text{H(19)} & -7.4883 & -1.5552 & -4.8827 \\
\text{C(20)} & -5.505 & 0.6324 & -8.774 \\
\text{H(21)} & -6.3885 & -1.2999 & -9.1581 \\
\text{C(22)} & -7.9529 & 0.1872 & -9.1581 \\
\text{H(23)} & -5.3741 & -1.3924 & -3.6221 \\
\text{H(24)} & -5.3103 & -0.2958 & -5.0322 \\
\text{H(25)} & -4.4158 & -1.8532 & -5.0674 \\
\text{C(26)} & -5.505 & 0.6324 & -9.1581 \\
\text{H(27)} & -7.7917 & 0.6194 & -10.6188 \\
\text{O(28)} & -8.9261 & -0.8108 & -9.0586 \\
\text{C(29)} & -5.3372 & 1.0386 & -10.2439 \\
\text{H(30)} & -5.6094 & 0.6033 & -5.3669 \\
\text{C(31)} & -7.4241 & 1.7794 & -6.3335 \\
\text{N(5)} & -7.7948 & -0.5103 & -5.9253 \\
\text{C(6)} & -8.2164 & -2.9165 & -6.1629 \\
\text{C(7)} & -7.6094 & 0.713 & -6.1742 \\
\text{O(8)} & -9.0359 & -0.4315 & -5.3187 \\
\text{O(9)} & -6.9051 & 0.713 & -6.1742 \\
\text{C(10)} & -7.542 & 1.8992 & -5.7629 \\
\text{C(11)} & -6.5466 & 0.8032 & -7.5359 \\
\text{C(12)} & -5.6094 & 0.6033 & -5.3669 \\
\text{C(13)} & -7.6281 & 0.9731 & -8.4167 \\
\text{H(14)} & -4.6723 & 1.8003 & -5.5462 \\
\text{C(15)} & -5.9566 & 0.3483 & -3.6336 \\
\text{H(16)} & -10.8604 & -1.3976 & -4.6386 \\
\text{H(17)} & -10.1124 & -3.6698 & -5.4112 \\
\text{H(18)} & -7.8658 & -3.8996 & -6.5155 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(17)</td>
<td>-6.4485</td>
<td>-1.8857</td>
<td>-6.8336</td>
</tr>
<tr>
<td>H(18)</td>
<td>-9.3837</td>
<td>0.5564</td>
<td>-4.9797</td>
</tr>
<tr>
<td>H(19)</td>
<td>-5.0583</td>
<td>-0.3104</td>
<td>-5.6805</td>
</tr>
<tr>
<td>C(20)</td>
<td>-7.3521</td>
<td>0.1408</td>
<td>-9.6754</td>
</tr>
<tr>
<td>H(21)</td>
<td>-8.5438</td>
<td>0.5545</td>
<td>-7.9434</td>
</tr>
<tr>
<td>C(22)</td>
<td>-7.819</td>
<td>2.465</td>
<td>-8.7475</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.7264</td>
<td>1.6678</td>
<td>-4.9721</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.1416</td>
<td>2.7506</td>
<td>-5.2051</td>
</tr>
<tr>
<td>H(25)</td>
<td>-4.3811</td>
<td>1.9341</td>
<td>-6.6127</td>
</tr>
<tr>
<td>C(26)</td>
<td>-7.3521</td>
<td>0.1408</td>
<td>-9.6754</td>
</tr>
<tr>
<td>H(27)</td>
<td>-8.5438</td>
<td>0.5545</td>
<td>-7.9434</td>
</tr>
<tr>
<td>H(28)</td>
<td>-9.4244</td>
<td>2.7401</td>
<td>-9.5864</td>
</tr>
<tr>
<td>C(29)</td>
<td>-6.1625</td>
<td>0.6858</td>
<td>-10.4759</td>
</tr>
<tr>
<td>H(30)</td>
<td>-7.1585</td>
<td>-0.9211</td>
<td>-9.3901</td>
</tr>
<tr>
<td>H(31)</td>
<td>-8.2565</td>
<td>0.1246</td>
<td>-10.3282</td>
</tr>
<tr>
<td>H(32)</td>
<td>-6.8746</td>
<td>4.0632</td>
<td>-9.9245</td>
</tr>
<tr>
<td>H(33)</td>
<td>-5.7407</td>
<td>3.0299</td>
<td>-9.0159</td>
</tr>
<tr>
<td>C(34)</td>
<td>-6.4081</td>
<td>2.1475</td>
<td>-10.87</td>
</tr>
<tr>
<td>H(35)</td>
<td>-6.0483</td>
<td>0.6670</td>
<td>-11.3912</td>
</tr>
<tr>
<td>C(36)</td>
<td>-10.4862</td>
<td>2.301</td>
<td>-8.1743</td>
</tr>
<tr>
<td>H(37)</td>
<td>-5.2312</td>
<td>0.612</td>
<td>-9.8659</td>
</tr>
<tr>
<td>H(38)</td>
<td>-5.5225</td>
<td>2.5456</td>
<td>-11.421</td>
</tr>
<tr>
<td>C(39)</td>
<td>-10.5843</td>
<td>3.1428</td>
<td>-7.0647</td>
</tr>
<tr>
<td>H(40)</td>
<td>-7.2736</td>
<td>2.2053</td>
<td>-11.5708</td>
</tr>
<tr>
<td>C(41)</td>
<td>-11.3811</td>
<td>2.7695</td>
<td>-5.9804</td>
</tr>
</tbody>
</table>

2-STol \((R,R,R)-(e,e)\)
H(15) -10.2632 -5.8661 -8.7954
H(16) -8.0078 -5.5477 -9.8566
H(17) -6.4715 -3.8302 -8.9733
H(18) -9.3192 -2.6995 -6.0298
H(19) -4.9451 -2.3842 -7.9597
C(20) -5.7283 0.4134 -8.8841
H(21) -6.6624 -1.5063 -9.2332
H(22) -4.5866 -1.6055 -4.9788
H(23) -5.7283 0.4134 -8.8841
C(24) -8.1826 0.0496 -9.2786
H(25) -3.3272 -1.6844 -6.2531
C(26) -7.9971 0.4835 -10.744
H(27) -8.4448 0.9456 -8.6653
S(28) -9.5259 -1.1935 -9.2318
C(29) -5.5437 0.8322 -10.3481
H(30) -5.8989 1.3254 -7.2634
C(31) -4.7745 -0.0456 -8.5356
H(32) -7.7974 -0.407 -11.3868
H(33) -8.9227 0.9726 -11.1312
C(34) -6.8292 1.4663 -10.8887
H(35) -4.6997 1.5582 -10.434
C(36) -10.9029 -0.0093 -9.2362
H(37) -5.2748 -0.06 -10.9622
H(38) -6.695 1.749 -11.9602
C(39) -11.6086 0.2325 -10.4159
H(40) -7.0541 2.4031 -10.3256
C(41) -12.6614 1.1498 -10.4188

2-STol \((R,R,R,S)-(a,a)\)

C(1) -9.8986 -1.5993 -5.2035
C(2) -9.4354 -2.8159 -5.7064
C(3) -8.1794 -2.8586 -6.3142
C(4) -7.4278 -1.6851 -6.4063
N(5) -7.8526 -0.457 -5.9328
C(6) -9.0986 -0.4618 -5.3295
C(7) -6.9998 0.8084 -6.0752
O(8) -7.7408 1.9468 -5.7062
O(9) -6.4986 0.9341 -7.3898
C(10) -5.8066 0.7175 -5.1197
C(11) -7.4868 1.0914 -8.376
C(12) -6.2154 0.4049 -3.6782
2-STol (R,R,R,S)-(e,e)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-9.9683</td>
<td>-4.2726</td>
<td>-7.1671</td>
</tr>
<tr>
<td>C(2)</td>
<td>-9.6243</td>
<td>-5.0939</td>
<td>-8.2413</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.3771</td>
<td>-4.9204</td>
<td>-8.8425</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.5136</td>
<td>-3.939</td>
<td>-8.3505</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.8062</td>
<td>-3.1037</td>
<td>-7.2853</td>
</tr>
<tr>
<td>C(6)</td>
<td>-9.0568</td>
<td>-3.3102</td>
<td>-6.7254</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.8416</td>
<td>-2.0337</td>
<td>-6.7488</td>
</tr>
<tr>
<td>O(8)</td>
<td>-7.1016</td>
<td>-1.9114</td>
<td>-5.365</td>
</tr>
<tr>
<td>O(9)</td>
<td>-7.148</td>
<td>-0.7597</td>
<td>-7.28</td>
</tr>
<tr>
<td>C(10)</td>
<td>-5.3522</td>
<td>-2.3816</td>
<td>-6.8344</td>
</tr>
</tbody>
</table>
2-STol \((R,R,S,R)-(a,a)\)

C(1) -9.7928 -1.7191 -6.3864
C(2) -9.3682 -2.8113 -5.6276
C(3) -8.1215 -2.7526 -5.004
C(4) -7.3402 -1.6033 -5.1474
N(5) -7.7253 -0.4949 -5.8795
C(6) -8.9642 -0.6001 -6.4889
C(7) -6.8642 0.7641 -6.0188
O(8) -5.6194 0.5964 -5.3846
2-STol \((R,R,S,R)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-9.8478</td>
<td>-4.3386</td>
<td>-7.1187</td>
</tr>
<tr>
<td>C(2)</td>
<td>-9.4796</td>
<td>-5.3096</td>
<td>-8.0508</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.2111</td>
<td>-5.2379</td>
<td>-8.6286</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.3518</td>
<td>-4.1996</td>
<td>-8.2619</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.6749</td>
<td>-3.2139</td>
<td>-7.3453</td>
</tr>
<tr>
<td>C(6)</td>
<td>-8.9403</td>
<td>-3.3271</td>
<td>-6.796</td>
</tr>
</tbody>
</table>

©ARKAT-USA, Inc.
2-STol \((R,R,S,S)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-9.8002</td>
<td>-1.7306</td>
<td>6.3742</td>
</tr>
<tr>
<td>C(2)</td>
<td>-9.3562</td>
<td>-2.8338</td>
<td>6.6445</td>
</tr>
<tr>
<td>C(3)</td>
<td>-8.0961</td>
<td>-2.7806</td>
<td>6.0461</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.3235</td>
<td>-1.6255</td>
<td>5.1838</td>
</tr>
</tbody>
</table>

USA, Inc.
LUMO representation and Cartesian coordinates of chloride transition state structures (uncatalyzed reaction):

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3)</td>
<td>-7.9941</td>
<td>-5.2736</td>
<td>-8.7088</td>
</tr>
<tr>
<td>C(4)</td>
<td>-7.1917</td>
<td>-4.2115</td>
<td>-8.2884</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.608</td>
<td>-3.2281</td>
<td>-7.4103</td>
</tr>
<tr>
<td>C(6)</td>
<td>-8.9101</td>
<td>-3.3615</td>
<td>-6.9618</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.6783</td>
<td>-2.0928</td>
<td>-6.9563</td>
</tr>
<tr>
<td>O(8)</td>
<td>-5.3702</td>
<td>-2.2859</td>
<td>-7.4443</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.2112</td>
<td>-0.8562</td>
<td>-7.3878</td>
</tr>
<tr>
<td>C(11)</td>
<td>-6.5697</td>
<td>-2.0495</td>
<td>-5.4299</td>
</tr>
<tr>
<td>N(5)</td>
<td>-7.608</td>
<td>-3.2281</td>
<td>-7.4103</td>
</tr>
<tr>
<td>C(6)</td>
<td>-8.9101</td>
<td>-3.3615</td>
<td>-6.9618</td>
</tr>
<tr>
<td>C(7)</td>
<td>-6.6783</td>
<td>-2.0928</td>
<td>-6.9563</td>
</tr>
<tr>
<td>O(8)</td>
<td>-5.3702</td>
<td>-2.2859</td>
<td>-7.4443</td>
</tr>
<tr>
<td>C(10)</td>
<td>-7.2112</td>
<td>-0.8562</td>
<td>-7.3878</td>
</tr>
<tr>
<td>C(11)</td>
<td>-6.5697</td>
<td>-2.0495</td>
<td>-5.4299</td>
</tr>
<tr>
<td>C(12)</td>
<td>-5.5952</td>
<td>-0.9776</td>
<td>-4.9085</td>
</tr>
<tr>
<td>C(13)</td>
<td>-6.1192</td>
<td>-3.6444</td>
<td>-4.7708</td>
</tr>
<tr>
<td>C(14)</td>
<td>-10.7941</td>
<td>-4.4505</td>
<td>-6.9593</td>
</tr>
<tr>
<td>C(15)</td>
<td>-9.978</td>
<td>-6.1757</td>
<td>-8.5512</td>
</tr>
<tr>
<td>C(16)</td>
<td>-7.6041</td>
<td>-6.0215</td>
<td>-9.4106</td>
</tr>
<tr>
<td>C(17)</td>
<td>-6.1704</td>
<td>-4.1562</td>
<td>-8.6793</td>
</tr>
<tr>
<td>C(18)</td>
<td>-9.2897</td>
<td>-2.5805</td>
<td>-6.2741</td>
</tr>
<tr>
<td>C(19)</td>
<td>-7.5746</td>
<td>-1.8344</td>
<td>-5.0071</td>
</tr>
<tr>
<td>C(20)</td>
<td>-5.8472</td>
<td>0.3752</td>
<td>-8.9181</td>
</tr>
<tr>
<td>C(21)</td>
<td>-6.8303</td>
<td>-1.5169</td>
<td>-9.3161</td>
</tr>
<tr>
<td>C(22)</td>
<td>-8.3092</td>
<td>0.0849</td>
<td>-9.3081</td>
</tr>
<tr>
<td>C(23)</td>
<td>-5.5555</td>
<td>-0.9598</td>
<td>-3.797</td>
</tr>
<tr>
<td>C(24)</td>
<td>-5.8898</td>
<td>0.0323</td>
<td>-5.2493</td>
</tr>
<tr>
<td>C(25)</td>
<td>-4.5571</td>
<td>-1.1702</td>
<td>-5.2576</td>
</tr>
<tr>
<td>C(26)</td>
<td>-8.1253</td>
<td>0.5309</td>
<td>-10.7684</td>
</tr>
<tr>
<td>C(27)</td>
<td>-8.5365</td>
<td>0.9716</td>
<td>-8.6805</td>
</tr>
<tr>
<td>S(28)</td>
<td>-9.6792</td>
<td>-1.1339</td>
<td>-9.2369</td>
</tr>
<tr>
<td>C(29)</td>
<td>-5.6383</td>
<td>0.8032</td>
<td>-10.3766</td>
</tr>
<tr>
<td>C(30)</td>
<td>-6.0366</td>
<td>1.2699</td>
<td>-8.2858</td>
</tr>
<tr>
<td>C(31)</td>
<td>-4.8946</td>
<td>-0.0855</td>
<td>-8.5363</td>
</tr>
<tr>
<td>C(32)</td>
<td>-7.9891</td>
<td>-0.3721</td>
<td>-11.4132</td>
</tr>
<tr>
<td>C(33)</td>
<td>-9.0312</td>
<td>1.0653</td>
<td>-11.1413</td>
</tr>
<tr>
<td>C(34)</td>
<td>-6.9072</td>
<td>1.4542</td>
<td>-10.9396</td>
</tr>
<tr>
<td>C(35)</td>
<td>-4.764</td>
<td>1.5038</td>
<td>-10.4444</td>
</tr>
<tr>
<td>C(36)</td>
<td>-11.0175</td>
<td>0.0902</td>
<td>-9.199</td>
</tr>
<tr>
<td>C(37)</td>
<td>-5.3903</td>
<td>-0.0965</td>
<td>-10.9853</td>
</tr>
<tr>
<td>C(38)</td>
<td>-6.7537</td>
<td>1.6905</td>
<td>-12.0148</td>
</tr>
<tr>
<td>C(39)</td>
<td>-11.7414</td>
<td>0.3785</td>
<td>-10.3616</td>
</tr>
<tr>
<td>C(40)</td>
<td>-7.1108</td>
<td>2.4121</td>
<td>-10.4011</td>
</tr>
<tr>
<td>C(41)</td>
<td>-12.7765</td>
<td>1.3174</td>
<td>-10.309</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,R,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-3.8543</td>
<td>-2.4417</td>
<td>2.6622</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.798</td>
<td>-2.173</td>
<td>1.2173</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.5487</td>
<td>-1.7898</td>
<td>1.7407</td>
</tr>
<tr>
<td>O(4)</td>
<td>-3.3977</td>
<td>-1.2657</td>
<td>0.312</td>
</tr>
<tr>
<td>C(5)</td>
<td>-2.609</td>
<td>-3.5088</td>
<td>0.495</td>
</tr>
<tr>
<td>C(6)</td>
<td>-2.9283</td>
<td>0.0559</td>
<td>0.3291</td>
</tr>
<tr>
<td>C(7)</td>
<td>-3.882</td>
<td>-4.0512</td>
<td>-0.1618</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-1.3159</td>
<td>-3.3783</td>
<td>-0.7374</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.3691</td>
<td>0.8107</td>
<td>1.5873</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.4579</td>
<td>0.7446</td>
<td>-0.9422</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.9843</td>
<td>0.9368</td>
<td>-0.8703</td>
</tr>
<tr>
<td>C(12)</td>
<td>-2.7227</td>
<td>2.0607</td>
<td>-1.2542</td>
</tr>
<tr>
<td>C(13)</td>
<td>-4.8922</td>
<td>0.9945</td>
<td>1.6534</td>
</tr>
<tr>
<td>C(14)</td>
<td>-5.4201</td>
<td>1.6917</td>
<td>0.3928</td>
</tr>
<tr>
<td>H(15)</td>
<td>-2.2262</td>
<td>-4.2692</td>
<td>1.2123</td>
</tr>
<tr>
<td>H(16)</td>
<td>-1.8153</td>
<td>0.0364</td>
<td>0.2532</td>
</tr>
<tr>
<td>H(17)</td>
<td>-3.7012</td>
<td>-5.04</td>
<td>-0.6432</td>
</tr>
<tr>
<td>H(18)</td>
<td>-4.6979</td>
<td>-4.2039</td>
<td>0.5795</td>
</tr>
<tr>
<td>H(19)</td>
<td>-4.2708</td>
<td>-3.3645</td>
<td>-0.9477</td>
</tr>
<tr>
<td>H(20)</td>
<td>-3.0055</td>
<td>0.3016</td>
<td>2.5084</td>
</tr>
<tr>
<td>H(21)</td>
<td>-2.8862</td>
<td>1.8158</td>
<td>1.6029</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.2455</td>
<td>0.0689</td>
<td>-1.8124</td>
</tr>
<tr>
<td>H(23)</td>
<td>-5.3461</td>
<td>1.4737</td>
<td>-1.7789</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.4815</td>
<td>-0.0632</td>
<td>-0.8757</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.6263</td>
<td>1.8929</td>
<td>-1.36</td>
</tr>
<tr>
<td>H(26)</td>
<td>-3.0818</td>
<td>2.5012</td>
<td>-2.2125</td>
</tr>
<tr>
<td>H(27)</td>
<td>-2.8661</td>
<td>2.8296</td>
<td>-0.4648</td>
</tr>
<tr>
<td>H(28)</td>
<td>-5.1644</td>
<td>1.59</td>
<td>2.5574</td>
</tr>
<tr>
<td>H(29)</td>
<td>-5.3913</td>
<td>0.0032</td>
<td>1.7602</td>
</tr>
<tr>
<td>H(30)</td>
<td>-6.5343</td>
<td>1.753</td>
<td>0.4326</td>
</tr>
<tr>
<td>H(31)</td>
<td>-5.0447</td>
<td>2.7408</td>
<td>0.3595</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,R)-(e,e) \)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-1.1401</td>
<td>-1.3749</td>
<td>2.745</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>-0.906</td>
<td>-0.6137</td>
<td>1.1197</td>
</tr>
<tr>
<td>O(3)</td>
<td>-0.4132</td>
<td>0.6802</td>
<td>1.3738</td>
</tr>
<tr>
<td>O(4)</td>
<td>-2.0953</td>
<td>-0.6789</td>
<td>0.3561</td>
</tr>
<tr>
<td>C(5)</td>
<td>0.1865</td>
<td>-1.3807</td>
<td>0.372</td>
</tr>
<tr>
<td>C(6)</td>
<td>-2.8941</td>
<td>0.4731</td>
<td>0.332</td>
</tr>
<tr>
<td>C(7)</td>
<td>-0.1892</td>
<td>-2.819</td>
<td>0.0056</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>0.6719</td>
<td>-0.4999</td>
<td>-1.1105</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.5352</td>
<td>0.7543</td>
<td>1.6948</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.9817</td>
<td>0.2674</td>
<td>-0.7377</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.9349</td>
<td>1.4754</td>
<td>-0.79</td>
</tr>
<tr>
<td>C(12)</td>
<td>-3.3794</td>
<td>0.0184</td>
<td>-2.1329</td>
</tr>
<tr>
<td>C(13)</td>
<td>-4.4875</td>
<td>1.9569</td>
<td>1.6385</td>
</tr>
<tr>
<td>C(14)</td>
<td>-5.5736</td>
<td>1.7426</td>
<td>0.5785</td>
</tr>
<tr>
<td>H(15)</td>
<td>1.1119</td>
<td>-1.4029</td>
<td>0.9904</td>
</tr>
<tr>
<td>H(16)</td>
<td>-2.2744</td>
<td>1.3424</td>
<td>0.009</td>
</tr>
<tr>
<td>H(17)</td>
<td>0.6541</td>
<td>-3.3416</td>
<td>-0.502</td>
</tr>
<tr>
<td>H(18)</td>
<td>-0.4386</td>
<td>-3.4256</td>
<td>0.9044</td>
</tr>
<tr>
<td>H(19)</td>
<td>-1.0674</td>
<td>-2.8586</td>
<td>-0.6776</td>
</tr>
<tr>
<td>H(20)</td>
<td>-4.0981</td>
<td>-0.147</td>
<td>2.0351</td>
</tr>
<tr>
<td>H(21)</td>
<td>-2.7588</td>
<td>0.9723</td>
<td>2.4639</td>
</tr>
<tr>
<td>H(22)</td>
<td>-4.5817</td>
<td>-0.6352</td>
<td>-0.4579</td>
</tr>
<tr>
<td>H(23)</td>
<td>-4.3722</td>
<td>2.3807</td>
<td>-1.1194</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.7389</td>
<td>1.2964</td>
<td>1.5433</td>
</tr>
<tr>
<td>H(25)</td>
<td>-2.7484</td>
<td>0.8765</td>
<td>2.4579</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.1788</td>
<td>-0.1233</td>
<td>-2.8955</td>
</tr>
<tr>
<td>H(27)</td>
<td>-2.7472</td>
<td>-0.8976</td>
<td>-2.157</td>
</tr>
<tr>
<td>H(28)</td>
<td>-4.9604</td>
<td>2.1172</td>
<td>2.637</td>
</tr>
<tr>
<td>H(29)</td>
<td>-3.9084</td>
<td>2.8802</td>
<td>1.3977</td>
</tr>
<tr>
<td>H(30)</td>
<td>-6.2349</td>
<td>2.6401</td>
<td>0.5229</td>
</tr>
<tr>
<td>H(31)</td>
<td>-6.2154</td>
<td>0.877</td>
<td>0.8681</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,R,S)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-3.8581</td>
<td>-2.3459</td>
<td>2.646</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.7788</td>
<td>-2.1562</td>
<td>1.2045</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.5194</td>
<td>-1.7649</td>
<td>1.6944</td>
</tr>
<tr>
<td>O(4)</td>
<td>-3.3852</td>
<td>-1.2708</td>
<td>0.2756</td>
</tr>
<tr>
<td>C(5)</td>
<td>-2.6069</td>
<td>-3.5178</td>
<td>0.5247</td>
</tr>
<tr>
<td>C(6)</td>
<td>-2.8859</td>
<td>0.0414</td>
<td>0.2404</td>
</tr>
<tr>
<td>C(7)</td>
<td>-2.0556</td>
<td>-4.6243</td>
<td>1.4314</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-1.5291</td>
<td>-3.3738</td>
<td>-0.9011</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.2594</td>
<td>0.8395</td>
<td>1.4942</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.4339</td>
<td>0.7199</td>
<td>-1.029</td>
</tr>
<tr>
<td>C(11)</td>
<td>-4.9448</td>
<td>0.9946</td>
<td>-0.9108</td>
</tr>
<tr>
<td>C(12)</td>
<td>-2.6477</td>
<td>1.9906</td>
<td>-1.4013</td>
</tr>
<tr>
<td>C(13)</td>
<td>-4.7712</td>
<td>1.0843</td>
<td>1.6025</td>
</tr>
<tr>
<td>C(14)</td>
<td>-5.3004</td>
<td>1.7938</td>
<td>0.3501</td>
</tr>
<tr>
<td>H(15)</td>
<td>-3.5857</td>
<td>-3.8504</td>
<td>0.1132</td>
</tr>
<tr>
<td>H(16)</td>
<td>-1.7768</td>
<td>-0.0111</td>
<td>0.1274</td>
</tr>
<tr>
<td>H(17)</td>
<td>-1.9229</td>
<td>-5.5801</td>
<td>0.874</td>
</tr>
<tr>
<td>H(18)</td>
<td>-1.0679</td>
<td>-4.3505</td>
<td>1.8669</td>
</tr>
<tr>
<td>H(19)</td>
<td>-2.7408</td>
<td>-4.8591</td>
<td>2.2759</td>
</tr>
<tr>
<td>H(20)</td>
<td>-2.8871</td>
<td>0.3408</td>
<td>2.4171</td>
</tr>
<tr>
<td>H(21)</td>
<td>-2.7384</td>
<td>1.8252</td>
<td>1.4721</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.287</td>
<td>0.0132</td>
<td>-1.888</td>
</tr>
<tr>
<td>H(23)</td>
<td>-5.3086</td>
<td>1.5341</td>
<td>-1.817</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.4925</td>
<td>0.0221</td>
<td>-0.8808</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.5666</td>
<td>1.7659</td>
<td>-1.549</td>
</tr>
<tr>
<td>H(26)</td>
<td>-3.024</td>
<td>2.4299</td>
<td>-2.3533</td>
</tr>
<tr>
<td>H(27)</td>
<td>-2.7181</td>
<td>2.7813</td>
<td>-0.6238</td>
</tr>
<tr>
<td>H(28)</td>
<td>-4.9943</td>
<td>1.696</td>
<td>2.5091</td>
</tr>
<tr>
<td>H(29)</td>
<td>-5.3073</td>
<td>0.1148</td>
<td>1.7281</td>
</tr>
<tr>
<td>H(30)</td>
<td>-6.4077</td>
<td>1.9163</td>
<td>0.4232</td>
</tr>
<tr>
<td>H(31)</td>
<td>-4.8697</td>
<td>2.8202</td>
<td>0.2891</td>
</tr>
</tbody>
</table>
2-Methyl $(R,R,R,S)-(e,e)$

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.8749</td>
<td>-2.9473</td>
<td>-0.7534</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.616</td>
<td>-1.9669</td>
<td>0.7467</td>
</tr>
<tr>
<td>O(3)</td>
<td>-3.813</td>
<td>-2.017</td>
<td>1.4834</td>
</tr>
<tr>
<td>O(4)</td>
<td>-2.1706</td>
<td>-0.6705</td>
<td>0.3853</td>
</tr>
<tr>
<td>C(5)</td>
<td>-1.5219</td>
<td>-2.6228</td>
<td>1.5948</td>
</tr>
<tr>
<td>C(6)</td>
<td>-3.1331</td>
<td>0.3503</td>
<td>0.3822</td>
</tr>
<tr>
<td>C(7)</td>
<td>-1.8019</td>
<td>-4.0754</td>
<td>1.9957</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-1.2338</td>
<td>-1.6795</td>
<td>3.0927</td>
</tr>
<tr>
<td>C(9)</td>
<td>-4.1398</td>
<td>0.181</td>
<td>-0.7606</td>
</tr>
<tr>
<td>C(10)</td>
<td>-2.3907</td>
<td>1.6927</td>
<td>0.2539</td>
</tr>
<tr>
<td>C(11)</td>
<td>-3.3825</td>
<td>2.8675</td>
<td>0.1726</td>
</tr>
<tr>
<td>C(12)</td>
<td>-1.4109</td>
<td>1.9213</td>
<td>1.4201</td>
</tr>
<tr>
<td>C(13)</td>
<td>-5.1222</td>
<td>1.3587</td>
<td>-0.8348</td>
</tr>
<tr>
<td>C(14)</td>
<td>-4.3694</td>
<td>2.6853</td>
<td>-0.9869</td>
</tr>
<tr>
<td>H(15)</td>
<td>-0.5567</td>
<td>-2.5858</td>
<td>1.042</td>
</tr>
<tr>
<td>H(16)</td>
<td>-3.6622</td>
<td>0.3617</td>
<td>1.3638</td>
</tr>
<tr>
<td>H(17)</td>
<td>-0.9751</td>
<td>-4.4926</td>
<td>2.616</td>
</tr>
<tr>
<td>H(18)</td>
<td>-2.7426</td>
<td>-4.1684</td>
<td>2.5845</td>
</tr>
<tr>
<td>H(19)</td>
<td>-1.89</td>
<td>-4.7485</td>
<td>1.1145</td>
</tr>
<tr>
<td>H(20)</td>
<td>-3.5931</td>
<td>0.0972</td>
<td>-1.7297</td>
</tr>
<tr>
<td>H(21)</td>
<td>-4.7349</td>
<td>-0.7528</td>
<td>-0.6316</td>
</tr>
<tr>
<td>H(22)</td>
<td>-1.7975</td>
<td>1.675</td>
<td>-0.695</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.9474</td>
<td>2.9462</td>
<td>1.1314</td>
</tr>
<tr>
<td>H(24)</td>
<td>-2.8285</td>
<td>3.827</td>
<td>0.0378</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.9407</td>
<td>1.9078</td>
<td>2.3995</td>
</tr>
<tr>
<td>H(26)</td>
<td>-0.8961</td>
<td>2.9045</td>
<td>1.3264</td>
</tr>
<tr>
<td>H(27)</td>
<td>-0.6145</td>
<td>1.1444</td>
<td>1.4532</td>
</tr>
<tr>
<td>H(28)</td>
<td>-5.8215</td>
<td>1.22</td>
<td>-1.694</td>
</tr>
<tr>
<td>H(29)</td>
<td>-5.7427</td>
<td>1.3862</td>
<td>0.0926</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.0927</td>
<td>3.5352</td>
<td>-1.0113</td>
</tr>
<tr>
<td>H(31)</td>
<td>-3.8167</td>
<td>2.6948</td>
<td>-1.9563</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,S,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-0.8274</td>
<td>-2.1319</td>
<td>1.3305</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.6262</td>
<td>-2.1722</td>
<td>1.1335</td>
</tr>
<tr>
<td>O(3)</td>
<td>-3.1901</td>
<td>-2.1501</td>
<td>2.4208</td>
</tr>
<tr>
<td>O(4)</td>
<td>-3.0221</td>
<td>-1.1048</td>
<td>0.2902</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.0379</td>
<td>-3.4841</td>
<td>0.4621</td>
</tr>
<tr>
<td>C(6)</td>
<td>-3.1235</td>
<td>0.1509</td>
<td>0.9101</td>
</tr>
<tr>
<td>C(7)</td>
<td>-2.5966</td>
<td>-4.7497</td>
<td>1.2052</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-4.8163</td>
<td>-3.5522</td>
<td>0.2461</td>
</tr>
<tr>
<td>C(9)</td>
<td>-4.5616</td>
<td>0.392</td>
<td>1.3875</td>
</tr>
<tr>
<td>C(10)</td>
<td>-2.69</td>
<td>1.2237</td>
<td>-0.1048</td>
</tr>
<tr>
<td>C(11)</td>
<td>-3.6994</td>
<td>1.3357</td>
<td>-1.2625</td>
</tr>
<tr>
<td>C(12)</td>
<td>-2.4211</td>
<td>2.5856</td>
<td>0.5605</td>
</tr>
<tr>
<td>C(13)</td>
<td>-5.556</td>
<td>0.4897</td>
<td>0.2217</td>
</tr>
<tr>
<td>C(14)</td>
<td>-5.1324</td>
<td>1.5794</td>
<td>-0.7708</td>
</tr>
<tr>
<td>H(15)</td>
<td>-2.623</td>
<td>-3.5145</td>
<td>-0.57</td>
</tr>
<tr>
<td>H(16)</td>
<td>-2.4208</td>
<td>0.1964</td>
<td>1.7748</td>
</tr>
<tr>
<td>H(17)</td>
<td>-2.9631</td>
<td>-5.6706</td>
<td>0.6956</td>
</tr>
<tr>
<td>H(18)</td>
<td>-1.4892</td>
<td>-4.8469</td>
<td>1.2501</td>
</tr>
<tr>
<td>H(19)</td>
<td>-2.9792</td>
<td>-4.7705</td>
<td>2.2508</td>
</tr>
<tr>
<td>H(20)</td>
<td>-4.8917</td>
<td>-0.4157</td>
<td>2.0806</td>
</tr>
<tr>
<td>H(21)</td>
<td>-4.604</td>
<td>1.3343</td>
<td>1.982</td>
</tr>
<tr>
<td>H(22)</td>
<td>-1.7078</td>
<td>0.9044</td>
<td>-0.5429</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.3933</td>
<td>2.1508</td>
<td>-1.9601</td>
</tr>
<tr>
<td>H(24)</td>
<td>-3.6837</td>
<td>0.3896</td>
<td>-1.8552</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.6439</td>
<td>2.4986</td>
<td>1.3538</td>
</tr>
<tr>
<td>H(26)</td>
<td>-2.0501</td>
<td>3.3278</td>
<td>-0.1829</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.3291</td>
<td>3.018</td>
<td>1.0332</td>
</tr>
<tr>
<td>H(28)</td>
<td>-6.5789</td>
<td>0.7086</td>
<td>0.6113</td>
</tr>
<tr>
<td>H(29)</td>
<td>-5.617</td>
<td>-0.4904</td>
<td>-0.3074</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.8348</td>
<td>1.5948</td>
<td>-1.6384</td>
</tr>
<tr>
<td>H(31)</td>
<td>-5.2056</td>
<td>2.5795</td>
<td>-0.2837</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,S,R)-(e,e)\)

\[
\begin{align*}
\text{C(1)} & : -0.0363 & 1.2528 & 0.221 \\
\text{C(2)} & : -0.6922 & -0.3476 & 0.7559 \\
\text{O(3)} & : -0.7687 & -0.3251 & 2.1596 \\
\text{O(4)} & : -1.9261 & -0.5903 & 0.1021 \\
\text{C(5)} & : 0.2836 & -1.4558 & 0.3552 \\
\text{C(6)} & : -3.0311 & 0.0827 & 0.6444 \\
\text{C(7)} & : 1.7102 & -1.278 & 0.8862 \\
\text{Cl(8)} & : -0.3245 & -3.0534 & 0.8945 \\
\text{C(9)} & : -3.7757 & -0.8416 & 1.6159 \\
\text{C(10)} & : -3.9748 & 0.5101 & -0.4924 \\
\text{C(11)} & : -5.2184 & 1.2102 & 0.0875 \\
\text{C(12)} & : -3.2836 & 1.4356 & -1.5096 \\
\text{C(13)} & : -5.013 & -0.1494 & 2.2043 \\
\text{C(14)} & : -5.9578 & 0.312 & 1.0877 \\
\text{H(15)} & : 0.3245 & -1.525 & -0.7547 \\
\text{H(16)} & : -2.7017 & 1.005 & 1.1753 \\
\text{H(17)} & : 2.3634 & -2.1321 & 0.5937 \\
\text{H(18)} & : 2.202 & -0.3679 & 0.4766 \\
\text{H(19)} & : 1.7323 & -1.2019 & 1.9971 \\
\text{H(20)} & : -4.0909 & -1.7696 & 1.0823 \\
\text{H(21)} & : -3.1089 & -1.1644 & 2.4488 \\
\text{H(22)} & : -4.3106 & -0.4064 & -1.0393 \\
\text{H(23)} & : -4.9091 & 2.1528 & 0.5979 \\
\text{H(24)} & : -5.9148 & 1.4981 & -0.7356 \\
\text{H(25)} & : -2.8938 & 2.355 & -1.0176 \\
\text{H(26)} & : -3.9909 & 1.7532 & -2.309 \\
\text{H(27)} & : -2.4314 & 0.9322 & -2.0188 \\
\text{H(28)} & : -5.5505 & -0.8449 & 2.8925 \\
\text{H(29)} & : -4.6926 & 0.731 & 2.8105 \\
\text{H(30)} & : -6.8248 & 0.862 & 1.5258 \\
\text{H(31)} & : -6.3689 & -0.5784 & 0.5553
\end{align*}
\]
2-Methyl \((R,R,S,S)-(a,a) \)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-0.9199</td>
<td>-2.1305</td>
<td>1.53</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>-2.6591</td>
<td>-2.2145</td>
<td>1.0374</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>-3.3971</td>
<td>-2.348</td>
<td>2.2279</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>-3.0038</td>
<td>-1.096</td>
<td>0.2462</td>
</tr>
<tr>
<td>C(5)</td>
<td>-2.8823</td>
<td>-3.4763</td>
<td>0.204</td>
</tr>
<tr>
<td>C(6)</td>
<td>-3.2582</td>
<td>0.0897</td>
<td>0.9526</td>
</tr>
<tr>
<td>C(7)</td>
<td>-2.1808</td>
<td>-3.4591</td>
<td>-1.1571</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-4.6316</td>
<td>-3.7749</td>
<td>-0.0378</td>
</tr>
<tr>
<td>C(9)</td>
<td>-4.7657</td>
<td>0.2427</td>
<td>1.1908</td>
</tr>
<tr>
<td>C(10)</td>
<td>-2.7</td>
<td>1.2634</td>
<td>0.1295</td>
</tr>
<tr>
<td>C(11)</td>
<td>-3.4971</td>
<td>1.4538</td>
<td>-1.1741</td>
</tr>
<tr>
<td>C(12)</td>
<td>-2.6071</td>
<td>2.5634</td>
<td>0.948</td>
</tr>
<tr>
<td>C(13)</td>
<td>-5.5459</td>
<td>0.4248</td>
<td>-0.1194</td>
</tr>
<tr>
<td>C(14)</td>
<td>-5.0023</td>
<td>1.6136</td>
<td>-0.9221</td>
</tr>
<tr>
<td>H(15)</td>
<td>-2.5298</td>
<td>-4.3636</td>
<td>0.7761</td>
</tr>
<tr>
<td>H(16)</td>
<td>-2.7172</td>
<td>0.0689</td>
<td>1.9274</td>
</tr>
<tr>
<td>H(17)</td>
<td>-2.334</td>
<td>4.4174</td>
<td>-1.705</td>
</tr>
<tr>
<td>H(18)</td>
<td>-2.5574</td>
<td>-2.6379</td>
<td>-1.8083</td>
</tr>
<tr>
<td>H(19)</td>
<td>-1.0807</td>
<td>-3.3257</td>
<td>-1.0558</td>
</tr>
<tr>
<td>H(20)</td>
<td>-5.1695</td>
<td>-0.641</td>
<td>1.7374</td>
</tr>
<tr>
<td>H(21)</td>
<td>-4.9529</td>
<td>1.1206</td>
<td>1.8522</td>
</tr>
<tr>
<td>H(22)</td>
<td>-1.6442</td>
<td>1.0113</td>
<td>-0.1543</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.1084</td>
<td>2.3361</td>
<td>-1.7353</td>
</tr>
<tr>
<td>H(24)</td>
<td>-3.3403</td>
<td>0.5658</td>
<td>-1.8329</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.9711</td>
<td>2.4238</td>
<td>1.8519</td>
</tr>
<tr>
<td>H(26)</td>
<td>-2.1488</td>
<td>3.3818</td>
<td>0.3471</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.5999</td>
<td>2.9234</td>
<td>1.2939</td>
</tr>
<tr>
<td>H(28)</td>
<td>-6.6292</td>
<td>0.5804</td>
<td>0.101</td>
</tr>
<tr>
<td>H(29)</td>
<td>-5.473</td>
<td>-0.5031</td>
<td>-0.7346</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.5438</td>
<td>1.6929</td>
<td>-1.8951</td>
</tr>
<tr>
<td>H(31)</td>
<td>-5.1993</td>
<td>2.5616</td>
<td>-0.3696</td>
</tr>
</tbody>
</table>
2-Methyl \((R,R,S,S)-(e,e)\)

\[
\begin{align*}
\text{Cl}(1) & : -0.0836 & 1.1894 & 0.1238 \\
\text{C}(2) & : -0.7283 & -0.4157 & 0.6561 \\
\text{O}(3) & : -0.6865 & -0.4013 & 2.0625 \\
\text{O}(4) & : -2.0064 & -0.6537 & 0.1017 \\
\text{C}(5) & : 0.2169 & -1.5153 & 0.1716 \\
\text{C}(6) & : -3.0701 & 0.0037 & 0.7378 \\
\text{C}(7) & : 0.2521 & -1.6873 & -1.3498 \\
\text{Cl}(8) & : -0.191 & -3.0828 & 0.9355 \\
\text{C}(9) & : -3.7163 & -0.9289 & 1.7696 \\
\text{C}(10) & : -4.1102 & 0.412 & -0.3198 \\
\text{C}(11) & : -5.3198 & 1.0865 & 0.3548 \\
\text{C}(12) & : -3.5185 & 1.3536 & -1.3844 \\
\text{C}(13) & : -4.9185 & -0.2594 & 2.4501 \\
\text{C}(14) & : -5.9581 & 0.1716 & 1.4082 \\
\text{H}(15) & : 1.2492 & -1.2991 & 0.5276 \\
\text{H}(16) & : -2.7086 & 0.9322 & 1.236 \\
\text{H}(17) & : 0.9879 & -2.4678 & -1.6526 \\
\text{H}(18) & : -0.7395 & -1.9876 & -1.758 \\
\text{H}(19) & : 0.5553 & -0.7497 & -1.8669 \\
\text{H}(20) & : -4.0506 & -1.8674 & 1.2669 \\
\text{H}(21) & : -2.9797 & -1.2315 & 2.5493 \\
\text{H}(22) & : -4.4709 & -0.5107 & -0.8406 \\
\text{H}(23) & : -4.9918 & 2.0368 & 0.839 \\
\text{H}(24) & : -6.0857 & 1.3567 & -0.4107 \\
\text{H}(25) & : -3.1138 & 2.2815 & -0.9207 \\
\text{H}(26) & : -4.2923 & 1.6546 & -2.127 \\
\text{H}(27) & : -2.6953 & 0.8707 & -1.9574 \\
\text{H}(28) & : -5.385 & -0.9617 & 3.1816 \\
\text{H}(29) & : -4.5727 & 0.6327 & 3.0246 \\
\text{H}(30) & : -6.8047 & 0.6996 & 1.9088 \\
\text{H}(31) & : -6.3825 & -0.7321 & 0.9094
\end{align*}
\]
2-OTol $(R,R,R,R)-(a,a)$

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.4148</td>
<td>-1.6477</td>
<td>1.9824</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.4975</td>
<td>-0.5552</td>
<td>0.5429</td>
</tr>
<tr>
<td>O(3)</td>
<td>-2.0784</td>
<td>-1.3342</td>
<td>-0.5494</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.7424</td>
<td>0.6162</td>
<td>0.7711</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.9501</td>
<td>-0.1505</td>
<td>0.2949</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.3667</td>
<td>0.5129</td>
<td>0.5171</td>
</tr>
<tr>
<td>C(7)</td>
<td>-4.5384</td>
<td>0.7574</td>
<td>1.3779</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-4.1188</td>
<td>0.6463</td>
<td>-1.3003</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.3565</td>
<td>1.4602</td>
<td>1.4846</td>
</tr>
<tr>
<td>C(10)</td>
<td>-0.0552</td>
<td>0.8894</td>
<td>-0.937</td>
</tr>
<tr>
<td>C(11)</td>
<td>-0.3973</td>
<td>2.3621</td>
<td>-1.2066</td>
</tr>
<tr>
<td>O(12)</td>
<td>1.3052</td>
<td>0.714</td>
<td>-1.2197</td>
</tr>
<tr>
<td>C(13)</td>
<td>0.0007</td>
<td>2.93</td>
<td>1.2197</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.3163</td>
<td>3.3098</td>
<td>-0.2323</td>
</tr>
<tr>
<td>C(15)</td>
<td>1.8519</td>
<td>-0.5434</td>
<td>-1.1659</td>
</tr>
<tr>
<td>C(16)</td>
<td>3.1753</td>
<td>-0.6891</td>
<td>-0.7257</td>
</tr>
<tr>
<td>C(17)</td>
<td>3.7954</td>
<td>-1.9337</td>
<td>-0.6052</td>
</tr>
<tr>
<td>C(18)</td>
<td>3.1013</td>
<td>-3.1091</td>
<td>-0.9019</td>
</tr>
<tr>
<td>C(19)</td>
<td>1.7723</td>
<td>-2.9891</td>
<td>-1.3164</td>
</tr>
<tr>
<td>C(20)</td>
<td>1.1654</td>
<td>-1.737</td>
<td>-1.4343</td>
</tr>
<tr>
<td>C(21)</td>
<td>3.7728</td>
<td>-4.4524</td>
<td>-0.7708</td>
</tr>
<tr>
<td>H(22)</td>
<td>-4.5802</td>
<td>-1.0641</td>
<td>0.2116</td>
</tr>
<tr>
<td>H(23)</td>
<td>-0.0299</td>
<td>-0.5235</td>
<td>0.7513</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.609</td>
<td>0.9904</td>
<td>1.1745</td>
</tr>
<tr>
<td>H(25)</td>
<td>-3.9934</td>
<td>1.726</td>
<td>1.449</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.5024</td>
<td>0.2797</td>
<td>2.3823</td>
</tr>
<tr>
<td>H(27)</td>
<td>0.0956</td>
<td>1.1968</td>
<td>2.5378</td>
</tr>
<tr>
<td>H(28)</td>
<td>1.4605</td>
<td>1.3263</td>
<td>1.3943</td>
</tr>
<tr>
<td>H(29)</td>
<td>-0.6503</td>
<td>0.2921</td>
<td>-1.6639</td>
</tr>
<tr>
<td>H(30)</td>
<td>-0.1234</td>
<td>2.6296</td>
<td>-2.2554</td>
</tr>
<tr>
<td>H(31)</td>
<td>-1.4989</td>
<td>2.5178</td>
<td>-1.1224</td>
</tr>
</tbody>
</table>
2-OTol \((R,R,R)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom (Number)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-7.3254</td>
<td>-8.6774</td>
<td>-5.9067</td>
</tr>
<tr>
<td>C(2)</td>
<td>-6.4141</td>
<td>-7.624</td>
<td>-7.061</td>
</tr>
<tr>
<td>O(3)</td>
<td>-5.6878</td>
<td>-8.5338</td>
<td>-7.8497</td>
</tr>
<tr>
<td>O(4)</td>
<td>-5.6806</td>
<td>-6.6383</td>
<td>-6.3567</td>
</tr>
<tr>
<td>C(5)</td>
<td>-7.4334</td>
<td>-6.9308</td>
<td>-7.9694</td>
</tr>
<tr>
<td>C(6)</td>
<td>-4.2922</td>
<td>-6.8021</td>
<td>-6.2168</td>
</tr>
<tr>
<td>C(7)</td>
<td>-8.3248</td>
<td>-5.9111</td>
<td>-7.2547</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-6.6267</td>
<td>-6.142</td>
<td>-9.3586</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.5578</td>
<td>-6.5426</td>
<td>-7.5379</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.8656</td>
<td>-8.0679</td>
<td>-5.4672</td>
</tr>
<tr>
<td>C(11)</td>
<td>-2.333</td>
<td>-8.1673</td>
<td>-5.4052</td>
</tr>
<tr>
<td>O(12)</td>
<td>-4.3868</td>
<td>-8.0147</td>
<td>-4.1641</td>
</tr>
<tr>
<td>C(13)</td>
<td>-2.0362</td>
<td>-6.626</td>
<td>-7.3681</td>
</tr>
<tr>
<td>C(14)</td>
<td>-1.6659</td>
<td>-7.9898</td>
<td>-6.775</td>
</tr>
<tr>
<td>C(15)</td>
<td>-4.1528</td>
<td>-9.1219</td>
<td>-3.3894</td>
</tr>
<tr>
<td>C(16)</td>
<td>-5.0807</td>
<td>-10.1682</td>
<td>-3.3023</td>
</tr>
<tr>
<td>C(17)</td>
<td>-4.9005</td>
<td>-11.2549</td>
<td>-2.4451</td>
</tr>
<tr>
<td>C(18)</td>
<td>-3.8063</td>
<td>-11.3091</td>
<td>-1.5779</td>
</tr>
<tr>
<td>C(19)</td>
<td>-2.9327</td>
<td>-10.218</td>
<td>-1.5677</td>
</tr>
<tr>
<td>C(20)</td>
<td>-3.1339</td>
<td>-9.135</td>
<td>-2.4255</td>
</tr>
<tr>
<td>C(21)</td>
<td>-3.6281</td>
<td>-12.4811</td>
<td>-0.6466</td>
</tr>
<tr>
<td>H(22)</td>
<td>-8.0873</td>
<td>-7.6978</td>
<td>-8.4429</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.9825</td>
<td>-5.9517</td>
<td>-5.5535</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.071</td>
<td>-5.4646</td>
<td>-7.9517</td>
</tr>
<tr>
<td>H(25)</td>
<td>-7.7331</td>
<td>-5.075</td>
<td>-6.8182</td>
</tr>
<tr>
<td>H(26)</td>
<td>-8.9065</td>
<td>-6.3752</td>
<td>-6.4274</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.843</td>
<td>-7.279</td>
<td>-8.3204</td>
</tr>
<tr>
<td>H(28)</td>
<td>-3.83</td>
<td>-5.5343</td>
<td>-7.9331</td>
</tr>
<tr>
<td>H(29)</td>
<td>-4.256</td>
<td>-8.9779</td>
<td>-5.9755</td>
</tr>
<tr>
<td>H(30)</td>
<td>-1.935</td>
<td>-7.3828</td>
<td>-4.7178</td>
</tr>
<tr>
<td>H(31)</td>
<td>-2.0231</td>
<td>-9.157</td>
<td>-4.9922</td>
</tr>
</tbody>
</table>
2-OTol \((R,R,R,S)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.4043</td>
<td>-1.6677</td>
<td>2.0443</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.4975</td>
<td>-0.6323</td>
<td>0.5629</td>
</tr>
<tr>
<td>O(3)</td>
<td>-2.0115</td>
<td>-1.3907</td>
<td>-0.5141</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.7981</td>
<td>0.5761</td>
<td>0.7955</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.9589</td>
<td>-0.2881</td>
<td>0.2685</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.4013</td>
<td>0.5024</td>
<td>0.6728</td>
</tr>
<tr>
<td>C(7)</td>
<td>-4.8742</td>
<td>-1.5019</td>
<td>0.0742</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-4.083</td>
<td>0.744</td>
<td>-1.192</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.2068</td>
<td>1.5036</td>
<td>1.6649</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.0394</td>
<td>0.8282</td>
<td>-0.7599</td>
</tr>
<tr>
<td>C(11)</td>
<td>-0.302</td>
<td>2.2816</td>
<td>-1.1202</td>
</tr>
<tr>
<td>O(12)</td>
<td>1.4236</td>
<td>0.6743</td>
<td>-0.9074</td>
</tr>
<tr>
<td>C(13)</td>
<td>-0.1515</td>
<td>2.9528</td>
<td>1.3075</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.2968</td>
<td>3.2823</td>
<td>-0.1217</td>
</tr>
<tr>
<td>C(15)</td>
<td>1.9957</td>
<td>-0.5645</td>
<td>-0.7609</td>
</tr>
<tr>
<td>C(16)</td>
<td>3.2986</td>
<td>-0.6492</td>
<td>-0.2486</td>
</tr>
<tr>
<td>C(17)</td>
<td>3.9476</td>
<td>-1.8662</td>
<td>-0.0361</td>
</tr>
<tr>
<td>C(18)</td>
<td>3.3052</td>
<td>-3.0756</td>
<td>-0.3131</td>
</tr>
<tr>
<td>C(19)</td>
<td>1.9906</td>
<td>-3.0162</td>
<td>-0.7826</td>
</tr>
<tr>
<td>C(20)</td>
<td>1.3544</td>
<td>-1.7905</td>
<td>-0.9918</td>
</tr>
<tr>
<td>C(21)</td>
<td>3.9993</td>
<td>-4.3933</td>
<td>-0.0784</td>
</tr>
<tr>
<td>H(22)</td>
<td>-4.363</td>
<td>0.3362</td>
<td>1.096</td>
</tr>
<tr>
<td>H(23)</td>
<td>-0.0602</td>
<td>-0.5141</td>
<td>0.976</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.9205</td>
<td>-1.1908</td>
<td>-0.1504</td>
</tr>
<tr>
<td>H(25)</td>
<td>-4.9339</td>
<td>-2.1357</td>
<td>0.9865</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.5297</td>
<td>-2.1507</td>
<td>-0.7629</td>
</tr>
<tr>
<td>H(27)</td>
<td>-0.1478</td>
<td>1.2747</td>
<td>2.6986</td>
</tr>
<tr>
<td>H(28)</td>
<td>1.3169</td>
<td>1.393</td>
<td>1.685</td>
</tr>
<tr>
<td>H(29)</td>
<td>-0.4705</td>
<td>0.1889</td>
<td>-1.5156</td>
</tr>
<tr>
<td>H(30)</td>
<td>0.0664</td>
<td>2.5148</td>
<td>-2.1481</td>
</tr>
<tr>
<td>H(31)</td>
<td>-1.409</td>
<td>2.4162</td>
<td>-1.1478</td>
</tr>
</tbody>
</table>
2-OTol \((R,R,S)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-3.4061</td>
<td>-3.3701</td>
<td>1.1362</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.5469</td>
<td>-2.6855</td>
<td>-0.3034</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.8353</td>
<td>-3.7367</td>
<td>-0.9075</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.7663</td>
<td>-1.5797</td>
<td>0.1156</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.5803</td>
<td>-2.1864</td>
<td>-1.3175</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.3935</td>
<td>-1.7957</td>
<td>0.2947</td>
</tr>
<tr>
<td>C(7)</td>
<td>-4.598</td>
<td>-3.2398</td>
<td>-1.7695</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-2.7624</td>
<td>-1.5458</td>
<td>-2.7783</td>
</tr>
<tr>
<td>C(9)</td>
<td>-0.1154</td>
<td>-2.7954</td>
<td>1.4259</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.2732</td>
<td>-0.4531</td>
<td>0.6286</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.7812</td>
<td>-0.6529</td>
<td>0.8367</td>
</tr>
<tr>
<td>O(12)</td>
<td>0.1383</td>
<td>0.4901</td>
<td>-0.3998</td>
</tr>
<tr>
<td>C(13)</td>
<td>1.3888</td>
<td>-2.9889</td>
<td>1.6637</td>
</tr>
<tr>
<td>C(14)</td>
<td>2.0645</td>
<td>-1.648</td>
<td>1.9681</td>
</tr>
<tr>
<td>C(15)</td>
<td>-1.0724</td>
<td>1.0848</td>
<td>-0.6538</td>
</tr>
<tr>
<td>C(16)</td>
<td>-1.3484</td>
<td>1.5099</td>
<td>-1.9611</td>
</tr>
<tr>
<td>C(17)</td>
<td>-2.5659</td>
<td>2.0852</td>
<td>-2.3279</td>
</tr>
<tr>
<td>C(18)</td>
<td>-3.5875</td>
<td>2.249</td>
<td>-1.3896</td>
</tr>
<tr>
<td>C(19)</td>
<td>-3.3444</td>
<td>1.8092</td>
<td>-0.0858</td>
</tr>
<tr>
<td>C(20)</td>
<td>-2.1197</td>
<td>1.2387</td>
<td>0.2683</td>
</tr>
<tr>
<td>C(21)</td>
<td>-4.9202</td>
<td>2.8401</td>
<td>-1.7729</td>
</tr>
<tr>
<td>H(22)</td>
<td>-4.1297</td>
<td>-1.3182</td>
<td>-0.8903</td>
</tr>
<tr>
<td>H(23)</td>
<td>0.0382</td>
<td>-2.1644</td>
<td>-0.6659</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.2955</td>
<td>-2.8305</td>
<td>-2.5363</td>
</tr>
<tr>
<td>H(25)</td>
<td>-5.2412</td>
<td>-3.5924</td>
<td>-0.9332</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.1007</td>
<td>-4.1332</td>
<td>-2.2111</td>
</tr>
<tr>
<td>H(27)</td>
<td>-0.5934</td>
<td>-2.4337</td>
<td>2.367</td>
</tr>
<tr>
<td>H(28)</td>
<td>-0.5473</td>
<td>-3.7977</td>
<td>1.2021</td>
</tr>
<tr>
<td>H(29)</td>
<td>-0.1262</td>
<td>-0.0342</td>
<td>1.5801</td>
</tr>
<tr>
<td>H(30)</td>
<td>2.244</td>
<td>-1.0244</td>
<td>-0.1086</td>
</tr>
<tr>
<td>H(31)</td>
<td>2.2686</td>
<td>0.3232</td>
<td>1.0745</td>
</tr>
</tbody>
</table>
2-OTol (R,R,S,R)-(a,a)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.4844</td>
<td>-2.0669</td>
<td>-0.7309</td>
</tr>
<tr>
<td>C(2)</td>
<td>-2.6069</td>
<td>-0.6999</td>
<td>0.4493</td>
</tr>
<tr>
<td>O(3)</td>
<td>-2.2095</td>
<td>-1.1882</td>
<td>1.7056</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.8399</td>
<td>0.3891</td>
<td>-0.0296</td>
</tr>
<tr>
<td>C(5)</td>
<td>-4.063</td>
<td>-0.2431</td>
<td>0.5589</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.4585</td>
<td>0.3075</td>
<td>0.2071</td>
</tr>
<tr>
<td>C(7)</td>
<td>-5.046</td>
<td>-1.3363</td>
<td>0.9908</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-4.2116</td>
<td>1.1272</td>
<td>1.7053</td>
</tr>
<tr>
<td>C(9)</td>
<td>-0.0891</td>
<td>1.0594</td>
<td>1.4919</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.2613</td>
<td>0.9097</td>
<td>-1.0046</td>
</tr>
<tr>
<td>C(11)</td>
<td>-0.0419</td>
<td>2.4102</td>
<td>-1.1158</td>
</tr>
<tr>
<td>O(12)</td>
<td>1.6511</td>
<td>0.7626</td>
<td>-0.9177</td>
</tr>
<tr>
<td>C(13)</td>
<td>-0.3669</td>
<td>2.5654</td>
<td>1.3845</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.3411</td>
<td>3.1672</td>
<td>0.1643</td>
</tr>
<tr>
<td>C(15)</td>
<td>2.1981</td>
<td>-0.4935</td>
<td>-0.8459</td>
</tr>
<tr>
<td>C(16)</td>
<td>3.3852</td>
<td>-0.6689</td>
<td>-0.1208</td>
</tr>
<tr>
<td>C(17)</td>
<td>3.986</td>
<td>-1.9167</td>
<td>0.0508</td>
</tr>
<tr>
<td>C(18)</td>
<td>3.4046</td>
<td>-3.0666</td>
<td>-0.4888</td>
</tr>
<tr>
<td>C(19)</td>
<td>2.2055</td>
<td>-2.9184</td>
<td>-1.1912</td>
</tr>
<tr>
<td>C(20)</td>
<td>1.6153</td>
<td>-1.6635</td>
<td>-1.3567</td>
</tr>
<tr>
<td>C(21)</td>
<td>4.0199</td>
<td>-4.4278</td>
<td>-0.286</td>
</tr>
<tr>
<td>H(22)</td>
<td>-4.3933</td>
<td>0.167</td>
<td>-0.4214</td>
</tr>
<tr>
<td>H(23)</td>
<td>-0.1685</td>
<td>-0.7619</td>
<td>0.3134</td>
</tr>
<tr>
<td>H(24)</td>
<td>-6.0852</td>
<td>-0.9412</td>
<td>1.0689</td>
</tr>
<tr>
<td>H(25)</td>
<td>-4.7758</td>
<td>-1.7678</td>
<td>1.9813</td>
</tr>
<tr>
<td>H(26)</td>
<td>-5.0919</td>
<td>-2.1744</td>
<td>0.2606</td>
</tr>
<tr>
<td>H(27)</td>
<td>-0.6415</td>
<td>0.6442</td>
<td>2.3665</td>
</tr>
<tr>
<td>H(28)</td>
<td>0.9942</td>
<td>0.904</td>
<td>1.7103</td>
</tr>
<tr>
<td>H(29)</td>
<td>-0.0873</td>
<td>0.431</td>
<td>-1.9511</td>
</tr>
<tr>
<td>H(30)</td>
<td>0.5057</td>
<td>2.845</td>
<td>-1.986</td>
</tr>
<tr>
<td>H(31)</td>
<td>-1.129</td>
<td>2.5618</td>
<td>-1.3179</td>
</tr>
</tbody>
</table>
2-OTol \((R,R,S,R)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-5.1143</td>
<td>-8.1603</td>
<td>-8.1619</td>
</tr>
<tr>
<td>C(2)</td>
<td>-6.3927</td>
<td>-7.5718</td>
<td>-7.0201</td>
</tr>
<tr>
<td>O(3)</td>
<td>-6.8797</td>
<td>-8.6917</td>
<td>-6.3268</td>
</tr>
<tr>
<td>O(4)</td>
<td>-5.8787</td>
<td>-6.521</td>
<td>-6.2193</td>
</tr>
<tr>
<td>C(5)</td>
<td>-7.5441</td>
<td>-7.0051</td>
<td>-7.8617</td>
</tr>
<tr>
<td>C(6)</td>
<td>-5.2622</td>
<td>-6.8363</td>
<td>-4.9954</td>
</tr>
<tr>
<td>Cl(7)</td>
<td>-8.1758</td>
<td>-7.9995</td>
<td>-8.8437</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-8.8553</td>
<td>-6.3554</td>
<td>-6.8286</td>
</tr>
<tr>
<td>C(9)</td>
<td>-4.1302</td>
<td>-7.8605</td>
<td>-5.1081</td>
</tr>
<tr>
<td>C(10)</td>
<td>-6.2527</td>
<td>-7.1704</td>
<td>-3.8768</td>
</tr>
<tr>
<td>C(11)</td>
<td>-5.508</td>
<td>-7.3729</td>
<td>-2.5485</td>
</tr>
<tr>
<td>O(12)</td>
<td>-7.1754</td>
<td>-6.1235</td>
<td>-3.7402</td>
</tr>
<tr>
<td>C(13)</td>
<td>-3.4014</td>
<td>-8.0313</td>
<td>-3.7671</td>
</tr>
<tr>
<td>C(14)</td>
<td>-4.3971</td>
<td>-8.4246</td>
<td>-2.6692</td>
</tr>
<tr>
<td>C(15)</td>
<td>-8.2132</td>
<td>-6.3844</td>
<td>-2.8844</td>
</tr>
<tr>
<td>C(16)</td>
<td>-9.2818</td>
<td>-7.2165</td>
<td>-3.2443</td>
</tr>
<tr>
<td>C(17)</td>
<td>-10.3639</td>
<td>-7.4386</td>
<td>-2.3912</td>
</tr>
<tr>
<td>C(18)</td>
<td>-10.4435</td>
<td>-6.7961</td>
<td>-1.1523</td>
</tr>
<tr>
<td>C(19)</td>
<td>-9.4189</td>
<td>-5.9092</td>
<td>-0.8097</td>
</tr>
<tr>
<td>C(20)</td>
<td>-8.3449</td>
<td>-5.6902</td>
<td>-1.6745</td>
</tr>
<tr>
<td>C(21)</td>
<td>-11.6077</td>
<td>-7.0491</td>
<td>-0.2286</td>
</tr>
<tr>
<td>H(22)</td>
<td>-7.178</td>
<td>-6.1243</td>
<td>-8.4354</td>
</tr>
<tr>
<td>H(23)</td>
<td>-4.7761</td>
<td>-5.8748</td>
<td>-4.6848</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.0216</td>
<td>-7.538</td>
<td>-9.4039</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.5723</td>
<td>-8.9004</td>
<td>-8.3227</td>
</tr>
<tr>
<td>H(26)</td>
<td>-7.4571</td>
<td>-8.3483</td>
<td>-9.6176</td>
</tr>
<tr>
<td>H(27)</td>
<td>-4.5293</td>
<td>-8.8577</td>
<td>-5.4045</td>
</tr>
<tr>
<td>H(28)</td>
<td>-3.3915</td>
<td>-7.5377</td>
<td>-5.88</td>
</tr>
<tr>
<td>H(29)</td>
<td>-6.7978</td>
<td>-8.1106</td>
<td>-4.112</td>
</tr>
<tr>
<td>H(30)</td>
<td>-5.0593</td>
<td>-6.4055</td>
<td>-2.2189</td>
</tr>
<tr>
<td>H(31)</td>
<td>-6.2146</td>
<td>-7.6938</td>
<td>-1.7463</td>
</tr>
</tbody>
</table>
2-OTol (R,R,S,S)-(a,a)

Cl(1) -2.4873 -2.1263 -0.6531
C(2) -2.6457 -0.6291 0.3504
O(3) -2.3815 -1.0249 1.6735
O(4) -1.8051 0.3899 -0.1489
C(5) -4.0887 -0.1286 0.2897
C(6) -0.4562 0.3073 0.2263
C(7) -4.519 0.3692 -1.0929
Cl(8) -4.3589 1.1682 1.4953
C(9) -0.1997 1.109 1.5089
C(10) 0.3788 0.8593 -0.9343
C(11) 0.1139 2.3584 -1.1279
O(12) 1.7506 0.6869 -0.7149
C(13) -0.4577 2.6101 1.3173
C(14) 0.3767 3.1603 0.1543
C(15) 2.2677 -0.581 -0.6198
C(16) 3.394 -0.7893 0.189
C(17) 3.9636 -2.0495 0.3761
C(18) 3.4092 -3.18 -0.2286
C(19) 2.2682 -3.0002 -1.0151
C(20) 1.7064 -1.7337 -1.1913
C(21) 4.0261 -4.5402 -0.0241
H(22) -4.7773 -0.9436 0.6063
H(23) -0.1899 -0.7608 0.3951
H(24) -5.5819 0.704 -1.0922
H(25) -4.4407 -0.4302 -1.8632
H(26) -3.8987 1.2273 -1.4379
H(27) -0.8282 0.7341 2.3489
H(28) 0.8585 0.9596 1.8302
H(29) 0.1057 0.36 -1.8945
H(30) 0.7521 2.7535 -1.9543
H(31) -0.9453 2.5146 -1.4437
2-OTol (R,R,S,S)-(e,e)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-0.409</td>
<td>-2.4932</td>
<td>-1.6442</td>
</tr>
<tr>
<td>C(2)</td>
<td>-1.5603</td>
<td>-1.634</td>
<td>-0.5455</td>
</tr>
<tr>
<td>O(3)</td>
<td>-2.18</td>
<td>-2.654</td>
<td>0.1975</td>
</tr>
<tr>
<td>O(4)</td>
<td>-0.8968</td>
<td>-0.641</td>
<td>0.2132</td>
</tr>
<tr>
<td>C(5)</td>
<td>-2.641</td>
<td>-0.9574</td>
<td>-1.3887</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.2031</td>
<td>-1.0968</td>
<td>1.3437</td>
</tr>
<tr>
<td>C(7)</td>
<td>-2.1291</td>
<td>0.1904</td>
<td>-2.2618</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-3.9716</td>
<td>-0.3624</td>
<td>-0.3484</td>
</tr>
<tr>
<td>C(9)</td>
<td>-1.1525</td>
<td>-1.1614</td>
<td>2.5503</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.9351</td>
<td>-0.1194</td>
<td>1.6662</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.6817</td>
<td>-0.5615</td>
<td>2.9313</td>
</tr>
<tr>
<td>O(12)</td>
<td>1.8877</td>
<td>-0.0534</td>
<td>0.6386</td>
</tr>
<tr>
<td>C(13)</td>
<td>-0.4224</td>
<td>-1.604</td>
<td>3.8256</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.7391</td>
<td>-0.6542</td>
<td>4.1371</td>
</tr>
<tr>
<td>C(15)</td>
<td>1.5818</td>
<td>0.6444</td>
<td>-0.5012</td>
</tr>
<tr>
<td>C(16)</td>
<td>1.862</td>
<td>0.0849</td>
<td>-1.7553</td>
</tr>
<tr>
<td>C(17)</td>
<td>1.5462</td>
<td>0.7317</td>
<td>-2.9507</td>
</tr>
<tr>
<td>C(18)</td>
<td>0.9393</td>
<td>1.9902</td>
<td>-2.9415</td>
</tr>
<tr>
<td>C(19)</td>
<td>0.6758</td>
<td>2.5765</td>
<td>-1.7008</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.985</td>
<td>1.914</td>
<td>-0.5118</td>
</tr>
<tr>
<td>C(21)</td>
<td>0.5806</td>
<td>2.7054</td>
<td>-4.2183</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.1255</td>
<td>-1.714</td>
<td>-2.0459</td>
</tr>
<tr>
<td>H(23)</td>
<td>0.241</td>
<td>-2.0978</td>
<td>1.138</td>
</tr>
<tr>
<td>H(24)</td>
<td>-2.9443</td>
<td>0.626</td>
<td>-2.8839</td>
</tr>
<tr>
<td>H(25)</td>
<td>-1.339</td>
<td>-0.1466</td>
<td>-2.969</td>
</tr>
<tr>
<td>H(26)</td>
<td>-1.7034</td>
<td>1.0149</td>
<td>-1.6475</td>
</tr>
<tr>
<td>H(27)</td>
<td>-1.6123</td>
<td>-0.1582</td>
<td>2.7163</td>
</tr>
<tr>
<td>H(28)</td>
<td>-1.997</td>
<td>-1.8651</td>
<td>2.3757</td>
</tr>
<tr>
<td>H(29)</td>
<td>0.5195</td>
<td>0.8924</td>
<td>1.8728</td>
</tr>
<tr>
<td>H(30)</td>
<td>2.1603</td>
<td>-1.5542</td>
<td>2.7556</td>
</tr>
<tr>
<td>H(31)</td>
<td>2.5024</td>
<td>0.1602</td>
<td>3.1613</td>
</tr>
</tbody>
</table>
2-STol \((R,R,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.4251</td>
<td>0.3559</td>
<td>1.8738</td>
</tr>
<tr>
<td>C(2)</td>
<td>-1.8881</td>
<td>0.6425</td>
<td>0.1701</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.5849</td>
<td>-0.6348</td>
<td>-0.3392</td>
</tr>
<tr>
<td>O(4)</td>
<td>-0.8239</td>
<td>1.5742</td>
<td>0.1455</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.0509</td>
<td>1.2063</td>
<td>-0.6446</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.4532</td>
<td>1.0182</td>
<td>0.3137</td>
</tr>
<tr>
<td>C(7)</td>
<td>-3.499</td>
<td>2.606</td>
<td>-0.2167</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-2.6466</td>
<td>1.2192</td>
<td>-2.3892</td>
</tr>
<tr>
<td>C(9)</td>
<td>1.3328</td>
<td>2.0491</td>
<td>1.0328</td>
</tr>
<tr>
<td>C(10)</td>
<td>1.0355</td>
<td>0.6298</td>
<td>-1.0578</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.3913</td>
<td>1.8678</td>
<td>-1.903</td>
</tr>
<tr>
<td>S(12)</td>
<td>2.52</td>
<td>-0.4263</td>
<td>-0.8631</td>
</tr>
<tr>
<td>C(13)</td>
<td>1.5983</td>
<td>3.2885</td>
<td>0.1689</td>
</tr>
<tr>
<td>C(14)</td>
<td>2.2617</td>
<td>2.8855</td>
<td>-1.1535</td>
</tr>
<tr>
<td>C(15)</td>
<td>1.6116</td>
<td>-1.9094</td>
<td>-0.3224</td>
</tr>
<tr>
<td>C(16)</td>
<td>1.6004</td>
<td>-2.2617</td>
<td>1.0287</td>
</tr>
<tr>
<td>C(17)</td>
<td>0.8977</td>
<td>-3.3937</td>
<td>1.4456</td>
</tr>
<tr>
<td>C(18)</td>
<td>0.2157</td>
<td>-4.1969</td>
<td>0.5242</td>
</tr>
<tr>
<td>C(19)</td>
<td>0.2425</td>
<td>-3.835</td>
<td>-0.8276</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.9387</td>
<td>-2.7024</td>
<td>-1.2543</td>
</tr>
<tr>
<td>C(21)</td>
<td>-0.5551</td>
<td>-5.4095</td>
<td>0.9828</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.9209</td>
<td>0.5158</td>
<td>-0.5717</td>
</tr>
<tr>
<td>H(23)</td>
<td>0.3643</td>
<td>0.1391</td>
<td>0.9927</td>
</tr>
<tr>
<td>H(24)</td>
<td>-4.3623</td>
<td>2.9592</td>
<td>-0.8268</td>
</tr>
<tr>
<td>H(25)</td>
<td>-2.6824</td>
<td>3.3553</td>
<td>-0.3254</td>
</tr>
<tr>
<td>H(26)</td>
<td>-3.8336</td>
<td>2.6266</td>
<td>0.8445</td>
</tr>
<tr>
<td>H(27)</td>
<td>0.8478</td>
<td>2.3567</td>
<td>1.9904</td>
</tr>
<tr>
<td>H(28)</td>
<td>2.3074</td>
<td>1.5843</td>
<td>1.3142</td>
</tr>
<tr>
<td>H(29)</td>
<td>0.289</td>
<td>0.0509</td>
<td>-1.6529</td>
</tr>
<tr>
<td>H(30)</td>
<td>1.8866</td>
<td>1.5667</td>
<td>-2.8567</td>
</tr>
<tr>
<td>H(31)</td>
<td>0.4445</td>
<td>2.381</td>
<td>-2.2001</td>
</tr>
</tbody>
</table>
2-STol (R,R,R)-(e,e)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-6.2005</td>
<td>-9.6377</td>
<td>-6.9442</td>
</tr>
<tr>
<td>C(2)</td>
<td>-6.2959</td>
<td>-8.0717</td>
<td>-7.8366</td>
</tr>
<tr>
<td>O(3)</td>
<td>-5.8223</td>
<td>-8.3264</td>
<td>-9.1354</td>
</tr>
<tr>
<td>O(4)</td>
<td>-5.6743</td>
<td>-7.0004</td>
<td>-7.1504</td>
</tr>
<tr>
<td>C(5)</td>
<td>-7.7762</td>
<td>-7.7081</td>
<td>-8.0168</td>
</tr>
<tr>
<td>C(6)</td>
<td>-4.2723</td>
<td>-6.9595</td>
<td>-7.0129</td>
</tr>
<tr>
<td>C(7)</td>
<td>-8.5298</td>
<td>-7.4047</td>
<td>-6.7212</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-7.9646</td>
<td>-6.3253</td>
<td>-9.1416</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.4674</td>
<td>-7.4356</td>
<td>-8.225</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.7592</td>
<td>-7.5859</td>
<td>-5.7046</td>
</tr>
<tr>
<td>C(11)</td>
<td>-2.2364</td>
<td>-7.3817</td>
<td>-5.5508</td>
</tr>
<tr>
<td>S(12)</td>
<td>-4.5185</td>
<td>-6.799</td>
<td>-4.2334</td>
</tr>
<tr>
<td>C(13)</td>
<td>-1.9645</td>
<td>-7.1747</td>
<td>-8.0433</td>
</tr>
<tr>
<td>C(14)</td>
<td>-1.4578</td>
<td>-7.8762</td>
<td>-6.7772</td>
</tr>
<tr>
<td>C(15)</td>
<td>-5.6848</td>
<td>-8.1085</td>
<td>-3.768</td>
</tr>
<tr>
<td>C(16)</td>
<td>-7.041</td>
<td>-7.797</td>
<td>-3.6486</td>
</tr>
<tr>
<td>C(17)</td>
<td>-7.9545</td>
<td>-8.7901</td>
<td>-3.2898</td>
</tr>
<tr>
<td>C(18)</td>
<td>-7.5313</td>
<td>-10.0997</td>
<td>-3.0375</td>
</tr>
<tr>
<td>C(19)</td>
<td>-6.1653</td>
<td>-10.3908</td>
<td>-3.1282</td>
</tr>
<tr>
<td>C(20)</td>
<td>-5.2439</td>
<td>-9.4038</td>
<td>-3.4829</td>
</tr>
<tr>
<td>C(21)</td>
<td>-8.5363</td>
<td>-11.1578</td>
<td>-2.6575</td>
</tr>
<tr>
<td>H(22)</td>
<td>-8.3002</td>
<td>-8.5448</td>
<td>-8.5324</td>
</tr>
<tr>
<td>H(23)</td>
<td>-4.0459</td>
<td>-5.8646</td>
<td>-6.9231</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.6009</td>
<td>-7.1669</td>
<td>-6.9157</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.087</td>
<td>-6.5372</td>
<td>-6.1824</td>
</tr>
<tr>
<td>H(26)</td>
<td>-8.5288</td>
<td>-8.2785</td>
<td>-6.0329</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.5895</td>
<td>-8.5358</td>
<td>-8.3621</td>
</tr>
<tr>
<td>H(28)</td>
<td>-3.8047</td>
<td>-6.9094</td>
<td>-9.1502</td>
</tr>
<tr>
<td>H(29)</td>
<td>-3.9295</td>
<td>-8.6852</td>
<td>-5.738</td>
</tr>
<tr>
<td>H(30)</td>
<td>-2.002</td>
<td>-6.2994</td>
<td>-5.407</td>
</tr>
<tr>
<td>H(31)</td>
<td>-1.8654</td>
<td>-7.9227</td>
<td>-4.6463</td>
</tr>
</tbody>
</table>
2-STol \((R,R,R,S)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-2.3952</td>
<td>0.3619</td>
<td>1.8671</td>
</tr>
<tr>
<td>C(2)</td>
<td>-1.889</td>
<td>0.6198</td>
<td>0.1484</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.5744</td>
<td>-0.6454</td>
<td>-0.3791</td>
</tr>
<tr>
<td>O(4)</td>
<td>-0.8299</td>
<td>1.561</td>
<td>0.1188</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.0585</td>
<td>1.1917</td>
<td>-0.6543</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.4471</td>
<td>1.0246</td>
<td>0.3468</td>
</tr>
<tr>
<td>C(7)</td>
<td>-4.3213</td>
<td>0.3239</td>
<td>-0.6567</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-2.5742</td>
<td>1.4754</td>
<td>-2.3569</td>
</tr>
<tr>
<td>C(9)</td>
<td>1.2833</td>
<td>2.0841</td>
<td>1.0758</td>
</tr>
<tr>
<td>C(10)</td>
<td>1.0884</td>
<td>0.6103</td>
<td>-0.9908</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.4822</td>
<td>1.8289</td>
<td>-1.8474</td>
</tr>
<tr>
<td>S(12)</td>
<td>2.5643</td>
<td>-0.4397</td>
<td>-0.7114</td>
</tr>
<tr>
<td>C(13)</td>
<td>1.5741</td>
<td>3.3034</td>
<td>0.1916</td>
</tr>
<tr>
<td>C(14)</td>
<td>2.31</td>
<td>2.8696</td>
<td>-1.0816</td>
</tr>
<tr>
<td>C(15)</td>
<td>1.6372</td>
<td>-1.9082</td>
<td>-0.1624</td>
</tr>
<tr>
<td>C(16)</td>
<td>1.5999</td>
<td>-2.2344</td>
<td>1.1948</td>
</tr>
<tr>
<td>C(17)</td>
<td>0.88</td>
<td>-3.3525</td>
<td>1.6208</td>
</tr>
<tr>
<td>C(18)</td>
<td>0.2036</td>
<td>-4.1645</td>
<td>0.7038</td>
</tr>
<tr>
<td>C(19)</td>
<td>0.2609</td>
<td>-3.8324</td>
<td>-0.6546</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.9771</td>
<td>-2.7156</td>
<td>-1.091</td>
</tr>
<tr>
<td>C(21)</td>
<td>-0.5918</td>
<td>-5.3564</td>
<td>1.1751</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.3171</td>
<td>2.1985</td>
<td>-0.2572</td>
</tr>
<tr>
<td>H(23)</td>
<td>0.3443</td>
<td>0.1583</td>
<td>1.0399</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.1338</td>
<td>0.7925</td>
<td>-1.259</td>
</tr>
<tr>
<td>H(25)</td>
<td>-4.7401</td>
<td>0.1828</td>
<td>0.3641</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.128</td>
<td>-0.6868</td>
<td>-1.0828</td>
</tr>
<tr>
<td>H(27)</td>
<td>0.7531</td>
<td>2.4119</td>
<td>2.0023</td>
</tr>
<tr>
<td>H(28)</td>
<td>2.2492</td>
<td>1.6383</td>
<td>1.412</td>
</tr>
<tr>
<td>H(29)</td>
<td>0.3677</td>
<td>0.0179</td>
<td>-1.6045</td>
</tr>
<tr>
<td>H(30)</td>
<td>2.0254</td>
<td>1.5073</td>
<td>-2.7678</td>
</tr>
<tr>
<td>H(31)</td>
<td>0.5493</td>
<td>2.3296</td>
<td>-2.2035</td>
</tr>
</tbody>
</table>
2-STol \((R,R,R,S)-(e,e)\)

|------|-------|
2-STol \((R,R,S,R)-(a,a)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-1.7685</td>
<td>-0.3684</td>
<td>-1.4719</td>
</tr>
<tr>
<td>C(2)</td>
<td>-1.8726</td>
<td>0.5868</td>
<td>0.0628</td>
</tr>
<tr>
<td>O(3)</td>
<td>-1.8639</td>
<td>-0.3577</td>
<td>1.1063</td>
</tr>
<tr>
<td>O(4)</td>
<td>-0.8199</td>
<td>1.5386</td>
<td>0.0732</td>
</tr>
<tr>
<td>C(5)</td>
<td>-3.2043</td>
<td>1.3371</td>
<td>0.1227</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.1919</td>
<td>1.3275</td>
<td>1.022</td>
</tr>
<tr>
<td>C(7)</td>
<td>-4.4485</td>
<td>0.4493</td>
<td>0.0137</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-3.3175</td>
<td>2.2753</td>
<td>1.6465</td>
</tr>
<tr>
<td>C(9)</td>
<td>1.0025</td>
<td>2.627</td>
<td>1.1247</td>
</tr>
<tr>
<td>C(10)</td>
<td>1.0822</td>
<td>0.132</td>
<td>0.643</td>
</tr>
<tr>
<td>C(11)</td>
<td>1.9541</td>
<td>0.4333</td>
<td>-0.5902</td>
</tr>
<tr>
<td>C(12)</td>
<td>2.1608</td>
<td>-0.3456</td>
<td>2.0466</td>
</tr>
<tr>
<td>C(13)</td>
<td>1.8028</td>
<td>2.9126</td>
<td>-0.1529</td>
</tr>
<tr>
<td>C(14)</td>
<td>2.7436</td>
<td>1.744</td>
<td>-0.47</td>
</tr>
<tr>
<td>C(15)</td>
<td>0.8359</td>
<td>-1.0906</td>
<td>3.0497</td>
</tr>
<tr>
<td>C(16)</td>
<td>0.3468</td>
<td>-0.4169</td>
<td>4.1695</td>
</tr>
<tr>
<td>C(17)</td>
<td>-0.6743</td>
<td>-0.9884</td>
<td>4.9339</td>
</tr>
<tr>
<td>C(18)</td>
<td>-1.2098</td>
<td>-2.2361</td>
<td>4.5988</td>
</tr>
<tr>
<td>C(19)</td>
<td>-0.701</td>
<td>-2.9045</td>
<td>3.478</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.3189</td>
<td>-2.3436</td>
<td>2.7093</td>
</tr>
<tr>
<td>C(21)</td>
<td>-2.3247</td>
<td>-2.8535</td>
<td>5.4053</td>
</tr>
<tr>
<td>H(22)</td>
<td>-3.2369</td>
<td>2.0976</td>
<td>-0.6889</td>
</tr>
<tr>
<td>H(23)</td>
<td>-0.3022</td>
<td>1.1815</td>
<td>2.0116</td>
</tr>
<tr>
<td>H(24)</td>
<td>-5.3841</td>
<td>1.0503</td>
<td>0.0878</td>
</tr>
<tr>
<td>H(25)</td>
<td>-4.4802</td>
<td>0.3207</td>
<td>0.8176</td>
</tr>
<tr>
<td>H(26)</td>
<td>-4.5025</td>
<td>-0.0813</td>
<td>-0.9626</td>
</tr>
<tr>
<td>H(27)</td>
<td>0.318</td>
<td>3.484</td>
<td>1.3351</td>
</tr>
<tr>
<td>H(28)</td>
<td>1.7036</td>
<td>2.5717</td>
<td>1.9906</td>
</tr>
<tr>
<td>H(29)</td>
<td>0.4624</td>
<td>-0.7594</td>
<td>0.3859</td>
</tr>
<tr>
<td>H(30)</td>
<td>2.6476</td>
<td>-0.4156</td>
<td>-0.8</td>
</tr>
<tr>
<td>H(31)</td>
<td>1.2906</td>
<td>0.5137</td>
<td>-1.4849</td>
</tr>
</tbody>
</table>
2-STol \((R,R,S,R)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-6.2914</td>
<td>-8.4697</td>
<td>-9.278</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>-6.269</td>
<td>-8.0303</td>
<td>-7.5234</td>
</tr>
<tr>
<td>O(3)</td>
<td>-5.881</td>
<td>-9.17</td>
<td>-6.7972</td>
</tr>
<tr>
<td>O(4)</td>
<td>-5.4693</td>
<td>-6.8883</td>
<td>-7.2723</td>
</tr>
<tr>
<td>C(5)</td>
<td>-7.6918</td>
<td>-7.68</td>
<td>-7.0725</td>
</tr>
<tr>
<td>C(6)</td>
<td>-4.0958</td>
<td>-7.0592</td>
<td>-7.0255</td>
</tr>
<tr>
<td>C(7)</td>
<td>-8.2884</td>
<td>-6.449</td>
<td>-7.7598</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-8.8221</td>
<td>-9.0623</td>
<td>-7.1874</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.3595</td>
<td>-7.87</td>
<td>-8.0952</td>
</tr>
<tr>
<td>C(10)</td>
<td>-3.7705</td>
<td>-7.5352</td>
<td>-5.5996</td>
</tr>
<tr>
<td>C(11)</td>
<td>-2.2445</td>
<td>-7.5609</td>
<td>-5.3743</td>
</tr>
<tr>
<td>S(12)</td>
<td>-4.4744</td>
<td>-6.4021</td>
<td>-4.3435</td>
</tr>
<tr>
<td>C(13)</td>
<td>-1.844</td>
<td>-7.8747</td>
<td>-7.8449</td>
</tr>
<tr>
<td>C(14)</td>
<td>-1.5353</td>
<td>-8.4086</td>
<td>-6.4402</td>
</tr>
<tr>
<td>C(15)</td>
<td>-5.598</td>
<td>-7.5783</td>
<td>-3.5314</td>
</tr>
<tr>
<td>C(16)</td>
<td>-6.9545</td>
<td>-7.2596</td>
<td>-3.4247</td>
</tr>
<tr>
<td>C(17)</td>
<td>-7.8331</td>
<td>-8.142</td>
<td>-2.7931</td>
</tr>
<tr>
<td>C(18)</td>
<td>-7.373</td>
<td>-9.3456</td>
<td>-2.2476</td>
</tr>
<tr>
<td>C(19)</td>
<td>-6.0106</td>
<td>-9.6489</td>
<td>-2.3516</td>
</tr>
<tr>
<td>C(20)</td>
<td>-5.1242</td>
<td>-8.7728</td>
<td>-2.9802</td>
</tr>
<tr>
<td>C(21)</td>
<td>-8.3106</td>
<td>-10.3036</td>
<td>-1.5561</td>
</tr>
<tr>
<td>H(22)</td>
<td>-7.6549</td>
<td>-7.4627</td>
<td>-5.9825</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.6784</td>
<td>-6.0209</td>
<td>-7.1006</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.2715</td>
<td>-6.1725</td>
<td>-7.3141</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.4532</td>
<td>-6.6132</td>
<td>-8.848</td>
</tr>
<tr>
<td>H(26)</td>
<td>-7.6281</td>
<td>-5.5593</td>
<td>-7.6521</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.7043</td>
<td>-8.9295</td>
<td>-8.0929</td>
</tr>
<tr>
<td>H(28)</td>
<td>-3.5559</td>
<td>-7.4422</td>
<td>-9.1071</td>
</tr>
<tr>
<td>H(29)</td>
<td>-4.1223</td>
<td>-8.5816</td>
<td>-5.4651</td>
</tr>
<tr>
<td>H(30)</td>
<td>-1.828</td>
<td>-6.5258</td>
<td>-5.4131</td>
</tr>
<tr>
<td>H(31)</td>
<td>-2.0077</td>
<td>-7.9745</td>
<td>-4.3638</td>
</tr>
</tbody>
</table>
2-STol (\(R,R,S,S\))(a,a)

\[
\begin{align*}
\text{Cl(1)} & : -1.8041, -0.3878, -1.462 \\
\text{C(2)} & : -1.8692, 0.5922, 0.0587 \\
\text{O(3)} & : -1.8635, -0.3581, 1.0986 \\
\text{O(4)} & : -0.822, 1.5449, 0.0855 \\
\text{C(5)} & : -3.2041, 1.3363, 0.1127 \\
\text{C(6)} & : 0.2528, 1.2627, 0.9421 \\
\text{C(7)} & : -3.3676, 2.41, -0.967 \\
\text{Cl(8)} & : -3.4433, 2.0713, 1.7282 \\
\text{C(9)} & : 1.072, 2.5527, 1.088 \\
\text{C(10)} & : 1.1142, 0.1046, 0.4123 \\
\text{C(11)} & : 1.8917, 0.5029, -0.8563 \\
\text{S(12)} & : 2.2944, -0.4702, 1.6925 \\
\text{C(13)} & : 1.7794, 2.9407, -0.2172 \\
\text{C(14)} & : 2.6909, 1.8032, -0.6936 \\
\text{C(15)} & : 1.0469, -1.3063, 2.722 \\
\text{C(16)} & : 0.6378, -0.7319, 3.9268 \\
\text{C(17)} & : -0.3277, -1.3703, 4.7081 \\
\text{C(18)} & : -0.8876, -2.5885, 4.3058 \\
\text{C(19)} & : -0.4562, -3.1588, 3.1026 \\
\text{C(20)} & : 0.5091, -2.5294, 2.3151 \\
\text{C(21)} & : -1.9488, -3.2729, 5.1301 \\
\text{H(22)} & : -4.04, 0.6073, 0.0182 \\
\text{H(23)} & : -0.1698, 1.0399, 1.9501 \\
\text{H(24)} & : -4.364, 2.9046, -0.9012 \\
\text{H(25)} & : -3.2961, 1.9812, -1.9914 \\
\text{H(26)} & : -2.5933, 3.206, -0.8846 \\
\text{H(27)} & : 0.4071, 3.3885, 1.4141 \\
\text{H(28)} & : 1.834, 2.4316, 1.8937 \\
\text{H(29)} & : 0.4759, -0.7692, 0.1425 \\
\text{H(30)} & : 2.5654, -0.325, -1.1822 \\
\text{H(31)} & : 1.1637, 0.6505, -1.6903
\end{align*}
\]
2-STol \((R,R,S,S)-(e,e)\)

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>-6.0957</td>
<td>-7.908</td>
<td>-9.7189</td>
</tr>
<tr>
<td>C(2)</td>
<td>-6.24</td>
<td>-7.9122</td>
<td>-7.9119</td>
</tr>
<tr>
<td>O(3)</td>
<td>-5.8048</td>
<td>-9.1769</td>
<td>-7.4762</td>
</tr>
<tr>
<td>O(4)</td>
<td>-5.5738</td>
<td>-6.7984</td>
<td>-7.3468</td>
</tr>
<tr>
<td>C(5)</td>
<td>-7.7323</td>
<td>-7.8076</td>
<td>-7.5812</td>
</tr>
<tr>
<td>C(6)</td>
<td>-4.2186</td>
<td>-6.9327</td>
<td>-6.9927</td>
</tr>
<tr>
<td>C(7)</td>
<td>-8.3479</td>
<td>-6.4374</td>
<td>-7.8769</td>
</tr>
<tr>
<td>Cl(8)</td>
<td>-8.0525</td>
<td>-8.2474</td>
<td>-5.8783</td>
</tr>
<tr>
<td>C(9)</td>
<td>-3.3387</td>
<td>-7.567</td>
<td>-8.0761</td>
</tr>
<tr>
<td>C(10)</td>
<td>-4.0354</td>
<td>-7.552</td>
<td>-5.5942</td>
</tr>
<tr>
<td>C(11)</td>
<td>-2.5387</td>
<td>-7.6708</td>
<td>-5.2355</td>
</tr>
<tr>
<td>S(12)</td>
<td>-4.775</td>
<td>-6.4578</td>
<td>-4.3252</td>
</tr>
<tr>
<td>C(13)</td>
<td>-1.8652</td>
<td>-7.6302</td>
<td>-7.6507</td>
</tr>
<tr>
<td>C(14)</td>
<td>-1.7405</td>
<td>-8.3944</td>
<td>-6.3272</td>
</tr>
<tr>
<td>C(15)</td>
<td>-5.7368</td>
<td>-7.6424</td>
<td>-3.3401</td>
</tr>
<tr>
<td>C(16)</td>
<td>-6.997</td>
<td>-7.2341</td>
<td>-2.8872</td>
</tr>
<tr>
<td>C(17)</td>
<td>-7.7815</td>
<td>-8.095</td>
<td>-2.1183</td>
</tr>
<tr>
<td>C(18)</td>
<td>-7.3277</td>
<td>-9.3755</td>
<td>-1.7839</td>
</tr>
<tr>
<td>C(19)</td>
<td>-6.0661</td>
<td>-9.7752</td>
<td>-2.2388</td>
</tr>
<tr>
<td>C(20)</td>
<td>-5.2713</td>
<td>-8.9184</td>
<td>-3.0042</td>
</tr>
<tr>
<td>C(21)</td>
<td>-8.1926</td>
<td>-10.2904</td>
<td>-0.954</td>
</tr>
<tr>
<td>H(22)</td>
<td>-8.2935</td>
<td>-8.5796</td>
<td>-8.1548</td>
</tr>
<tr>
<td>H(23)</td>
<td>-3.8452</td>
<td>-5.8784</td>
<td>-6.9104</td>
</tr>
<tr>
<td>H(24)</td>
<td>-9.4447</td>
<td>-6.433</td>
<td>-7.6797</td>
</tr>
<tr>
<td>H(25)</td>
<td>-8.2149</td>
<td>-6.1458</td>
<td>-8.9424</td>
</tr>
<tr>
<td>H(26)</td>
<td>-7.8937</td>
<td>-5.636</td>
<td>-7.2516</td>
</tr>
<tr>
<td>H(27)</td>
<td>-3.6519</td>
<td>-8.6121</td>
<td>-8.2964</td>
</tr>
<tr>
<td>H(28)</td>
<td>-3.4141</td>
<td>-6.9813</td>
<td>-9.0235</td>
</tr>
<tr>
<td>H(29)</td>
<td>-4.4831</td>
<td>-8.5705</td>
<td>-5.5947</td>
</tr>
<tr>
<td>H(30)</td>
<td>-2.0895</td>
<td>-6.6569</td>
<td>-5.1021</td>
</tr>
<tr>
<td>H(31)</td>
<td>-2.4061</td>
<td>-8.2117</td>
<td>-4.2684</td>
</tr>
</tbody>
</table>