Supplementary Material

One-pot, three component approach to synthesis of multipart fused heterocyclic compounds: Synthesis of fused pyran-2-ones

Bahador Karami,* Khalil Eskandari, and Saeed Khodabakhshi

Department of Chemistry, Yasouj University, Yasouj, Zip Code 75918-74831, P. O. Box: 353, Iran
E-mail: The karami@mail.yu.ac.ir

Table of Contents

1. 13C and 1H NMR spectrum of compounds 8a

2. Representative spectral data
13C NMR spectrum of compound 8a
1H NMR spectrum of compound 8a
1H NMR (expanded) spectrum of compound 8a
1H NMR (expanded) spectrum of compound \textit{8a}
13C NMR spectrum of compound 8b
1H NMR spectrum of compound 8b
1H NMR (expanded) spectrum of compound 8b
\(^1\)H NMR (expanded) spectrum of compound 8b
13C NMR spectrum of compound 8c
1H NMR spectrum of compound 8c
1H NMR (expanded) spectrum of compound 8c
13C NMR spectrum of compound 8d
1H NMR spectrum of compound 8d
1H NMR (expanded) spectrum of compound 8d
13C NMR spectrum of compound 8e
1H NMR spectrum of compound 8e
$^1\text{H} \text{ NMR (expanded) spectrum of compound 8e}$
1H NMR (expanded) spectrum of compound 8e
13C NMR spectrum of compound 8f
1H NMR spectrum of compound 8f
1H NMR (expanded) spectrum of compound 8f
1H NMR (expanded) spectrum of compound 8f
13C NMR spectrum of compound $8g$
1H NMR spectrum of compound 8g
1H NMR (expanded) spectrum of compound 8g
1H NMR (expanded) spectrum of compound 8g
13C NMR spectrum of compound 8h
1H NMR spectrum of compound 8h
1H NMR (expanded) spectrum of compound 8h
1H NMR (expanded) spectrum of compound 8h
2. Representative spectral data

5-hydroxy-4-methyl-10-phenyl-9,10-dihydropyrano[2,3-h]chromene-2,8-dione (8a). white solids, m.p: 333 °C (decomposed); yield 0.28 g, 88%; IR (KBr) (νmax, cm⁻¹): 3255, 1782, 1694, 1628, 1605, 1382, 1337, 1125, 1094, 847, 736, 700. ¹H NMR (400.13 MHz, DMSO-d₆) δH 2.51 (s, 3H, CH₃), 2.95 (d, J= 16 Hz, 1H, CH), 3.38 (dd, JHH = 16.0 Hz, JHH = 7.2 Hz, 1H, CH), 4.73 (d, JHH = 6.0 Hz, 1H, CH), 6.09 (s, 1H, CH), 6.60 (s, 1H, CH), 7.11 (d, JHH = 7.6 Hz, 2H, aromatic CH), 7.24 (t, JHH = 6.8 Hz, 1H, aromatic CH), 7.32 (t, JHH = 7.2 Hz, 2H, aromatic CH), 11.15 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δC 24.07, 34.37, 37.26, 99.98, 106.56, 113.69, 126.96, 127.67, 127.94, 129.44, 141.67, 152.54, 154.40, 155.51, 159.62, 167.24. Anal. Calcd for C₁₁₁H₁₈O₅ (322.31): C, 70.80; H, 4.38. Found: C, 70.68; H, 4.55.

5-hydroxy-4-methyl-10-(2-chlorophenyl)-9,10-dihydropyrano[2,3-h]chromene-2,8-dione (8b). white solids, m.p: 328 °C (decomposed); yield 0.33 g, 92%; IR (KBr) (νmax, cm⁻¹): 3219, 1797, 1680, 1625, 1605, 1136, 1097, 852 and 548. ¹H NMR (400.13 MHz, DMSO-d₆) δH 2.56 (s, 3H, CH₃), 2.83 (dd, JHH = 16 Hz, JHH = 1.6 Hz, 1H, CH), 3.47 (dd, JHH = 16 Hz, JHH = 7.2 Hz, 1H, CH), 5.05 (d, JHH = 6.4 Hz, 1H, CH), 6.08 (s, 1H, CH), 6.63 (s, 1H, CH), 6.70 (dd, JHH = 7.8 Hz, JHH = 1.2 Hz, 1H, aromatic CH), 7.22 (m, 1H, aromatic CH), 7.31 (m, 1H, aromatic CH), 7.56 (q, JHH = 8.0 Hz, JHH = 1.2 Hz, aromatic CH), 11.24 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δC 23.50, 31.70, 35.01, 99.36, 102.27, 106.16, 111.52, 127.30, 127.97, 129.33, 130.22, 132.22, 137.77, 151.90, 154.37, 154.72, 157.54, 158.82, 166.05. Anal. Calcd for C₁₉H₁₃ClO₅ (356.76): C, 63.97; H, 3.67. Found: C, 64.08; H, 3.75.

5-hydroxy-4-methyl-10-(2-methoxyphenyl)-9,10-dihydropyrano[2,3-h]chromene-2,8-dione (8c). white solids, m.p: 337 °C (decomposed); yield 0.315 g, 92%; IR (KBr) (νmax, cm⁻¹): 3271, 1778, 1688, 1628, 1605, 1133, 1095, 851, 547. ¹H NMR (400.13 MHz, DMSO-d₆) δH 2.54 (s, 3H, CH₃), 2.80 (dd, JHH = 15.2 Hz, JHH = 0.8 Hz, 1H, CH), 3.31 (dd, JHH = 16.2 Hz, JHH = 8 Hz, 1H, CH), 3.81 (s, 3H, CH₃) 4.82 (d, JHH = 7.2 Hz, 1H, CH), 6.05 (s, 1H, CH), 6.57 (s, 1H, CH), 6.74 (dd, JHH = 7.4 Hz, JHH = 1.6 Hz, 1H, aromatic CH), 6.81 (t, 1H, aromatic CH), 7.03 (d, JHH = 8 Hz, 1H, aromatic CH), 7.24 (m, 1H, aromatic CH), 11.09 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δC 23.52, 30.30, 34.57, 55.07, 99.18, 102.60, 105.89, 111.26, 120.38, 127.45, 128.51, 128.70, 154.25, 154.82, 156.45, 157.02, 159.05, 166.47. Anal. Calcd for C₂₀H₁₆O₆ (352.34): C, 68.18; H, 4.58. Found: C, 68.26; H, 4.62.

5-hydroxy-4-methyl-10-(naphthalen-1-yl)-9,10-dihydropyrano[2,3-h]chromene-2,8-dione (8d). white solids, m.p: 350 °C (decomposed); yield 0.325 g, 88%; IR (KBr) (νmax, cm⁻¹): 3226, 1784, 1678, 1624, 1606, 1170, 1134, 1097, 853, 781, 551. ¹H NMR (400.13 MHz, DMSO-d₆) δH 2.59 (s, 3H, CH₃), 2.90 (d, JHH = 15.6 Hz, 1H, CH), 3.52 (dd, JHH = 16 Hz, JHH = 7.2 Hz, 1H, CH), 5.60 (d, JHH = 6.8 Hz, 1H, CH), 6.06 (s, 1H, CH), 6.69 (s, 1H, CH), 6.74 (d, JHH = 6.8 Hz, 1H, aromatic CH), 7.33 (t, JHH = 7.6 Hz, 1H, aromatic CH), 7.63 (t, JHH = 7.6 Hz, 1H, aromatic CH), 7.71 (t, JHH = 7.6 Hz, 1H, aromatic CH), 7.85 (d, JHH = 8 Hz, 1H, aromatic CH), 8.02 (d, JHH = 8 Hz, 1H, aromatic CH), 8.39 (d, JHH = 8.8 Hz, 1H, aromatic CH), 11.23 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δC 23.55, 30.46, 36.43, 99.42, 103.41, 106.19, 111.43, 122.96, 123.11, 125.49, 126.15, 126.89, 128.01, 129.05, 129.95, 133.85, 136.40, 151.92, 154.62, 154.87, 157.35, 158.96, 166.39. Anal. Calcd for C₂₃H₁₆O₅ (372.37): C, 74.19; H, 4.33. Found: C, 74.19; H, 4.32.
5-hydroxy-4-phenyl-10-phenyl-9,10-dihydropyranol[2,3-h]chromene-2,8-dione (8e). pale yellow solids, m.p: 276-277 °C; yield 0.32 g, 85%; IR (KBr) (v_max, cm⁻¹): 3330, 1789, 1732, 1691, 1624, 1601, 1437, 1375, 1332, 1172, 1126, 1090, 767, 699, 611. ¹H NMR (400.13 MHz, DMSO-d₆) δ_H 2.99 (d, J_HH = 16.0 Hz, 1H, CH), 3.44 (m, 1H, CH), 4.81 (d, J_HH = 6.4 Hz, 1H, CH), 6.00 (s, 1H, CH), 6.50 (s, 1H, CH), 7.18 (d, J_HH = 7.6 Hz, 2H, aromatic CH), 7.27 (t, J_HH = 7.2 Hz, 1H, aromatic CH), 7.33-7.40 (m, 7H, aromatic CH), 10.76 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δ_C 34.46, 37.20, 100.02, 104.36, 105.00, 113.53, 127.03, 127.74, 127.85, 128.53, 129.49, 139.48, 141.63, 152.71, 154.84, 156.08, 156.80, 159.42, 167.18. Anal. Calcd for C₂₄H₁₆O₅ (384.38): C, 74.99; H, 4.20. Found: C, 74.75; H, 4.36.

5-hydroxy-4-phenyl-10-(2-chlorophenyl)-9,10-dihydropyranol[2,3-h]chromene-2,8-dione (8f). pale yellow solids, m.p: 298-300 °C; yield 0.37 g, 90%; IR (KBr) (v_max, cm⁻¹): 3353, 3067, 1778, 1734, 1692, 1621, 1603, 1434, 1375, 1349, 1179, 1136, 1120, 1090, 764, 738, 705, 464. ¹H NMR (400.13 MHz, DMSO-d₆) δ_H 2.88 (d, J_HH = 15.6 Hz, 1H, CH), 3.51 (dd, J_HH = 16.0 Hz, J_HH = 7.6 Hz, 1H, CH), 5.14 (d, J_HH = 6.8 Hz, 1H, CH), 5.99 (s, 1H, CH), 6.54 (s, 1H, CH), 6.79 (d, J_HH = 7.6 Hz, 1H, CH), 7.26 (t, J_HH = 6.7 Hz, 1H, aromatic CH), 7.32-7.41 (m, 6H, aromatic CH), 7.59 (d, J_HH = 6.7 Hz, 1H, aromatic CH), 10.86 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δ_C 32.28, 35.56, 99.96, 102.92, 105.17, 113.63, 127.86, 127.90, 128.53, 128.56, 129.88, 130.77, 132.75, 138.27, 139.38, 152.63, 155.38, 155.94, 157.20, 159.20, 166.52. Anal. Calcd for C₂₄H₁₅ClO₅ (418.83): C, 68.82; H, 3.61. Found: C, 68.76; H, 3.68.

5-hydroxy-4-phenyl-10-(2-methoxyphenyl)-9,10-dihydropyranol[2,3-h]chromene-2,8-dione (8g). yellow solids, m.p: 288-290 °C; yield 0.35 g, 86%; IR (KBr) (v_max, cm⁻¹): 3310, 3065, 2839, 1780, 1733, 1697, 1623, 1600, 1493, 1372, 1349, 1245, 1184, 1130, 1090, 1023, 887, 845, 756, 733, 700, 613. ¹H NMR (400.13 MHz, DMSO-d₆) δ_H 2.85 (d, J_HH = 16.4 Hz, 1H, CH), 3.35 (dd, J_HH = 16.4 Hz, J_HH = 8.0 Hz, 1H, CH), 3.84 (s, 3H, OCH₃), 4.90 (d, J_HH = 7.6 Hz, 1H, CH), 5.96 (s, 1H, CH), 6.48 (s, 1H, CH), 6.86 (d, J_HH = 4.8 Hz, 2H, aromatic CH), 7.06 (d, J_HH = 8.4 Hz, 1H, aromatic CH), 7.25-7.29 (m, 1H, aromatic CH), 7.35-7.43 (m, 5H, aromatic CH), 10.71 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δ_C 31.03, 35.08, 55.56, 99.78, 103.22, 104.91, 111.82, 113.32, 120.94, 127.83, 127.88, 128.18, 128.49, 129.07, 129.26, 139.50, 152.83, 155.26, 156.08, 156.69, 157.01, 159.41, 166.91. Anal. Calcd for C₂₅H₁₈O₆ (414.41): C, 72.46; H, 4.38. Found: C, 72.33; H, 4.45.

5-hydroxy-4-phenyl-10-(naphthalen-1-yl)-9,10-dihydropyranol[2,3-h]chromene-2,8-dione (8h). orange solids, m.p: 285-286 °C; yield 0.36 g, 84%; IR (KBr) (v_max, cm⁻¹): 3337, 3062, 1783, 1732, 1697, 1622, 1603, 1437, 1357, 1240, 1166, 1129, 1090, 1014, 889, 855, 776, 703, 615, 593, 458. ¹H NMR (400.13 MHz, DMSO-d₆) δ_H 2.97 (d, J_HH = 15.6 Hz, 1H, CH), 3.56 (dd, J_HH = 16.0 Hz, J_HH = 7.2 Hz, 1H, CH), 5.70 (d, J_HH = 6.8 Hz, 1H, CH), 5.99 (s, 1H, CH), 6.61 (s, 1H, CH), 6.84 (d, J_HH = 7.2 Hz, 1H, aromatic CH), 7.36-7.41 (m, 6H, aromatic CH), 7.65 (t, J_HH = 7.6 Hz, 1H, aromatic CH), 7.74 (t, J_HH = 7.2 Hz, 1H, aromatic CH), 7.88 (d, J_HH = 8.0 Hz, 1H, aromatic CH), 8.04 (d, J_HH = 8.0 Hz, 1H, aromatic CH), 8.44 (d, J_HH = 8.8 Hz, 1H, aromatic CH), 10.86 (s, 1H, OH). ¹³CNMR (100.62 MHz, DMSO-d₆) δ_C 31.07, 36.98, 100.03, 104.04, 105.22, 113.52, 123.60, 123.65, 126.04, 126.69, 127.43, 127.87, 127.92, 128.58, 129.60, 130.49, 134.40, 136.88, 139.47, 152.66, 155.66, 156.10, 157.05, 159.34, 166.87. Anal. Calcd for C₂₅H₁₈O₅ (434.44): C, 77.41; H, 4.18. Found: C, 77.37; H, 4.23.