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Abstract 
This review describes the most synthetic methods of cyclic α-aminophosphonic acids and their 
mono- or di-esters in which at least two atoms of the P−C−N system such as linkage of types 
C−P, C−N and P−C−N are part of a heterocyclic system.  
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1. Introduction 
 
Organophosphorus compounds are important substrates in the study of biochemical processes1-4 
and compounds of tetracoordinate pentavalent phosphorus are widely used as biologically active 
compounds. The key role of naturally occurring amino acids in the chemistry of life and as 
structural units in peptides, proteins, and enzymes has led to intense study on the chemistry and 
biological activity of synthetic analogues. For a long time the so-called “phosphorus analogues” 
of the amino acids, in which the carboxylic acid group is replaced by a phosphonic, -P(O)(OH)2, 
or phosphinic acid group, -P(O)(OH)R (in which R may be H, alkyl, or aryl), as well as a 
phosphonate group, -P(O)(OR)2 (in which R may be alkyl, or aryl), have attracted particular 
interest in the preparation of isosteric or bioisosteric analogues of numerous natural products.5-8 
In this area, α-aminophosphonic acids, as isosteres of α-amino acids (Figure 1) occupy an 
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important place and reveal diverse and interesting biological and biochemical properties 
including antibacterial agents,9 enzyme inhibitors,10,11 haptens for catalytic antibodies,12 and anti 
HIV agents.13 
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Figure 1 
 

Various synthetic methods for α-aminophosphonic acids and α-aminophosphonates have 
been reported14-22 and the most straightforward one is the addition of compounds containing a 
P−H bond to the C=N bond of imines (the Pudovik reaction) (Scheme 1).23 However, the most 
useful pathway to the synthesis of α-aminophosphonates is the Kabachnik-Fields reaction,24-27 
which is a one-pot, three-component procedure using carbonyl compound, amine and dialkyl 
phosphite (Scheme 2). This process was discovered at a time when multicomponent processes 
were rather “exotic birds”; from a modern point of view this protocol is obviously very attractive 
for combinatorial chemistry and has been rarely used for parallel synthesis.28  
 

NR

R

R

OR

P

OR

OH

O

P
OR

N
H

R

R

ORR
+

1

2

3

4

4

1

32

 
 

Scheme 1 
 

O

R

R

OR

P

OR

OH

O

P
OR

N
H

R

R

ORR
NH2 R +

1

2

3

4

4

1

32

+

 
 

Scheme 2 
 

A few reviews have been published to date which are concerned with the synthesis, 
characterization, stereochemistry and biological activities of acyclic α-aminophosphonate 
derivatives,29-31 but none of these focuses solely on the formation of cyclic α-amino-
phosphonates. Therefore, this review will focus on the synthesis of cyclic α-aminophosphonic 
acids and their mono- or di-esters in which at least two atoms of the P−C−N system are part of a 
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heterocyclic system. Thus, the heterocyclic systems which contain linkage of types C−P (A), 
C−N (B) and P−C−N (C) (Figure 2) are considered as cyclic α-aminophosphonate derivatives. 
The review is built up according to the three previous linkage types and starting with the smallest 
rings in each type. 
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2. Type A: Cyclic α-Aminophosphonic Acid Derivatives Bearing an Exocyclic 
Amino Group (Heterocycles containing the phosphorus as a ring heteroatom) 
 
This type focuses on the synthesis of heterocyclic systems containing the α-aminophosphonate 
moiety which contains the P_C linkage as a part of the heterocyclic system (the phosphorus as a 
ring heteroatom).  
 
2.1. The Curtius rearrangement strategy on phosphorus heterocycles 
Ring closing metathesis (RCM) strategy was used in synthesis of the seven-membered P-hetero-
cyclic α-aminophosphonate 3. Thus, monoallylation of tert-butyl diallylphosphonoacetate (1) 
using NaH and allyl bromide in THF at 0 oC followed by RCM utilizing the Grubbs benzylidene 
catalyst generated 1.2:1 mixtures of diastereomeric P-heterocycles 2 in excellent yield. On 
application of the Curtius rearrangement strategy to 2, Boc-protected α-aminophosphonate 3 was 
generated in 48% overall yield as 1.5:1 mixture of separable diastereomers (Scheme 3).32 

Subsequent allylation of an approximate of a 1:1 diastereomeric mixture of 2 produced 4 
with 3:1 diastereoselectivity. RCM of the major diastereomer gave the [5,5,0]bicyclic tert-butyl-
phosphoacetate 5 as the cis-fused diastereomer in excellent yield. This experiment also proved 
the stereoselectivity (cis = major) in the allylation process of 2. Subjection of 5 to Curtius 
conditions gave the corresponding α-Boc-bicyclic-α-aminophosphonate 6 in 84% yield (Scheme 
4).32 
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Scheme 4 
 
2.2. Addition of dialkyl phosphite to double bond (The Pudovik reaction) 
Reaction of 3-(phenylaminomethylene)-2-hydroxy/N-phenylamino-6-methyl-2,3-dihydro-4H-
chromen-4-ones (7) and (8) with diethyl phosphite at 90−100 oC afforded 3-phenylamino-2-
ethoxy-6-methyl-2-oxo-2,3,3a,9a-tetrahydro-4H-1,2-oxa-phospholo[5,4-b]chromen-4-one (10) 
and 3-phenylamino-2-ethoxy-6-methyl-2-oxo-1-phenyl-2,3,3a,9a-tetrahydro-4H-1,2-azaphosph-
olo[5,4-b]chromen-4-one (11), respectively, as cyclic α-aminophosphonate derivatives. 
Formation of the compounds 10 and 11 may be interpreted as resulting from nucleophilic attack 
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of the phosphorus atom at the α,β-unsaturated moiety of 7 and 8 (Pudovik reaction) to give the 
nonisolable intermediate 9. The latter underwent cyclization via elimination of one molecule of 
ethanol to give the final products 10 and 11, respectively (Scheme 5).33 
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Scheme 5 
 
2.3. Multicomponent (Kabachnik-Fields reaction) 
Aminophosphonylation of 4-benzyloxy-2-butanone (12) was performed with ammonia and 
diethyl phosphite under mild conditions. The α-aminophosphonic ester 13 was obtained in 65% 
yield. Its debenzylation afforded diethyl 3-hydroxy-1-amino-1-methylpropylphosphonate 14 as  a 
monohydrate. When a solution of the phosphonate 14 in 1,2-dimethoxyethane was treated with a 
catalytic amount of sodium hydride, 2-ethoxy-2-oxo-1,2-oxaphospholane 15 was obtained as a 
crude oil (Scheme 6).34 
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Scheme 6 
 

The synthesis of the phosphorinane analogue 18 was performed by aminophosphonylation of 
the ketone 16 followed by base catalyzed cyclization. Diethyl 4-hydroxy-l-amino-1-
methylbutylphosphonate 17 was directly obtained in 45% yield by aminophosphonylation of 16, 
followed by treatment with a catalytic amount of sodium hydride in anhydrous 1,2-dimethoxy-
ethane, at 60°C for 5 hours (Scheme 7).34 
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3. Type B: Cyclic α-Aminophosphonic Acid Derivatives Bearing an Exocyclic 
Phosphonyl Group (Heterocycles containing the nitrogen as a ring 
heteroatom) 
 
This section focuses on the synthesis of heterocyclic systems containing the α-aminophosphonate 
moiety which involves the C_N linkage as a part of the heterocyclic system (the nitrogen as a 
ring heteroatom).  
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3.1. Addition of dialkyl/trialkyl phosphite to cyclic imines (Pudovik reaction) 
Nucleophilic addition of dialkyl phosphite to cyclic C=N imines is one of the most direct ways to 
synthesize cyclic α-aminophosphonates of this type. Addition of diisopropyl phosphite to the 
commercially available 2-methyl-1-pyrroline (19) produced diisopropyl α-aminophosphonate 20 
in 84% yield (Scheme 8).35 
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The pyrrolidinyl phosphonic acid 25 can be formed in 50% overall yield by chlorination of 
pyrrolidine 21 with t-butyl hypochlorite and subsequent elimination followed by reaction with 
diphenyl phosphite (Scheme 9).36,37 
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The D-labelled pyrroline 27 was formed by an aza-Wittig reaction from azide 26. Addition of 
diethyl phosphite yielded the pyrrolidinephosphonic acid 28 in 97% yeld (Scheme 10).38 
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In a one-pot synthesis of 2-phosphonopyrrolidines 31, the unsaturated 1-azaheterocycles 30 
were formed by intramolecular hydroamination of aminoalkynes 29 in the presence of catalytic 
amounts of Cp2TiMe2 at 110 °C (Scheme 11). After addition of diethyl phosphite together with 5 
mol % Me2AlCl, the phosphonylated pyrrolidines 31 were obtained in good overall yields 
(Scheme 11).39 

Treatment of N-benzylproline (32) with oxalyl chloride followed by decarbonylation led to 
the formation of the iminium salt 34. 2-Phosphonopyrrolidine 25 was then obtained by addition 
of diethyl phosphite followed by debenzylation and dealkylation, in 90% overall yield (Scheme 
12).36 
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Addition of diethyl phosphite to α-substituted cyclic imines 36 gave cyclic α-substituted 
α-aminophosphonates 37. The reaction proceeded in ether or THF as a solvent at room 
temperature without any catalyst, but boron trifluoride etherate could be used to accelerate the 
reaction (Scheme 13).40 
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Addition of diethyl phosphite to perfluoroalkyl substituted cyclic imines 38 does not proceed 
in the absence of catalyst. Under catalysis, α-perfluoroalkyl substituted cyclic α-amino-
phosphonates 39 were obtained in higher yields than their non-fluorinated analogues mentioned 
above. As steric hindrances decreases the reaction rate, the formation of five-membered 
aminophosphonates 39 (n = 1) proceed faster comparing to those having a six-membered ring   
(n = 2) and compound 39 bearing a trifluoromethyl group is formed more readily than those 
having the pentafluoroethyl moiety. In spite of the presence of strong electron withdrawing 
perfluorinated substituent, α-aminophosphonates 39 (n = 1,2) can be converted into the 
corresponding α-aminophosphonic acids 40 via the reaction with trimethylbromosilane in 
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chloroform followed by treatment with aqueous methanol of the intermediate trimethylsilyl ester 
formed (Scheme 14).40 
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In a similar way, enantioselective hydrophosphonylation of cyclic imines 41 using cyclic 
phosphites, catalyzed by (S)-YbPB (a yitterbium-binolate complex) provided the 4-thiazolidinyl 
phosphonates (R)-42 in excellent enantiomeric excess and high chemical yields (Scheme 15).41 

Since the chiral auxiliary might be easily removed by hydrolysis of the phosphonic ester, 
Schlemminger et al.42 carried out the addition of chiral BINOL-phosphite to achiral 3-thiazolines 
41 in the presence of BF3-OEt2, obtaining the corresponding thiazolidinyl phosphonates 43 in 
moderate yield and excellent diastereoselectivity. It is noteworthy that the stereoselectivity of the 
BINOL-phosphite seemed to be independent of the steric demands of the nearby substituents R 
(Scheme 16).43 
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3,4-Dihydroisoquinoline (44) added diethyl phosphite to yield the tetrahydroisoquinolyl 
phosphonate 45 (Scheme 17).44 
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Reaction of carbocyclic imines 46 with two equivalent of triethyl phosphite in the presence 
of one equivalent of TFA in ethanol at 300 oC for 17 h gave the corresponding α-amino-
phosphonates 47 and 48 in ratios 89:11 to 99:1, respectively (Scheme 18).45 
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The synthesis of dialkyl 2-(1,1-dialkyl-5,5-dimethyl-l,3-thiazinan-4-yl)phosphonate (51) and 
2,2-dimethyl-3,4-dihydro-2H-1,4-benzothiazine-3-dialkylphosphonate (52) was quite simple, 
requiring the reflux of a mixture of the cyclic imines 49 or 50, respectively, with dialkyl 
phosphite in ligroin for 18 hours (Scheme 19).46 
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Quino[2,3-b][1,5]benzoxazepine α-aminophosphonates 54 were obtained from the reaction 
of quino[2,3-b][1,5]benzoxazepines 53 with triethyl phosphite at room temperature under 
solvent-free conditions employing a catalyst such as KAl(SO4)2, FeCl3, CaCl2, NiCl2 and p-TSA 

(Scheme 20).47,48 
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Oxa-aza mixed macrocycles containing α-aminophosphonate moieties 56 were synthesized 
by the reaction of diethyl phosphite and the 3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclo-
pentadecane (55) (Scheme 21).49 
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Scheme 21 
 
3.2. Addition of dialkyl phosphite to nitrones 
Addition of dimethyl or diethyl phosphite to the nitrone 57 at 40 oC gave the corresponding N-
hydroxyphosphonates 58a,b in quantitative yield. O,N-bis-deprotection of 58a,b by hydrogen-
olysis over Pd/C in ethanol and aqueous hydrochloric acid afforded the pyrrolidinephosphonates 
59a,b as the hydrochlorides in 43% and 61% yield, respectively (Scheme 22).50 

Alkylation of pyrroline N-oxides 60 with triethyloxonium tetrafluoroborate (Meerwein’s salt) 
or benzyl iodide followed by reaction with diphenyl phosphite led to the formation of 
phosphonates 62a,b in 70% and 82% yield, respectively (Scheme 23).51 

The treatment of nitrone 63 with sodium diisopropyl phosphite, gave a complex mixture of 
products, which were isolated as: starting material 63, imine 64 and diisopropyl amino-
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phosphonate 65. Compound 65 was also obtained from treatment of 64 with diisopropyl 
phosphite in the presence of sodium diisopropyl phosphite or DBU in THF (Scheme 24).52 
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Ethylation of the nitrone 66 afforded the oxoiminium salt 67, which reacted with diphenyl 
phosphite to yield the corresponding R-methyl-N-alkoxyphosphonopiperidine 68 in 78% yield. 
Hydrogenolysis of the N-O bond furnished the phosphonopiperidine 69 in 82% yield (Scheme 
25).51 
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3.3. Nucleophilic phosphonylation 
The apparently most obvious method to synthesize cyclic α-aminophosphonates, was started 
from the desired cyclic compound bearing a suitable leaving group such as acetate (AcO), 
phenylsulfinyl (PhSO), and benzotriazole (Bt) in the α-position to the N atom, which was then 
substituted by a phosphonate group. Thus, 1-(p-tosyl)-2-acetoxyazetidine (71) was synthesized 
from easily available compound 70 by anodic acetoxylation at the 2-position. Compound 71  was 
treated with 1.2 equivalents of trimethyl phosphite to obtain the corresponding 2-phosphono-
azetidine (72) (Scheme 26).53 
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When 4-acetoxyazetidin-2-one (73) was treated with trialkyl phosphite, phosphonylated 
azetidinones 74 were formed via an atypical Michaelis-Arbuzov reaction, together with the 
corresponding alkyl acetate. No reaction occurred with tris(2,2,2-trichloroethyl)phosphite 
because of its reduced nucleophilicity (Scheme 27).54 
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The phthalimido derivative 75 was evaluated in the reaction with trimethyl phosphite. 
Campbell and Carruthers stated that the reaction led exclusively to the cis-product 77a (89% 
yield) (Scheme 28).55,56 
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4-Sulfinylazetidin-2-one (78) was another substrate with an appropriate leaving group for a 
substitution reaction with a phosphonate group. Treatment of 78 with silylated phosphite in the 
presence of ZnI2 at room temperature for 6 h gave the 4-phosphonoazetidin-2-one (80) in 77% 
yield.57 Actually, this reaction was not a real substitution reaction, which was indicated by the 
stereochemistry of the reaction. Due to the action of the Lewis acid, a reactive iminium salt 79 
was formed that reacted in situ with the trivalent phosphorus nucleophile (Scheme 29). 
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Subsequent Arbuzov reaction in the presence of the mild Lewis acid ZnCl2 or ZnBr2, 
converted 81 into the desired oxazolopyrrolidine phosphonate 82 as the only diasteroisomer. 
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Attempts to obtain 82 directly by replacing benzotriazole with triethyl phosphite in the initial 
reaction mixture resulted in a mixture of two diastereoisomers.58-62 Hydrogenolysis of 82, 
followed by acidic hydrolysis of the phosphonate moiety with 6 M HCl and subsequent treatment 
with propylene oxide led to (S)-phosphopyrrolidine 25 (Scheme 30).59 

Benzotriazol-1-yl (Bt1) and benzotriazol-2-yl (Bt2) are good leaving groups and give rise to 
the iminium cations. Thus, treatment of 83 in dry THF with triethyl phosphite in the presence of 
one equivalent of ZnBr2 produced phosphonopyrrolidinones 84 in moderate to good yields 
(Scheme 31).63 
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An asymmetric synthesis of 5-phosphonopyrrolidone 87 was based on a similar principle. 
Here, the hemiaminal-like C-O bond was cleaved by the action of TiCl4. The iminium ion 86 was 
then trapped by trimethyl phosphite with the formation of 87 in 62% diastereomeric excess 
(Scheme 32).64 
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Decarboxylation–phosphonylation reactions of (4R)-acetoxyproline derivative 88 with 
PhI(OAc)2/I2 under sunlight activation, followed by reaction with trimethyl phosphite in the 
presence of BF3.OEt2, afforded the cyclic α-aminophosphonate 89 and its epimer 90 in 64% and 
15% yield, respectively (Scheme 33).65,66 
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Maury et al.67 developed a strategy to synthesize both enantiomers of piperidin-2-yl 
phosphonic acid. The strategy utilized the oxazolopiperidine derivative 93, which upon treatment 
with trimethyl phosphite in the presence of SnCl4 gave the corresponding oxazaphosphorinane 
derivative 95, which then led to pure (R)-(-)-piperidin-2-ylphosphonic acid (96) in good overall 
yield after reduction and hydrogenolysis (Scheme 34). 

The oxazolopiperidine derivative 97 reacted with a triethyl phosphite in the presence of 
lithium diethyl phosphite to obtain a mixture of two diastereoisomers 98 (93:7, 68% overall 
yield), which can be hydrogenated to the corresponding 2-phosphonopiperidine 99 in 86% ee 
(Scheme 35).68 
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The phosphonate moiety can easily be introduced onto methoxylated piperidines such as 100 in 
the presence of a Lewis acid by trapping the iminium ion with triethyl phosphite.69 This 
methodology was used to obtain the phosphonopiperidine 102 (Scheme 36). 
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3.4. Multicomponent reaction (Kabachnik-Fields reaction) 
2-(Diethylphosphono)-2-methylpyrrolidine (104) was obtained in a one-pot reaction by bubbling 
ammonia into an ethanolic solution of 5-chloropentan-2-one (103) and diethyl phosphite 
(Kabachnik-Fields reaction) (Scheme 37).70,71 
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Reaction of alkanedial (105), acetamide, and acetyl chloride with PCl3 in acetic acid 
exclusively produced the bisphosphonic acid 106a in 39% yield. When the reaction was 
performed with pentanedial, the corresponding piperidine 106b was formed (33%) in a 1:1 
mixture with the acyclic bis(aminophosphonic acid) 107b (Scheme 38).72 



Reviews and Accounts   ARKIVOC 2014 (i) 21-91 

Page 43 ©ARKAT-USA, Inc. 

NH2CH3

O
H

H

O

O

n
 

ClCH3

O

N
H

(HO)2P

P(OH)2

O

O

NH2
NH2

P(OH)2

P(OH)2

n
 

O

O

n
 

+ +
2

2

1) PCl3-AcOH

2) H+ ion exchange

+

 106a (39%,n=1)

106b (33%,n=2)

107b (n=2)

105

 
 
Scheme 38 
 
3.5. Diels-Alder reaction 
Davis and co-workers73 described [4+2] cycloadditions between azirinylphosphonates 108 with 
2,3-dimethylbutadiene (109) or trans-piperylene 111. The diene (100 equivalents) was reacted 
with the phosphonoazirine for 2-4 days at room temperature. Bicyclic aziridines 110 and 112, 
respectively were isolated as single stereoisomers by flash chromatography. Catalytic 
hydrogenation of 110 results in two products. The major products, were identified as quaternary 
piperidinephosphonates (2S)-(-)-113, which resulted from the expected cleavage of the C-7-N 
bond in 110. The minor products, obtained in 28% and 13% yield, respectively, were identified 
as pyridines 114. Controlling the conditions for the hydrogenation of 112 led to the reduction of 
the C-C double bond, affording the phosphonopiperidine 115 (Scheme 39). 

Diethyl 3-(diethoxyphosphoryl)-6-alkylpyridazine-1,2(3H,6H)-dicarboxylates (118) was 
obtained in 85% yield from cycloaddition reaction of 1,3-dienylphosphonates 116 with diethyl 
azidodicarboxylate (117) in dioxane. Compounds 118 were generally regarded to have a half 
chair configuration based on the relationship between the vicinal coupling constants and dihedral 
angles (Scheme 40).74 

3-(Dimethylphosphino)piperidazine 121 can be synthesized via a Diels-Alder reaction of di-(-)-
menthyl azodicarboxylate (120) and 1-trimethylsilyloxybutadiene (119) in the presence of 
trimethyl phosphite and a Lewis acid, as an inseparable mixture of diastereomers (Scheme 41). 
However, after hydrogenation of 121, the phosphonopiperidazines 122 and 123 can easily be 
separated by column chromatography.75 
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3.6. Ring closure of iminophosphonates 
Recently, an initial study was made on the reactivity of 1-phosphono-2-aza-1,3-dienes,76,77 which 
prove to be promising substrates for the synthesis of azaheterocyclic phosphonates. Reaction of 
the azadienes 124 with an excess of diazomethane led to the clean generation of 1-vinyl-2-
phosphonoaziridines 125 in good yields (Scheme 42). 
 

N P(OEt)2

O

N
P(OEt)2

O

R2

R1 5 eq. CH2N2

(72-93%)
R2

R1

124 125

R1,R2=Me, Et, (CH2)5  
 
Scheme 42 
 

Reaction of carbanions of N-phosphonomethyl imines 126 with α,β-unsaturated esters 127 
can lead to three different products: an acyclic adduct 129 due to Michael addition, pyrroline 131 
due to cycloaddition and subsequent elimination of the diethyl phosphate anion, or pyrrolidine 
130. When sodium hydride was used as a base at room temperature, pyrrolidines 130 were 
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formed exclusively in good yields (77-90%) due to the stereospecificity of the reaction related to 
the concerted mechanism (Scheme 43).78-80 
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The metal-catalyzed cycloaddition reactions of α-iminophosphonate 132 with various 
dipolarophiles including chiral menthyloxy furanone with (AgOAc) or (LiBr) and a suitable base 
[DBU, Et3N, BTMG (t-butyltetramethylguanidine)] afforded a wide variety of conformationally 
constrained cyclic α-aminophosphonate 135 (Scheme 44).81 

The imine 136 was alkylated, followed by ring closure via hydrolysis by trifluoroacetic acid to 
give the 2-phosphonopyrrolidinone 138 (Scheme 45). When hydrochloric acid was used, no 
cyclization occurred and the corresponding hydrochloride salt of the acyclic amine was 
recovered from the reaction mixture.82 

When unsubstituted acrylic esters83-85 were used in the addition reaction, only ZnCl2 
generated carbanions of 139 were reactive. Iminophosphonate 140 was formed in 66% yield with 
71% de. The minor diastereomer was easily removed by flash chromatography on silica gel. 
After hydrolysis, enantiomerically pure (5S)-pyroglutamic acid derivative 141 was isolated. The 
chiral auxiliary was recovered in 60% yield (Scheme 46). 
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Treatment of N1-(diethoxyphosphorylmethyl)-N2-(pentamethylene)benzamide (142) with   n-
butyllithium followed by the addition of p-tolualdehyde led to the formation of diethyl (trans and 
cis-2-phenyl-5-alkyl/aryl-oxazolin-4-yl)phosphonates 144 in good yields (Scheme 47).86 
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Methyl mercaptoacetate was added to a stirred solution of the diethyl trifluoro-
acetimidoylphosphonate (145) in benzene to give the nonisolable intermediate 146 which was 
directly cyclized into cyclic α-aminophosphonate 147 (Scheme 48).87 
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3.7. Ring closure of oximinophosphonates 
The preparation of the required functionalized β-tosyl oximes 149 was easily accomplished by 
simple reaction of β-oximes 148 with tosyl chloride in pyridine. Alkyl and phenyl substituted 
2H-azirines 150 were prepared from β-ketoximes 149 by treatment with triethylamine at room 
temperature for 8 hours in dry benzene. Reduction of 150 with sodium borohydride in ethanol 
gave exclusively cis-aziridines 151 (Scheme 49).88,89 
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Chlorobutyryl chloride (152) was allowed to react with trialkyl phosphite. Then the oxime 
154 was formed and ring closure was performed after reduction of the oxime with zinc and 
formic acid to give the cyclic -aminophosphonates 155 (Scheme 50).90 
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3.8. Ring closure of acyclic α-aminophosphonates 
Treatment of phosphoserine diethyl ester (R)-156 with tosyl chloride afforded the corresponding 
N-tosylate (R)-157, which, by reaction with mesyl chloride, afforded the O-mesylate derivative 
(R)-158. Reaction of (R)-158 with NaH in THF gave the aziridine-2-phosphonate (R)-159 
(Scheme 51).91 
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Similarly, Guseinov et al.92 reported that acyclic α-aminophosphonate 160 was transformed 
into phosphonate-containing aziridines 161 by the action of sodium alkoxide (Scheme 52). 
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Ring closure through intramolecular nucleophilic substitution was applied in the synthesis of 
phosphono-β-lactams. The first example consists of an epoxide ring opening by intramolecular 
attack of a phosphorus-stabilized carbanion (Scheme 53). The epoxide 163 was formed in situ by 
addition of one equiv of LiHMDS (lithium 1,1,1,3,3,3-hexamethyldisilazane) to amide 162. A 
second equivalent was used to form the lactam 164 in a stereospecific manner: only the trans-β-
lactams were formed. Nitrogen deprotection can then be performed using CAN (cerium 
ammonium nitrite), and the obtained 4-phosphono-β-lactams 165 are potential precursors for the 
synthesis of carbapenems.93-95 
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Chloroamidophosphonates 166 were treated with NaH to involve ring closure to give the 
cyclic α-aminophosphonates 167 (Scheme 54).96,97 
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Treatment of the α-aminophosphonate 168 with thionyl chloride in dichloromethane, 
followed by the addition of NaHCO3 gave the chloro derivative 169. Reaction of 169 with 
LiHMDS in THF afforded only the 1,3-trans-azetidine 170, which, on hydrolysis of the 
phosphonate moiety with TMSBr, followed by purification by ion-exchange chromatography, 
led to azetidin-2-ylphosphonic acid 171 (Scheme 55).98 
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The cyclization of the δ-chloro-α-aminobutanephosphonic acid (172), resulted in the racemic 
pyrrolidine-2-phosphonic acid 25 which has received some interest as a potential structural 
mimetic of proline (Scheme 56).99 
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α-Aminophosphonates 173 underwent tandem acylation and [4+2] cycloaddition with maleic 
anhydride under stirring in toluene at ambient temperature for 3 days to isolate epoxyisoindolyl 
phosphonates 174 in good yields (70-90%) as colorless solids (Scheme 57).100  
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Adding one equivalent of Grubbs second-generation catalyst to the substrates 175 via ring 
closure methasis (RCM) gave the corresponding 2-phosphonopyrrolines 176 (Scheme 58).101 
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When β-allenic α-aminophosphonates 177 were heated in the presence of silver salts to 
activate the allenic moiety, a mixture of five- and six-membered heterocycles was obtained. The 
ratio of five-membered to six-membered rings was dependent on steric factors. When R1 and R2 
were more sterically demanding groups, the ratio shifted toward the five-membered ring. The 
largest effect, however, was observed when R3 was changed from H to Me; then, only very small 
amounts of six-membered rings 181 were formed. When the obtained pyrrolines 182 were 
submitted to high temperatures (80 °C) under an inert atmosphere, the enamines 183 were 
formed by tautomerization to the more thermodynamically stable compound (Scheme 59).102,103 
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Diethyl (6-isobutylamino)bicyclo[3,2,0]hept-2-en-6-yl phosphonate (185) was reacted with 
HBr and Br2 to give the hydrobromide salt 186, which underwent ring closure by addition of 
triethylamine and heating of the mixture in acetonitrile for 14 hours to give diethyl endo–(8-
bromo-2-isobutyl-2-azatricycle[3,3,0,03,6]oct-3-yl)phosphonate (187) (Scheme 60).104  
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Cyclization of the R-α-amino-δ-alkenylphosphonates 188 was initiated by addition of 
Hg(OAc)2 to the double bond followed by cyclization through intramolecular nucleophilic attack 
by the free amine. Using α-amino-δ-alkenylphosphonates, it was possible to obtain the five- and 
six-membered rings containing the α-aminophosphonate moiety (Scheme 61).105-107 
1,4-Addition of lithiated aminomethylphosphonate 195 to α,-unsaturated ester 194 proceeded to 
give the dibenzylaminophosphonate 196 in 94% yield and 98% diastereomeric excess. Reductive 
deprotection of 196 then led to trans-phosphonopyrrolidone 197 in 66% yield (Scheme 62).108 
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Cleavage of the sulfinyl group and hydrolysis of the acetal 198 gave the aminocarbonyl 
derivative, which cyclized to afford the iminophosphonates 199. Catalytic hydrogenation of 199 
led to the cyclic α-aminophosphonates 200 (Scheme 63).109 
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Addition of three to eight equivalents of amine to the enamide 201 in methanol or toluene 
afforded the 5-phosphonylated-2-imidazolidinones 202 which could be isolated in moderate 
yield 17-49% (Scheme 64).110  
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Reaction of phosphoserinate (R)-203 with benzaldehyde, followed by reduction with sodium 
cyanoborohydride in acetic acid, afforded the N-benzyl α-amino-phosphonate (R)-204 in 76% 
yield. Treatment of (R)-204 with thionyl chloride and subsequent oxidation with sodium 
periodate in the presence of ruthenium chloride gave the sulfonamide (R)-205 in 70% yield 
(Scheme 65).111 
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The α-aminophosphonate 206 was submitted to a hydrogenolysis-reductive amination, 
resulting in the polyhydroxylated piperidinylphosphonate 207 (Scheme 66).112 
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Davis et al.109 described the stereoselective synthesis of piperidin-2-yl-phosphonates 210a,b. 
Cleavage of the sulfinyl group and acidic hydrolysis of the ketal in 208a,b gave an amino-
carbonyl derivative, which underwent cyclization to afford the iminophosphonates 209a,b. 
Finally, catalytic hydrogenation of 209a,b led to the cyclic α-aminophosphonates (2R,6S)-210a 
and (2R,6R)-210b, respectively (Scheme 67). 

Ring closing metathesis (RCM) of α-aminophosphonates, bearing two terminal alkene 
chains, was a convenient strategy to synthesize heterocyclic α-aminophosphonates. Osipov et al. 
succeeded in the synthesis of the cyclic aminophosphonates 213.113,114 Allylation of the nitrogen 
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atom of α,-unsaturated α-aminophosphonates 211 gave rise to the 1,7-dienes 212 which can be 
ring closed to the 3-piperidines 213 using a Ru catalyst (Scheme 68). 
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Conversion of α-amino-(2-alkynylphenyl)methylphosphonate 214 to 2,3-disubstituted-1,2-
dihydroisoquinolin-1-yl phosphonate 215 was performed through 6-endo-cyclization utilizing 
silver triflate as catalyst (Scheme 69).115 
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3.9. Ring closure of acyclic -aminophosphonates 
The hydrolysis of diethyl ester 216 led in a one-pot procedure to the pure β-amino- phosphonic 
acid 217 (yield: 47%). Cyclization of 217 by boiling in aqueous sodium hydroxide forms within 
5 minutes the disodium salt, which gave 86% of pure aziridine 218 after passage through an ion 
exchange column (Scheme 70).116,117 
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Treatment of the mesylated β-aminophosphonate 219 with K2CO3 in DMF resulted in the 
formation of the N-protected aziridines 220 in high yields and purity (>99%) (Scheme 71).118 

The diastereoisomers of β-aminophosphonates 221 and 222 were cyclized using NaH, 
resulting in the diastereoisomers 223 (76%) and 224 (75%), respectively, which were subjected 
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to hydrolysis conditions (TFA-MeOH) or MeMgBr to give the corresponding acids 225 and 226, 
respectively (Scheme 72).73,119-120 
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3.10. Ring closure of acyclic γ-aminophosphonates 
Ring closure of the mesylates 227 in refluxing toluene-water mixture in the presence of K2CO3 
produced azetidinyl-2-phosphonates (228), which were hydrolyzed into the corresponding 
azetidinyl-2-phosphonic acids (229) (Scheme 73).121 
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3.11. Ring closure of acyclic δ-aminophosphonates 
Treatment of δ-amino-β-ketophosphonates 230 with TFA, followed by reaction with (Boc)2O, 
afforded the derivatives 231 in 80–90% yield. Reaction of 231 with NaH and 4-acetamido-
benzenesulfonyl azide (4-ABSA) furnished the diazo derivatives 232 in excellent yield (83–
91%), which, by treatment with Rh2(OAc)4, led to the 3-oxo-pyrrolidine phosphonates 233. 
Removal of the 3-oxo group in 233 by treatment with NaH, followed by the addition of diethyl 
chlorophosphonate, and subsequent hydrogenation of 234 provided the cyclic phosphonates 235 
in good yield. Finally, cleavage of the Boc-protective group in 235 with  TFA afforded the cis-5-
substituted pyrrolidine-2-phosphonates 236 in 68–86% yield (Scheme 74).81,122-123 
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3.12. Ring closure of acyclic α-hydroxyphosphonates 
Phosphonylated 2-imidazolidinone 239 was prepared from phosphonylated aldehyde 237 and 
urea 238 (Scheme 75).124,125 
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3.13. Ring closure of isothiocyanatomethylphosphonates 
The lithium derivative of diethyl isothiocyanatomethylphosphonate (240) was reacted with 
aldehyde to afford a mixture of cis- and trans-(2-thioxo)oxazolidine-4-yl)phosphonate (241) 
which were separated by column chromatography (Scheme 76).126,127 
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Blaszczyk et al.128 demonstrated that the diastereoselective addition of diethyl isothio-
cyanatomethylphosphonate (240) to various N-protected imines 242 afforded the cyclic 
thioxoimidazolidinylphosphonates 245 (Scheme 77). 
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3.14. Miscellaneous 
3.14.1. Photocyclization. The antibacterial phosphonoaziridine 247 and a salt of 2H-aziridine 
248 were prepared via photocyclization reactions.116 Thus, vinylphosphonate 246 was treated 
with ethyl azidoacetate by irradiation with UV light (Scheme 78). 
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3.14.2. Reaction of azirine phosphonate with Grignard reagent. Reaction of 2H-azirine 
phosphonate 249 with ethyl magnesium bromide in THF at -78 oC led exclusively to the 
formation of diethyl trans-3-ethyl-3-methylaziridin-2-ylphosphonate (250) (Scheme 79).129 
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3.14.3. Phosphonylation of lactams. Lactam 251 was phosphonylated with triethyl phosphite in 
the presence of phosphorus oxychloride. The 1,1-diphosphonoazetidine 252 was obtained in only 
low yields (28%) (Scheme 80).130 
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3.14.4. Hydrolysis of an acetal. The acetal 254 was hydrolyzed in an acidic medium, and the 
resulting mixture was treated with several triphenyl phosphite reagents in hydrochloric acid to 
give diastereomeric mixtures of the N-protected diphenyl pyrrolidinephosphonates 255 (Scheme 
81).131,132  
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3.14.5. Cycloaddition to phosphorylated nitrile ylide. Diethyl isocyanomethylphosphonate 
256 can be used immediately in a cycloaddition reaction with methacrylonitrile 257 and Cu2O as 
a catalyst, producing the pyrroline 258 in 83% yield (Scheme 82).133 
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3.14.6. Cycloaddition to phosphorylated nitrone. 1,3-Dipolar cycloaddition of nitrone 259 was 
first examined with terminal alkenes in toluene at 60 oC. Cis- and trans-diastereomeric 
isoxazolidines 260 and 261 were obtained in the ratio 90:10 in yields 23-73% (Scheme 83).134 
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4. Type C: Cyclic α-Aminophosphonic Acid Derivatives Containing the Phosphorus and 
Nitrogen as Ring Heteroatoms 
 
4.1. Addition of phosphorus reagents to acyclic imines 
4.1.1. addition of phosphites to acyclic imines (Pudovik reaction). In the reaction of             
N-(benzylidene)-2-aminoethanol (262) with diethyl/ethane/bis(-chloroethyl)chlorophosphite in 
CHCl3, 2-(β-chloroethoxy)/ethoxy-2-oxo-3-phenyl-1,4,2-oxazaphosphorines (266) were obtained 
in good yields as diastereomers A and B (Scheme 84).135,136 
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Reaction of 2-(N-benzylidene)aminophenol (267) with diethyl chlorophosphite carried out in 
the absence of an external HCl acceptor resulted in the formation of two diastereomers of 2-(2′-
alkoxy)-2-oxo-3-phenyl-1,4,2-benzoxazaphosphorinanes (271) (Scheme 85).137 
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The Pudovik reaction of hydrazone 272 using diethyl phosphite in boiling THF containing a 
catalytic amount of sodium hydride produced a cyclic α-aminophosphonate ester 274 as only one 
isomer (Scheme 86).138 
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Heterocyclization of bis-thiosemicarbazone 275 with diethyl phosphite at 80 oC in the 
presence of BF3.Et2O at 80 oC for 10 hours, afforded an interesting type of phosphorus 
heterocycle, namely bis-[3-(4′-biphenyl)-4-[2-ethoxy-6-phenylamino-2-oxo-3,4-dihydro-2H-
1,4,5,2-thiadiazaphosphinin-3-yl]-1H-pyrazol-1-yl}phosphine oxide (277) (Scheme 87). The 
proposed mechanism for formation of 277 may occur via addition of the phosphorus atom of 
diethyl phosphite to the CH=Nexocyclic groups to give the nonisolable intermediate 276, which 
underwent cyclization by nucleophilic attack of SH groups at the phosphonate to eliminate two 
molecules of ethanol (Scheme 87).139 
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Scheme 87 
 

Addition of diethyl phosphite to the azomethine bond of the hydrazone 278 required heating 
at 80-100 oC with triethylamine as a catalyst and gave 3-(4-amino-5-ethoxy-3,5-dioxo-1,2,4,3,5-
triazadiphosphinan-6-yl)-4H-chromen-4-one (280). Most likely, the addition led to intermediate 
279 (not isolated), which underwent intramolecular cyclization via elimination of ethanol 
affording compound 280 (Scheme 88).140 
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4.1.2. Addition of isocyanatophosphite to acyclic imines. The phosphorylation pathway for 
(trichloroethanylidene)-N-methylamine 281 was determined by the nature of the phosphorus 
reagent. Thus, its reaction with trivalent phosphorus isocyanates as 1,3-dipole gave cyclic C-
phosphorylated iminophosphoranes 282 which transformed into α-aminophosphonate 283 as a 
result of imide-amide rearrangement (Scheme 89).141 
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Reaction of N-acetyl compound 284 with dimethyl isocyanatophosphite in benzene at 20-60 
oC, gave the cycloadduct 285 which underwent imide-amide rearrangement leading to 
stereoisomeric diazaphospholanes 286 and 287 (Scheme 90).142 
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At the same time, dimethyl isocyanatophosphite reacted with imine 288 as a 1,3 dipole 
giving the diazaphospholanes 290 (Scheme 91).142 
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4.2. Multicomponent reactions 
4.2.1. Reaction of carbonyl and aminoalcohols with phosphites (Kabachnik-Fields 
reaction). The Mannich type reaction between 2-aminoethanol and formaldehyde in an aqueous 
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solution of phosphorous acid did not result in the expected ([(2-
hydroxyethyl)imine]bis(methylphosphonic) acid 291 but in [(2-hydroxy-2-oxido-1,4,2-
oxazaphosphinan-4-yl)methyl]phosphonic acid (292) as a product of an intramolecular 
condensation (Scheme 92).143 
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2-Aminophenol was allowed to react with alkyl dichlorophosphinite and various substituted 
ketones or benzaldehyde in anhydrous tetrahydrofuran containing a small amount of potassium 
carbonate to give 2-alkoxy-2-oxo-1,4,2-oxazaphosphinane 294 in good yield. The reaction was 
carried out using a one pot procedure (Scheme 93).144-147 
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Similarly, when the starting material 2-amino-3-hydroxy-1,4-naphthoquinone (295) reacted 
with phenyl phosphorodichloridite and ketone or aromatic aldehyde, 2-alkoxy/aryloxy-3,4-
dihydro-2H-naphtho[2,3-e][1,4,2]oxazaphosphinane-5,10-dione 2-oxides (296) were obtained in 
55-82% yields (Scheme 94).148,149 
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The Kabachnik-Fields reaction using 3,4-diamino-6-methyl-1,2,4-triazin-5(4H)-one (297), 
acetaldehyde and diethyl phosphite in THF in the presence of sodium hydride as a catalyst led to 
only one isomer of 1,2,4-triazino[4,3-b][1,2,4,5]triazaphosphinine derivative 299 (Scheme 
95).138 
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The one-pot Kabachnik-Fields reaction of compound 300, acetaldehyde and diethyl 
phosphite in THF containing sodium hydride as a catalyst produced one isomer of [1,2,4] 
triazino[3,2-c][1,2,4,5]triazaphosphinine 303, via the nonisolable intermediate 302, which 
spontaneously was cyclized through N-2 of the triazine ring and not the exocyclic  N-amino, with 
elimination of a molecule of ethanol (Scheme 96).138 
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Diethyl [[(3-hydroxypropyl)amino](aryl)methyl]phosphonate (304) and 1,4,2-oxaza-
phosphepane derivative 305 were prepared by the Kabachnik-Fields reaction, realizing a three 
component combination of 3-aminopropanol, o-tolualdehyde and diethyl phosphite in toluene 
(Scheme 97).150 
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The eight-membered 3,7-dihydroxy-3,7-dioxoperhydro-1,5,3,7-diazadiphosphocine-1,5-
diacetic acid (306) was obtained with a one step reaction of glycine, formaldehyde and 
hypophosphorous acid in acidic aqueous medium (Scheme 98).151 
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4.2.2. Reaction of cyclopropanone acetal and 1,2-aminoalcohols with phosphites. Reaction 
of (2S)-phenylglycinol (307) with cyclopropanone acetal (308) and triethyl phosphite gave the 
spirophosphonates 309 and 310 in low yield and in diastereoisomeric ratio 89:11 (Scheme 99).152 
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4.3. Ring closure of acyclic α-aminophosphonates 
Fluorinated 1-methylaminoalkylphosphonates 311 reacted with NH3 to form heterocyclic salts 
312, which underwent elimination of ammonia under heating to give the neutral 1,4,2-
diazaphospholines 313 (Scheme 100).153 
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Phosphorylated urea 316 was obtained as the result of addition of α-aminoalkylphosphonates 
314 to bis(chloromethyl)isocyanatophosphonate (315). Compound 316 can be cyclized in two 
ways: a) with elimination of phenol and formation of diazaphospholidine 317, which under the 
action of phenol was converted into diazaphospholidine 318. and b) in the presence of a base, 
intramolecular alkylation of oxygen atoms of carbonyl fragment by chloromethyl group took 
place with the formation of 1,3,4-oxazaphosphol-2-ines 319 (Scheme 101).154 

It was found that diphenyl (α-methylamino)benzyl phosphonate (320) readily underwent 
addition to different iso(thio)cyanates in the presence of a catalytic amount of triethylamine, 
yielding 1,3,4-diazaphospholidines 322a-e. The reaction involved intermediate formation of 
N,N'-disubstituted (thio)ureas 321 which underwent fast cyclization by elimination of phenol. 
The labile exocyclic P-N bond of 322d,e was cleaved upon the action of phenol to give the final 
product diazaphospholidine 323 (Scheme 102).155-157 

A highly diastereoselective synthetic procedure for the preparation of enantiopure (2S,5S)-4-
benzyl-2-alkoxy-2-oxo-5-phenyl-1,4,2-oxazaphosphinanes [(2S, 5S)-1] (326) from (S)-phenyl-
glycinol (307) was achieved by its condensation with benzaldehyde followed by palladium 
catalyzed hydrogenation to give N-benzyl-(S)-phenylglycinol (324). The latter compound was 
condensed with formaldehyde (toluene solvent) and the resulting imminium salt was 
immediately treated with dialkyl phosphite to afford Mannich products (S)-325. Treatment of 
carbinol (S)-325 with KH in THF solution afforded cyclized products 326 in good yield (Scheme 
103).158 Also, compound 307 was treated with trimethyl phosphite and formaldehyde to give 
N-(phosphonomethyl)oxazolidine 327. Treatment of 327 with phenyl magnesium bromide and in 
the presence of TiCl4 gave directly the expected 326 (R=Me) but in low yield (Scheme 103).159 
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Compounds 332, 328 and 329 when heated in absolute ethanol containing a catalytic amount 
of triethylamine afforded 3-[2-(2-chloroethoxy)-2-oxo-4-phenyl-1,4,2-oxazaphosphinan-3-yl]-6-
methyl-4-oxo-4H-chromen-4-one (331). Formation of compound 331 is assumed to take place 
via loss of one HCl molecule from 332, 328 and 329, followed by elimination of both water and 
aniline in the case of 328 and 329, respectively. Hydrogen bonding between XH and NH groups 
gives stability to systems 328 and 329, but destruction of this hydrogen bond, after removing a 
molecule of HCl, may facilitate elimination of water and aniline (Scheme 104).33 

5-Chloro-2-nitrobenzoyl chloride (333) was reacted with α-aminophosphonate 334 to afford 
the nitroamide 335. Catalytic hydrogenation of 335 gave the cyclization precursor 336. Reacting 
a DMF solution of 336 with NaH followed by warming to 60 oC for a few hours, affording 4-
alkyl-7-chloro-2-ethoxy-2,3-dihydro-2-oxido-1H-1,4,2-benzodiazaphosphepin-5 (4H)-ones (337) 
(Scheme 105).160 

 
4.4. Miscellaneous 
4.4.1. Reaction of dialkyl/diphenyl phosphite with hydroxyl alkyl carbamate. 3-Ethyl-2-
hydroxy-2-oxo-1,4,2-oxazaphosphorinane (339) was obtained by treating various phosphonic 
acids diesters with hydroxyl alkyl carbamate mixtures 338. During the first stage of the reaction 
at 135 oC, transesterification occurred to give urethane phosphonates. In the second stage of the 
reaction at 170 oC, thermal decomposition of urethane phosphonate led to selective isolation of 
(339) in low yield (Scheme 106).161-163 
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5. Conclusions 
 
This review summarizes most synthetic methods giving rise to cyclic α-aminophosphonates. It 
focuses on the synthesis of cyclic α-aminophosphonic acids and their esters which contain at 
least two atoms. i.e. C−P, C−N or P−C−N, of the P-C-N system, in the heterocyclic system. The 
review is built up according to the three linkage types and starting with the smallest rings of each 
type. 
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