Supplementary Material

One-pot five-component reaction for synthesis of some novel bis-dihydroquinazolinone derivatives

Ali A. Mohammadi,* Salman Tahery, and Saber Askari

Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
E-mail: aliamohammadi@ccerci.ac.ir

Table of Contents

1 Title, author’s name and address 1
2 Experimental Section 3
3 General Procedure for the Preparation of Bis dihydro quinazoline 3
4 Table for new and known compounds 3
5 Spectral data for new products 4
6 1H NMR of 4e 7
7 13C NMR of 4e 8
8 1H NMR of 4f 9
9 13C NMR of 4f 10
10 1H NMR of 4i 11
11 13C NMR of 4i 12
12 1H NMR of 4j 13
13 13C NMR of 4j 14
14 1H NMR of 4k 15
15 13C NMR of 4k 16
16 1H NMR of 4l 17
17 1H NMR of 4m 18
18 13C NMR of 4m 19
19 1H NMR of 4n 20
20 1H NMR of 4o 21
21 13C NMR of 4o 22
22 1H NMR of 4p 23
23 13C NMR of 4p 24
General
Melting points were obtained in open capillary tubes and were measured on an electrothermal 9200 apparatus are uncorrected. Mass spectra were recorded on a Shimadzu QP 1100 BX mass spectrometer. IR spectra were recorded on KBr pellets on a Shimadzu IR–470 spectrophotometer. ¹H and ¹³C NMR spectra were determined on a Bruker 300 DRX Avance instrument at 300 and 75MHz. Elemental analysis for C, H and N were performed using a Heraus CHN rapid analyzer. All the reactions are monitored by thin layer chromatography (TLC) with UV light as detecting agent.

General Procedure for the synthesis of bis(1,2-dihydro quinazolinon-4(1H)-one) derivatives (4 a-r)
A mixture of, isatoic anhydride 1 (2 mmol), aldehyde 2 (2 mmol), diamine 3 (1 mmol), 0.15 g (0.3 mmol) alum, and 10 ml EtOH 96% in a 50 ml flask was stirred at reflux for the time period as indicated in table 1. After completion of the reaction (monitored by TLC, ethyl acetate /n-hexane, 4:1), the solid products obtained were just filtered off the reaction mixture. Water (25 mL) was added to the resulting solid (for removal of alum), and the resulting solid was separated by filtration. The crude product was washed with hot ethanol to afford the purified product.

Table 1: Synthesis of bisquinazolinone 4a-r using Alum as catalysts

<table>
<thead>
<tr>
<th>Products 4</th>
<th>Diamines 3</th>
<th>R</th>
<th>Time (min)</th>
<th>Yield (%)</th>
<th>Mp (°C)</th>
<th>Lit. Yield (Lit. Time)</th>
<th>Lit. Mp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>H</td>
<td>70</td>
<td>91</td>
<td>297-9</td>
<td>88 (3h)²⁹</td>
<td>291</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>4-Cl</td>
<td>55</td>
<td>93</td>
<td>281-3</td>
<td>74 (3h)²⁹</td>
<td>255</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>4-Me</td>
<td>55</td>
<td>96</td>
<td>295-7</td>
<td>85 (3h)²⁹</td>
<td>270</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>4-NO₂</td>
<td>55</td>
<td>96</td>
<td>286-8 (dec)</td>
<td>61(3h)²⁹</td>
<td>275</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>2,4-diCl</td>
<td>50</td>
<td>90</td>
<td>310-13 (dec)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>a</td>
<td>3-EtO,4-OH</td>
<td>70</td>
<td>88</td>
<td>262-4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>a</td>
<td>3-Cl</td>
<td>55</td>
<td>93</td>
<td>264-6</td>
<td>64 (3h)²⁹</td>
<td>245</td>
</tr>
<tr>
<td>h</td>
<td>a</td>
<td>4-MeO</td>
<td>55</td>
<td>94</td>
<td>250-2</td>
<td>69 (3h)²⁹</td>
<td>260</td>
</tr>
<tr>
<td>i</td>
<td>a</td>
<td>4-CO₂H</td>
<td>70</td>
<td>90</td>
<td>308-10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>j</td>
<td>a</td>
<td>3-MeO</td>
<td>55</td>
<td>94</td>
<td>237-9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>a</td>
<td>2,4-diMeO</td>
<td>60</td>
<td>88</td>
<td>247-9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>l</td>
<td>b</td>
<td>H</td>
<td>75</td>
<td>90</td>
<td>296-8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>b</td>
<td>4-Cl</td>
<td>70</td>
<td>91</td>
<td>238-40 (dec)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>b</td>
<td>4-Me</td>
<td>65</td>
<td>93</td>
<td>281-3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>o</td>
<td>b</td>
<td>4-NO₂</td>
<td>65</td>
<td>92</td>
<td>291-3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p</td>
<td>b</td>
<td>4-MeO</td>
<td>65</td>
<td>90</td>
<td>251-3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>q</td>
<td>c</td>
<td>4-Me</td>
<td>75</td>
<td>90</td>
<td>182-4</td>
<td>88 (6h)²⁸</td>
<td>179-81</td>
</tr>
<tr>
<td>r</td>
<td>c</td>
<td>4-Cl</td>
<td>65</td>
<td>85</td>
<td>213-5</td>
<td>79 (6h)²⁸</td>
<td>212-4</td>
</tr>
</tbody>
</table>
Selected data for new compounds:

3,3′-(ethane-1,2-diyl)bis(2-(2,4-dichlorophenyl)-2,3-dihydroquinazolin-4(1H)-one) (4e):
White solid; Yield: 88%; mp 310-13 °C (dec); IR (KBr): νmax = 3248 (NH), 3030, 1629 (C=O), 1521 cm⁻¹; 1H NMR (DMSO-d6) δ= 2.86-2.90 (m, 2H, CH2), 3.89-3.93 (m, 1H, CH2), 3.96-4.00 (m, 1H, CH2), 6.20 (d, 1H, J=2.6Hz, CH), 6.31 (d, 1H, J=2.7Hz, CH), 6.65-6.70 (m, 4H, Ar-H), 7.18-7.27 (m, 7H, 2NH, 5Ar-H), 7.35-7.37 (m, 1H, Ar-H), 7.63-7.65 (m, 4H, Ar-H) ppm; 13C NMR (DMSO-d6) δ= 43.09, 68.3, 68.5, 114.9, 115.4, 118.3, 125.3, 128.3, 128.6, 129.2, 130.3, 134.4, 134.9, 143.9, 146.4, 163.1 ppm; MS: m/z (%)= 614; Anal. Calcd for C30H22Cl4N4O2: C, 58.84; H, 3.62; N, 9.15; Found: C, 58.76; H, 3.53; N, 9.07%.

3,3′-(ethane-1,2-diyl)bis(2-(3-ethoxy-4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one) (4f):
White solid; Yield: 81%; mp 262-4 °C; IR (KBr): νmax = 3397 (OH), 3281 (NH), 2976, 2929, 1634 (C=O), 1514 cm⁻¹; 1H NMR (DMSO-d6) δ= 1.26 (t, 6H, J=7.0Hz, CH3), 2.85-2.89 (m, 2H, CH2), 3.91 (q, 4H, J=7.0Hz, CH2), 4.02-4.04 (m, 2H, CH2), 5.69 (s, 2H, CH), 6.61-6.71 (m, 8H, Ar-H), 6.90 (s, 2H, Ar-H), 7.17-7.19 (m, 4H, 2NH, 2Ar-H), 7.61 (d, 2H, J=8.0Hz, Ar-H), 8.99 (s, 2H, OH) ppm; 13C NMR (DMSO-d6) δ= 15.5, 42.8, 64.6, 71.4, 112.8, 115.0, 115.5, 116.0, 117.8, 119.6, 128.2, 132.2, 134.0, 147.4, 147.5, 147.9, 163.3 ppm; MS: m/z (%)= 594; Anal. Calcd for C34H34N4O6: C, 68.67; H, 5.76; N, 9.42; Found: C, 68.61; H, 5.66; N, 9.35%.

4,4′-(3,3′-(ethane-1,2-diyl)bis(4-oxo-1,2,3,4-tetrahydroquinazoline-3,2-diyl))dibenzoic acid (4i):
White solid; Yield: 80%; mp 308-10 °C; IR (KBr): νmax = 3414 (OH), 3325 (NH), 2894, 1709 (C=O), 1693 (C=O), 1621 (C=O), 1568 cm⁻¹; 1H NMR (DMSO-d6) δ= 2.9-3.00 (m, 2H, CH2), 4.05-4.18 (m, 2H, CH2), 5.95(d, 2H, J=2.1Hz, CH), 6.61 (d, 2H, J=8.0Hz, Ar-H), 6.66 (t, 2H, J=7.6Hz, Ar-H), 7.19 (t, 2H, J=7.0Hz, Ar-H), 7.39 (d, 4H, J=8.3Hz, Ar-H), 7.43 (d, 2H, J=2.1Hz, NH), 7.62 (d, 2H, J=6.8Hz, Ar-H), 7.86 (d, 4H, J=8.2Hz, Ar-H), 12.94 (broad, 2H, CO2H) ppm; 13C NMR (DMSO-d6) δ= 43.4, 70.6, 115.2, 115.5, 118.2, 127.2, 128.3, 130.4, 131.7, 134.2, 146.3, 147.0, 163.3, 167.6 ppm; MS: m/z (%)= 562; Anal. Calcd for C32H26N4O6: C, 68.32; H, 4.66; N, 9.96; Found: C, 68.23; H, 4.68; N, 9.88%.

3,3′-(ethane-1,2-diyl)bis(2-(3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one) (4j):
White solid; Yield: 94%; mp 237-9 °C; IR (KBr): νmax = 3240 (NH), 3002, 2930, 2828, 1631 (C=O), 1609 (C=O), 1514 cm⁻¹; 1H NMR (DMSO-d6) δ= 2.89-2.94 (m, 1H, CH2), 2.97-3.03 (m, 1H, CH2), 3.68 (s, 6H, 2CH3), 3.99-4.06 (m, 1H, CH2), 4.10-4.18 (m, 1H, CH2), 5.84 (d, 1H, J=1.5Hz, CH), 5.89 (d, 1H, J=1.7Hz, CH), 6.44 (t, 2H, J=8.3Hz, Ar-H), 6.69 (s, 2H, Ar-H), 6.85-6.89 (m, 6H, Ar-H), 7.18-7.27 (m, 4H, Ar-H), 7.36 (s, 1H, NH), 7.37 (s, 1H, NH), 7.63-7.65 (m, 2H, Ar-H) ppm; 13C NMR (DMSO-d6) δ= 43.2, 43.4, 55.8, 71.2, 71.5, 113.13, 113.18, 114.3, 114.4, 115.1, 115.4, 115.5, 118.0, 119.0, 128.2, 130.5, 130.6, 134.1, 143.3, 147.3, 160.2, 163.3,
163.4 ppm; MS: m/z (%) = 534; Anal. Calcd for C_{32}H_{30}N_{4}O_{4}: C, 71.89; H, 5.66; N, 10.48; Found: C, 71.81; H, 5.59; N, 10.42%.

3,3’-(ethane-1,2-diyl)bis(2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one) (4k):
White solid; Yield: 90%; mp 247-9 °C; IR (KBr): v_{max} = 3384 (NH), 3067, 2936, 2837, 1649 (C=O), 1610, 1497 cm^{-1}; ^1H NMR (DMSO-d_{6}) δ = 2.78-2.82 (m, 2H, CH_{2}), 3.68 (s, 3H, OCH_{3}), 3.81 (s, 3H, OCH_{3}), 3.96-4.00 (m, 2H, CH_{2}), 6.02 (d, 2H, J=1.9Hz, CH), 6.35 (d, d, 2H, J=2.3Hz, J=8.5Hz, Ar-H), 6.57 (d, 2H, J=2.3Hz, Ar-H), 6.62 (t, 2H, J=7.1Hz, Ar-H), 6.65 (d, 2H, J=8.0Hz, Ar-H), 6.92 (d, 2H, J=8.4Hz, Ar-H), 7.16 (t, 2H, J=8.3Hz, Ar-H), 7.61 (d, 2H, J=7.7Hz, Ar-H) ppm; ^13C NMR (DMSO-d_{6}) δ = 42.9, 56.0, 56.5, 66.3, 99.6, 105.2, 115.2, 117.6, 120.9, 121.2, 127.7, 128.1, 133.9, 141.6, 158.5, 161.5, 163.7 ppm; MS: m/z (%) = 594; Anal. Calcd for C_{34}H_{34}N_{4}O_{6}: C, 68.67; H, 5.76; N, 9.42; Found: C, 68.58; H, 5.68; N, 9.34%.

3,3’-(1,4-phenylene)bis(2-phenyl-2,3-dihydroquinazolin-4(1H)-one) (4l):
Cream solid; Yield: 82%; mp 296-8 °C; IR (KBr): v_{max} = 3305 (NH), 1638 (C=O), 1612, 1512 cm^{-1}; ^1H NMR (DMSO-d_{6}) δ = 6.26 (s, 2H, CH), 6.70-6.75 (m, 4H, Ar-H), 7.24 (s, 4H, Ar-H), 7.29-7.33 (m, 12H, Ar-H), 7.66-7.70 (m, 4H, 2NH, 2Ar-H) ppm; MS: m/z (%) = 522; Anal. Calcd for C_{34}H_{26}N_{2}O_{2}: C, 78.14; H, 5.01; N, 10.72; Found: C, 78.07; H, 4.92; N, 10.64%.

^13C NMR (125 MHz, DMSO-d_{6}) δ: very low soluble in DMSO

3,3’-(1,4-phenylene)bis(2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one) (4m):
White solid; Yield: 87%; mp 238-40 °C(dec); IR (KBr): v_{max} = 3305 (NH), 1641 (C=O), 1512 cm^{-1}; ^1H NMR (DMSO-d_{6}) δ = 6.29 (d, 2H, J=2.3Hz, CH), 6.72 (t, 2H, J=7.3Hz, Ar-H), 6.74 (d, 2H, J=8.1Hz, Ar-H), 7.22 (s, 4H, Ar-H), 7.23-7.29 (m, 2H, Ar-H), 7.34-7.73 (m, 8H, Ar-H), 7.67 (d, 2H, J=2.3Hz, NH), 7.07 (d, 2H, J=7.0Hz, Ar-H) ppm; ^13C NMR (DMSO-d_{6}) δ = 72.5, 115.7, 116.1, 118.6, 127.0, 128.8, 129.2, 129.3, 133.7, 134.8, 139.0, 140.5, 147.1, 162.9 ppm; MS: m/z (%) = 590; Anal. Calcd for C_{34}H_{24}Cl_{2}N_{2}O_{2}: C, 69.04; H, 4.09; N, 9.47; Found: C, 68.95; H, 3.99; N, 9.39%.

3,3’-(1,4-phenylene)bis(2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one) (4n):
White solid; Yield: 92%; mp 281-3 °C; IR (KBr): v_{max} = 3308 (NH), 3022, 2926, 1642 (C=O), 1611, 1512 cm^{-1}; ^1H NMR (DMSO-d_{6}) δ = 2.22 (s, 6H, 2CH_{3}), 6.20 (s, 2H, CH), 6.70-6.72 (m, 4H, Ar-H), 7.09-7.23 (m, 10H, Ar-H), 7.54-7.77 (m, 8H, 2NH, 6Ar-H) ppm; MS: m/z (%) = 550; Anal. Calcd for C_{36}H_{30}Cl_{2}N_{2}O_{2}: C, 78.52; H, 5.49; N, 10.17; Found: C, 78.44; H, 5.40; N, 10.10%.

^13C NMR (125 MHz, DMSO-d_{6}) δ: very low soluble in DMSO

3,3’-(1,4-phenylene)bis(2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one) (4o):
Yellow solid; Yield: 90%; mp 291-3 °C; IR (KBr): $v_{\text{max}} = 3401 \text{ (NH)}$, 3102, 3071, 1662 (C=O), 1614, 1513 cm$^{-1}$; 1H NMR (DMSO-d_6) δ = 6.48 (d, 2H, J=2.1Hz, CH), 6.73 (t, 2H, J=7.4Hz, Ar-H), 6.76 (d, 2H, J=8.1Hz, Ar-H), 7.28 (t, 2H, J=7.2Hz, Ar-H), 7.33 (s, 4H, Ar-H), 7.62 (d, 4H, J=8.6Hz, Ar-H), 7.73 (d, 2H, J=7.6Hz, Ar-H), 7.82 (d, 2H, J=2.1Hz, 2NH), 8.15 (d, 4H, J=8.6Hz, Ar-H) ppm; 13C NMR (DMSO-d_6) δ = 72.3, 115.9, 116.0, 118.9, 124.5, 127.0, 128.6, 128.9, 134.9, 139.0, 146.8, 148.2, 148.8, 162.8 ppm; MS: m/z (%) = 612; Anal. Calcd for C$_{34}$H$_{24}$N$_6$O$_6$: C, 66.66; H, 3.95; N, 13.72; Found: C, 66.56; H, 3.87; N, 13.63%.

3,3'-(1,4-phenylene)bis(2-(4-methoxyphenyl)-2,3-dihydroquinoxalin-4(1H)-one) (4p):
White solid; Yield: 88%; mp 251-3 °C; IR (KBr): $v_{\text{max}} = 3307 \text{ (NH)}$, 2948, 2925, 2833, 1638, 1613, 1512 cm$^{-1}$; 1H NMR (DMSO-d_6) δ = 3.68 (s, 6H, CH$_3$), 6.19 (d, 2H, J=2.5Hz, CH), 6.68 (t, 2H, J=7.1Hz, Ar-H), 6.74 (d, 2H, J=8Hz, Ar-H), 6.85 (d, 4H, J=8.7, Ar-H), 7.21 (s, 4H, Ar-H), 7.23-7.27 (m, 6H, Ar-H), 7.58 (d, 2H, J=2.4Hz, 2NH), 7.71 (d, 2H, J=7.0Hz, Ar-H) ppm; 13C NMR (DMSO-d_6) δ = 55.9, 72.9, 114.5, 115.6, 116.1, 118.3, 126.9, 128.5, 128.8, 133.5, 134.6, 139.2, 147.4, 159.9, 163.1 ppm; MS: m/z (%) = 582; Anal. Calcd for C$_{36}$H$_{30}$N$_4$O$_4$: C, 74.21; H, 5.19; N, 9.62; Found: C, 74.14; H, 5.10; N, 9.54%.