Synthesis of 4′-C-alkylated-5-iodo-2′-deoxypyrimidine nucleosides

Tobias Strittmatter, Joos Aschenbrenner, Norman Hardt, and Andreas Marx*

Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
E-mail: Andreas.Marx@uni-konstanz.de

Dedicated to Professor Richard R. Schmidt on the occasion of his 78th anniversary

DOI: http://dx.doi.org/10.3998/ark.5550190.0014.206

Abstract
Starting from available ribose-building blocks, the 4′-C-methyl-, 4′-C-ethyl- and the new 4′-C-propyl-substituted deoxyuridines were synthesized. Afterwards we converted 4′-C-alkylated-2′-deoxyuridines into the corresponding 4′-C-alkylated-5-iodo-2′-deoxyuridines 3a-c and those in turn into the 4′-C-alkylated-5-iodo-2′-deoxycytidines 4a-c.

Keywords: DNA replication, nucleoside analogues, 4′-C-alkylation, antiviral agents, carbohydrate, halogenation

Introduction
For a long time, chemically modified nucleoside analogues have been prominent life-saving drugs. This pharmacologically diverse family, which contains structural features of the skeleton of natural nucleosides, is used for treatment of cancer and viral infections.1 Along with HIV (human immunodeficiency virus) and HV (hepatitis virus), HSV (herpes simplex virus) and VZV (varicella-zoster virus) are prominent pathogens. In addition to acyclovir and bromovinyldeoxyuridine, HSV and VZV are treated with the approved antiviral drug 2′-deoxy-5-iodouridine 1 (Figure 1).1a,d,f,i,2 Compound 1, marketed for example as Stoxil®, Herples®, Virodox® and Herpid®, targets the viral DNA replication. Thereby, 1 acts as an antagonist of thymidine, its natural nucleoside counterpart, and targets the thymidylate phosphorylase and the workhorse of the DNA replication, the viral DNA polymerase.1a,f-h,2 As a general rule, 5-substituted deoxycytidines are appreciably more selective, but equally or slightly less potent in their anti-HSV activity than the accordant 5-substituted deoxyuridines.1a,3 Thus, the antiviral spectrum of 2′-deoxy-5-iodocytidine 2 (Figure 1), launched as Cuterherpes® and Cebeviran®, is similar to 1 to which drug 2 is converted by enzymatic deamination.1a,3a,c,4
In addition to 5-halopyrimidine nucleosides, 4′-C-modified nucleosides gained significant interest, because several analogues of this class exhibited antiviral activity.\(^5\) 4′-C-modified nucleosides act also as nucleoside reverse transcriptase inhibitors (NRTIs)\(^5g,h,6\) and showed even activity against multi-drug resistant virus strains.\(^5c,6c\) The evolution of viral resistance boosts the urgent requirements for new effective drugs and therapies against viral infections.\(^7\) Because there is a great need for the development of novel medicines\(^7,8\) and consequently also for NRTIs, we developed a synthetic route for 4′-C-alkylated-5-iodo-2′-deoxyuridines 3a-c and 4′-C-alkylated-5-iodo-2′-deoxycytidines 4a-c. We recently designed and synthesized a series of 4′-C-modified nucleosides and nucleotides.\(^6b,9\) In this study we combined our knowledge with a literature known synthesis strategy for 1\(^10\) and 12a\(^5b\) to synthesize the compounds 3a-c and converted those in turn into the 4′-C-alkylated-5-iodo-2′-deoxycytidines 4a-c. These novel nucleoside entities are of great interest, because they combine the structural features of the marketed drug 1 or 2, and 4′-C-modified nucleosides in one small molecule (Figure 1).

Figure 1. Chemical structures of 2′-deoxy-5-iodouridine 1, 2′-deoxy-5-iodocytidine 2, 4′-C-alkylated-5-iodo-2′-deoxyuridines 3a-c, and 4′-C-alkylated-5-iodo-2′-deoxycytidines 4a-c.

Results and Discussion

It is noteworthy to mention that 4′-C-modification of nucleosides always contain the generation of quaternary carbon centers including the restraints associated with the respective chemistry. To our knowledge, three main methodologies have been evolved for the synthesis of 4′-C-modified nucleosides. In methodology one a 4′-C-branch is attached to 2′-C-deoxynucleosides;\(^11\)
methodology two involves the asymmetric SAMP/RAMP-hydrazone α-alkylation and
diastereoselective nucleophilic 1,2-addition;12 and in methodology three, suitable 4-C-ribose
glycosyl donors are synthesized for the nucleoside formation using Vorbrüggen’s method.11b,13
Recently, we reported nine-steps reaction sequences (methodology three) for 4′-C-methyl-, 4′-C-ethyl-substituted deoxyuridines 5a-b.9f According to these findings we obtained 5a-b and investigated the synthesis of 2′-deoxy-4′-C-propyluridine 5c (Scheme 1).

\textbf{Scheme 1.} Synthesis of 2′-deoxy-4′-C-propyluridine 5c. \textit{Reagents and conditions:} a) DMP, CH\textsubscript{2}Cl\textsubscript{2}, r.t., 91%;9f b) EtPPh\textsubscript{3}Br, t-BuOK, THF, r.t., 84%; c) AcOH, Ac\textsubscript{2}O, H\textsubscript{2}SO\textsubscript{4}, r.t., 64%; d) uracil, BSA, TMSOTf, MeCN, reflux, 71%; e) NaOMe, MeOH, r.t.; f) PhOCSCl, DMAP, MeCN, r.t.; g) n-Bu\textsubscript{3}SnH, AIBN, toluene, reflux, 83% over 3 steps; h) 10% Pd/C, H\textsubscript{2}, EtOH, r.t.; i) TBAF, THF, r.t., 65% over 2 steps.

Here our synthesis strategy of 4′-C-modified nucleosides starts with the selective silylated 4-C-hydroxymethyl substituted ribose building block 6.14 After conversion of 6, with Dess-Martin periodinane (DMP)15 to the corresponding aldehyde, Wittig reaction allowed us C-C-bond formation to yield the 4-C-(Z)-prop-1-enyl ribose analogue 7c. Bulky alkoxides have previously been reported to be the bases of choice in Wittig reactions involving sterically encumbered substrates9c,16 and so we performed the reaction with potassium tert-butoxide (t-BuOK) and ethyltriphenylphosphonium bromide (EtPPh\textsubscript{3}Br) as C2-synthon. By protection group manipulations we converted 7c to the substituted ribosyl acetate 8c.

Next, according to Vorbrüggen glycosylation the nucleobase uracil was fused with the 4-C-modified glycosyl donor 8c.13 Reaction with bis(trimethylsilyl)uracil, which is formed as an intermediate by silylation of uracil with bis(trimethylsilyl)acetamide (BSA), and trimethylsilyl triflate (TMSOTf) as catalyst gave stereoselectively the β-configurated 4′-C-(Z)-prop-1-enyl substituted nucleoside 9c. After deacetylation with sodium methoxide (NaOMe) and reaction with phenyl chlorothionoformate (PhOCSCI) in the presence of 4-dimethylaminopyridine
(DMAP) we obtained the thiocarbonate ester, which was subsequently reduced with tributyltin hydride (n-Bu₃SnH) to the 2'-deoxyuridine analogue 10c. Catalytic hydrogenation with Pd/C followed by desilylation with tetrabutylammonium fluoride (TBAF) furnished the 2'-deoxy-4'-C-propylyridine 5c (Scheme 1).

After we had the analogues 5a-c in hand, we assigned a literature known synthesis strategy for 1¹⁰ and 12a⁵ᵇ to our routes. We acetylated 5a-c to yield compounds 11a-c. Diammonium cerium (IV) nitrate (CAN) mediated iodination (12a-c), followed by deprotection furnished in good to excellent yields the 4'-C-methyl-, 4'-C-ethyl- and 4'-C-propyl-5-iodo-2'-deoxyuridine analogues 3a-c (Scheme 2).

Our convergent synthetic strategy to synthesize the 4'-C-alkylated-5-iodo-2'-deoxycytidines 4a-c was based on the conversion of uridine or thymidine derivatives into the respective cytidine analogues.⁹c,¹⁷ Thus, we silylated 3a-c with tert-butyldimethylsilyl chloride (TBDMSCl) in the presence of imidazole to yield compounds 13a-c. Afterwards 13a-c was converted into 14a-c by treatment with the 2,4,6-trisopropylbenzenesulfonyl chloride (TPSCI)-Et₃N-DMAP system, and followed by aminolysis with ammonium hydroxide (NH₄OH) to generate the exocyclic amino function. Finally, desilylation with TBAF yielded the 4'-C-methyl-, 4'-C-ethyl- and 4'-C-propyl-5-iodo-2'-deoxycytidine analogues 4a-c (Scheme 3).

Scheme 2. Synthesis of 2'-deoxy-5-iodouridine analogues 3a-c. *Reagents and conditions:* a) Et₃N, Ac₂O, DMAP, MeCN, r.t., 63% (11a), 74% (11b), 93% (11c); b) I₂, CAN, MeCN, reflux, 89% (12a), 98% (12b), 89% (12c); c) NaOMe, MeOH, r.t., 91% (3a), 97% (3b), 97% (3c).
Scheme 3. Synthesis of 2′-deoxy-5-iodocytidine analogues 4a-c. Reagents and conditions: a) TBDMSCl, imidazole, DMF, r.t., 81% (13a), 90% (13b), 91% (13c); b) TPSCI, DMAP, Et3N, MeCN, r.t.; c) 28% NH4OH, 78% (14a), 77% (14b), 80% (14c) over 2 steps; d) TBAF, THF, r.t., 92% (4a), 89% (4b), 81% (4c).

Conclusions

In conclusion, we synthesized, starting from the available ribose-building block 6, the 4′-C-methyl-, 4′-C-ethyl- and the new 4′-C-propyl-substituted deoxyuridines 5a-c. Afterwards we synthesized starting with 5a-c the corresponding 4′-C-alkylated-5-ido-2′-deoxyuridines 3a-c and converted those into the 4′-C-alkylated-5-ido-2′-deoxycytidines 4a-c. The novel nucleoside analogues 3a-c and 4a-c are 4′-C-alkylated derivatives of the approved antiviral drugs 2′-deoxy-5-iodouridine 1 and 2′-deoxy-5-ido-cytidine 2. Due to the fact, that several derivatives of 4′-C-modified nucleosides also showed antiviral activity, the here reported molecules are generally of great interest because of their potential antiviral activities. Additionally the herein reported molecules could act as useful synthetic building blocks for further 4′-C-modified nucleosides.

Experimental Section

General. All reagents are commercially available and used without further purification. MeCN was dried by distillation from CaH2. All other solvents are dried over molecular sieves and used directly without further purification. All reactions were conducted under exclusion of air and
moisture. Petroleum ether (PE) used had a b.p. range of 35-80 °C. NMR spectra: Bruker Avance III 400 MHz spectrometer. 1H and 13C chemical shifts are reported relative to the residual solvent peak. Flash chromatography: Merck silica gel G60. TLC: Merck precoated plates (silica gel 60 F$_{254}$). ESI-IT: Bruker Esquire 3000 plus. HRMS: Bruker Daltronics microTOF-Q II ESI-Qq-TOF. The reported yield refers to the analytically pure substance and is not optimized. Building block 6 was synthesized according to literature.14 Compounds 5a-b were prepared as we described recently.9f

3-O-Benzyl-5-(O-tert-butyldiphenylsilyl)-4-C-(Z)-prop-1-enyl-1,2-O-isopropylidene-α-β-d-ribofuranose (7c). To a solution of compound 6 (20.0 g, 36.4 mmol) in CH$_2$Cl$_2$ (55 mL), was added DMP15 (20.0 g, 47.2 mmol) and the mixture was stirred at r.t. over night. After completion of the reaction, the mixture was quenched with aq sat. NaHCO$_3$ solution (60 mL). The organic layer was separated and the aqueous layer was extracted with CH$_2$Cl$_2$ (4×20 mL). The organic layers were combined, dried over MgSO$_4$, concentrated and purified by silica gel column chromatography (EtOAc-PE, 1:9) as eluent to give the aldehyde intermediate as a white solid (yield 17.78 g, 91%).9f

Next, EtPPh$_3$Br (23.43 g, 63.1 mmol) and t-BuOK (10.78 g, 96.0 mmol) were suspended in THF (100 mL) and stirred at r.t. for 2 h. Then the synthesized aldehyde (15.00 g, 27.4 mmol) in THF (20 mL) was added and stirring was continued for 17 h. The reaction mixture was quenched with aq sat. NaHCO$_3$ solution (40 mL) and extracted with CH$_2$Cl$_2$ (3×60 mL). The combined organic layers were dried over MgSO$_4$, concentrated and purified by silica gel column chromatography (EtOAc-PE, 1:6) to give 7c. Yellow gum, yield 12.86 g, 84%, R_f 0.55 (EtOAc-PE, 1:4). 1H NMR (400 MHz, CDCl$_3$): δ 0.97 (s, 9H), 1.29 (s, 3H), 1.51 (s, 3H), 1.65 (dd, J 7.2, 1.7 Hz, 3H), 3.49 (d, J 11.7 Hz, 1H), 3.69 (d, J 11.7 Hz, 1H), 4.36 (d, J 4.6 Hz, 1H), 4.60 (dd, J 4.6, 3.9, 1H), 4.67 (d, J 12.3 Hz, 1H), 4.83 (d, J 12.3 Hz, 1H), 5.52 (dq, J 11.9, 7.2 Hz, 1H), 5.74 (d, J 3.9 Hz, 1H), 5.80 (dd, J 11.8, 1.7 Hz, 1H), 7.25-7.42 (m, 11H), 7.60-7.68 (m, 4H). 13C NMR (101 MHz, CDCl$_3$): δ 14.79, 19.48, 25.58, 26.48, 27.01, 64.58, 72.76, 78.37, 86.54, 100.23, 103.91, 113.36, 126.97, 127.76, 127.87, 128.03, 128.05, 128.63, 128.65, 129.81, 129.81, 133.27, 133.94, 135.02, 135.75, 136.09, 138.21. ESI-MS: m/z [M+Na]$^+$ calcd for C$_{38}$H$_{42}$O$_5$Si: 581.3; found: 581.1.

1,2-Di-O-acetyl-3-O-benzyl-5-(O-tert-butyldiphenylsilyl)-4-C-(Z)-prop-1-enyl-α,β-d-ribofuranose (8c). To a solution of compound 7c (12.80 g, 22.9 mmol) in a mixture of AcOH (208 mL) and Ac$_2$O (32.4 mL, 247.7 mmol) was added concd H$_2$SO$_4$ (200 μL) and the mixture was stirred for 24 h at r.t. After completion of the reaction, the mixture was concentrated and coevaporated with toluene (2 × 100 mL). The residue was diluted with CH$_2$Cl$_2$ (100 mL) and washed with aq sat. NaHCO$_3$ (25 mL) and demin. H$_2$O (25 mL), dried over MgSO$_4$, concentrated, and purified by silica gel column chromatography (EtOAc-PE, 1:4) to give 8c. Yellow gum, yield 8.91 g, 64%, R_f 0.68 (EtOAc-PE, 1:3). 1H NMR (400 MHz, CDCl$_3$): δ 1.03 (s, 9H), 1.74 (dd, J 3.8, 1.5 Hz, 3H), 1.84 (s, 3H), 2.05 (s, 3H), 3.59 (d, J 11.4 Hz, 1H), 3.74 (d, J 11.4 Hz, 1H), 4.52 (d, J 11.6 Hz, 1H), 4.62 (d, J 4.9 Hz, 1H), 4.67 (d, J 11.6 Hz, 1H), 5.36 (d, J 4.9 Hz, 1H), 5.49-5.60 (m, 2H), 6.21 (s, 1H), 7.25-7.42 (m, 11H), 7.60-7.72 (m, 4H). 13C NMR (101 MHz, CDCl$_3$): δ
14.45, 19.58, 20.98, 21.17, 27.05, 65.07, 73.55, 74.82, 76.69, 88.78, 98.24, 100.20, 126.35,
127.82, 127.86, 127.96, 128.01, 128.50, 128.96, 129.97, 133.40, 135.01, 135.79, 135.84,
138.02, 169.71, 170.20. ESI-MS: \(m/z \) [M+Na\(^+\)] \(\text{calc} \) for \(C_{35}H_{42}O_2Si: 625.3; \) found: 625.1.

2′-O-Acetyl-3′-O-benzyl-5′-(O-tert-butyldiphenylsilyl)-4′-C-(Z)-prop-1-enyluridine (9c).
Compound 8c (7.63 g, 12.8 mmol) and uracil (2.87 g, 25.6 mmol) were solved in MeCN (40 mL)
and \(N,O\)-bis(trimethylsilyl)acetamide (18.4 mL, 76.8 mmol) was added. The mixture was
refluxed for 1 h after cooling to r.t. Me3SiOTf (3.0 mL, 16.64 mmol) was added. After
refluxing again for 1 h the mixture was quenched with aq sat. NaHCO\(_3\) solution (10 mL),
evaporated and extracted with CH\(_2\)Cl\(_2\). The organic layer was dried over MgSO\(_4\), concentrated
and purified by silica gel column chromatography (EtOAc:PE, 1:1) to give 9c. White foam, yield
5.72 g, 71%, \(R_f \) 0.13 (EtOAc-PE, 1:3). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 1.07 (s, 9H), 1.69
(dd, \(J \) 7.1, 1.6 Hz, 3H), 2.07 (s, 3H), 3.66 (d, \(J \) 11.9 Hz, 1H), 3.90 (d, \(J \) 11.9 Hz, 1H), 4.44
(s, 1H), 4.44 (d, \(J \) 10.5 Hz, 1H), 4.64 (d, \(J \) 11.2 Hz, 1H), 5.23 (dd, \(J \) 8.1, 2.3 Hz, 1H), 5.33
(dd, \(J \) 6.1, 2.7 Hz, 1H), 5.48 (dd, \(J \) 11.9, 1.7 Hz, 1H), 5.57-5.69 (m, 1H), 6.07 (d, \(J \) 2.7 Hz, 1H),
7.25-7.46 (m, 11H), 7.53-7.65 (m, 4H), 7.68 (d, \(J \) 8.2 Hz, 1H), 8.15 (s, 1H). \(^13\)C NMR (101 MHz,
CDCl\(_3\)): \(\delta \) 14.05, 19.41, 20.74, 27.04, 64.13, 73.87, 74.19, 75.81, 77.21, 87.11, 87.98, 100.01,
102.63, 124.43, 127.72, 127.95, 128.01, 128.03, 128.48, 130.08, 130.12, 130.18, 132.13, 132.94,
135.34, 135.62, 137.31, 139.77, 149.75, 162.42, 169.94. ESI-MS: \(m/z \) [M+Na\(^+\)] \(\text{calc} \) for
\(C_{37}H_{42}N_2O_7Si: 677.3; \) found: 677.9.

3′-O-Benzyl-5′-(O-tert-butyldiphenylsilyl)-2′-deoxy-4′-C-(Z)-prop-1-enyluridine (10c).
Compound 9c (5.88 g, 9.0 mmol) was solved in MeOH (100 mL) and NaOMe (0.73 g, 13.5 mM)
was added. The mixture was stirred at r.t. for 2 h. After completion of the reaction, the
mixture was treated with aq concd tartaric acid (50 mL) and extracted with CH\(_2\)Cl\(_2\) (3\(\times\)80 mL).
The combined organic layers were dried over MgSO\(_4\), concentrated and purified by silica gel
chromatography (EtOAc-PE, 4:1). The resulting compound was dissolved in MeCN (65 mL),
DMAP (3.31 g, 27.0 mmol) and PhOCSCl (1.5 mL, 10.8 mmol) were added and the
mixture was stirred at r.t. for 1 h. After completion of the reaction the mixture was concentrated,
diluted in CH\(_2\)Cl\(_2\) (60 mL), washed with aq 5% citric acid (30 mL) and demin. H\(_2\)O (20 mL).
The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (50 mL), the combined organic layers dried over
MgSO\(_4\) and evaporated. To a solution of the residue in toluene were added \(n \)-Bu\(_3\)SnH (12.57 g,
43.2 mmol) and a catalytic amount of AIBN. The mixture was refluxed for 1 h. After completion
of the reaction the solvent was removed under reduced pressure and the residue was purified by
silica gel column chromatography (EtOAc-PE, 3:7) to give 10c. White foam, yield 4.44 g, 83%,
\(R_f \) 0.31 (EtOAc-PE, 1:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 1.07 (s, 9H), 1.73 (dd, \(J \) 7.2, 1.6 Hz,
3H), 2.12-2.24 (m, 1H), 2.38-2.47 (m, 1H), 3.73 (d, \(J \) 11.7 Hz, 1H), 3.94 (d, \(J \) 11.8 Hz, 1H),
4.46-4.55 (m, 2H), 4.59 (d, \(J \) 11.7 Hz, 1H), 5.21 (dd, \(J \) 8.2, 2.1 Hz, 1H), 5.53 (dd, \(J \) 11.9, 1.6 Hz,
1H), 5.69 (dq, \(J \) 11.9, 7.1 Hz, 1H), 6.12 (dd, \(J \) 7.3, 3.0 Hz, 1H), 7.26-7.46 (m, 11H), 7.51-7.67
(m, 4H), 7.92 (d, \(J \) 8.2 Hz, 1H), 8.14 (s, 1H). \(^13\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 14.30, 19.63,
27.26, 37.80, 64.50, 72.75, 75.66, 77.43, 83.20, 88.99, 100.21, 102.19, 124.68, 127.71, 128.15,
2′-Deoxy-4′-C-propyluridine (5c). To a solution of compound 10c (4.06 g, 7.1 mmol) in EtOH (50 mL) was added an equivalent weight amount of 10% Pd/C and the mixture was stirred at r.t. for 20 h and then diluted with CH₂Cl₂ (40 mL) and washed with demin. H₂O (3×30 mL). The organic layer was dried over MgSO₄, concentrated and purified by silica gel column chromatography (EtOAc→MeOH-EtOAc, 1:9) to give 5c. White foam, yield 1.25 g, 65%, Rᵣ 0.48 (MeOH-EtOAc, 1:9). ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, J 7.1 Hz, 3H), 1.31-1.70 (m, 4H), 2.28-2.34 (m, 2H), 3.55 (d, J 11.7 Hz, 1H), 3.63 (d, J 11.7 Hz, 1H), 4.40 (t, J 5.5 Hz, 1H), 5.65 (d, J 8.1 Hz, 1H), 6.16 (t, J 6.5 Hz, 1H), 8.03 (d, J 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 15.41, 18.28, 35.00, 41.81, 65.55, 72.96, 85.76, 91.12, 102.50, 142.83, 152.43, 166.51. ESI-MS: m/z [M+Na]+ calcd for C₁₃H₁₈N₂O₅: 271.12; found: 271.13. HRMS: m/z [M+Na]+ calcd for C₁₃H₁₈N₂O₅: 271.12885; found: 271.12864.

General synthetic procedure, exemplified by 3′,5′-di-O-acetyl-2′-deoxy-4′-C-methyluridine (11a)

To a suspension of compound 5a (0.62 g, 2.56 mmol) in MeCN (14 mL) was added NEt₃ (1.43 mL, 10.2 mmol), Ac₂O (0.96 mL, 10.2 mmol) and a catalytic amount of DMAP. The mixture was stirred at r.t. for 20 h and then diluted with CH₂Cl₂ (40 mL) and washed with demin. H₂O (3×30 mL). The organic layer was dried over MgSO₄, concentrated and purified by silica gel column chromatography (EtOAc-PE, 6:1).

11a. White foam, yield 0.55 g, 63%, Rᵣ 0.30 (EtOAc-PE, 6:1). ¹H NMR (400 MHz, CDCl₃): δ 1.27 (s, 3H), 2.10 (s, 3H), 2.12 (s, 3H), 2.33 (dt, J 14.2, 7.1 Hz, 1H), 2.52 (ddd, J 14.3, 6.1, 3.6 Hz, 1H), 4.12 (d, J 11.9 Hz, 1H), 4.18 (d, J 11.9 Hz, 1H), 5.31 (dd, J 6.8, 3.6 Hz, 1H), 5.76 (d, J 7.4 Hz, 1H), 6.24 (t, J 6.7 Hz, 1H), 7.55 (d, J 8.2 Hz, 1H), 9.35 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 18.40, 20.92, 20.95, 38.71, 67.98, 73.82, 84.21, 85.08, 102.84, 139.02, 150.44, 163.19, 170.21. ESI-MS: m/z [M+Na]+ calcd for C₁₄H₁₈N₂O₇: 349.1; found: 349.3.

3′,5′-Di-O-acetyl-2′-deoxy-4′-C-ethyluridine (11b). White foam, yield 1.18 g, 74%, Rᵣ 0.31 (EtOAc-PE, 6:1). ¹H NMR (400 MHz, CDCl₃): δ 0.96 (t, J 7.5 Hz, 3H), 1.60 (dq, J 14.8, 7.4 Hz, 1H), 1.74 (dq, J 15.1, 7.6 Hz, 1H), 2.09 (s, 3H), 2.10 (s, 3H), 2.32 (dt, J 14.3, 7.1 Hz, 1H), 2.47 (ddd, J 14.3, 6.1, 3.5 Hz, 1H), 4.16 (s, 2H), 5.37 (dd, J 6.9, 3.5 Hz, 1H), 5.75 (d, J 8.2 Hz, 1H), 6.17 (t, J 6.6 Hz, 1H), 7.55 (d, J 8.2 Hz, 1H), 9.65 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 7.98, 20.94, 24.83, 38.92, 66.02, 74.01, 84.24, 86.80, 102.81, 139.04, 150.52, 163.38, 170.07, 170.27. ESI-MS: m/z [M+Na]+ calcd for C₁₄H₂₀N₂O₇: 363.1; found: 363.3.

3′,5′-Di-O-acetyl-2′-deoxy-4′-C-propyluridine (11c). White foam, yield 1.21 g, 93%, Rᵣ 0.67 (EtOAc-PE, 4:1). ¹H NMR (400 MHz, CDCl₃): δ 0.93 (t, J 7.1 Hz, 3H), 1.27-1.69 (m, 4H), 2.09 (s, 3H), 2.11 (s, 3H), 2.30 (dt, J 14.2, 7.1 Hz, 1H), 2.47 (ddd, J 14.3, 6.1, 3.5 Hz, 1H), 4.16 (s, 2H), 5.35 (dd, J 6.8, 3.5 Hz, 1H), 5.74 (dd, J 8.2, 2.0 Hz, 1H), 6.20 (dd, J 7.0, 6.5 Hz, 1H), 7.53
(d, J 8.2 Hz, 1H), 8.61 (s, 1H). 13C NMR (101 MHz, CDCl$_3$): δ 14.87, 17.12, 21.07, 21.09, 34.36, 39.05, 66.49, 74.10, 84.37, 86.81, 102.88, 139.09, 150.28, 162.82, 170.17, 170.32. ESI-MS: m/z [M+Na]$^+$ calcd for C$_{16}$H$_{22}$N$_2$O$_7$: 377.1; found: 377.3.

General synthetic procedure, exemplified by 3′,5′-di-O-acetyl-2′-deoxy-5-ido-4′-C-methyluridine (12a)

Compound 11a (0.46 g, 1.40 mmol), iodine (0.21 g, 0.84 mmol) and CAN (0.38 g, 0.70 mmol) were solved in MeCN (23 mL) and refluxed for 1 h. After completion of the reaction the solvent was removed under reduced pressure and the residue was partitioned between EtOAc (40 mL), aq sat. NaCl (20 mL) and aq 5% NaHSO$_4$ (5 mL). The aqueous layer was extracted with EtOAc (2×40 mL) and the combined organic layers were washed first with aq 5% NaHSO$_4$ (5 mL) and then with aq sat. NaCl (25 mL) and demin. H$_2$O (2×15 mL), dried over MgSO$_4$, concentrated and purified by silica gel column chromatography (EtOAc-PE, 2:1).

12a. White foam, yield 0.56 g, 89%, R_f 0.57 (EtOAc-PE, 5:1). 1H NMR (400 MHz, CDCl$_3$): δ 1.26 (s, 3H), 2.12 (s, 3H), 2.21 (s, 3H), 2.36 (dt, J 14.2, 7.0 Hz, 1H), 2.53 (ddd, J 14.3, 6.2, 3.8 Hz, 1H), 4.13 (d, J 12.1 Hz, 1H), 4.21 (d, J 12.0 Hz, 1H), 5.32 (dd, J 6.9, 3.8 Hz, 1H), 6.21 (t, J 6.6 Hz, 1H), 8.02 (s, 1H), 9.44 (s, 1H). 13C NMR (101 MHz, CDCl$_3$): δ 18.42, 20.89, 21.32, 39.09, 67.90, 68.79, 73.51, 84.44, 85.39, 143.98, 150.13, 159.96, 170.21. ESI-MS: m/z [M+Na]$^+$ calcd for C$_{14}$H$_{17}$IN$_2$O$_7$: 475.0; found: 475.1.

3′,5′-Di-O-acetyl-2′-deoxy-5-ido-4′-C-ethyluridine (12b). White foam, yield 1.56 g, 98%, R_f 0.71 (EtOAc-PE, 5:1). 1H NMR (400 MHz, CDCl$_3$): δ 0.97 (t, J 7.5 Hz, 3H), 1.60 (dq, J 14.8, 7.4 Hz, 1H), 1.75 (dq, J 15.1, 7.6 Hz, 1H), 2.11 (s, 3H), 2.21 (s, 3H), 2.38 (dd, J 14.3, 7.1 Hz, 1H), 2.50 (ddd, J 14.4, 6.2, 3.8 Hz, 1H), 4.19 (d, J 12.2 Hz, 1H), 4.22 (d, J 12.2 Hz, 1H), 5.38 (dd, J 7.0, 3.8 Hz, 1H), 6.20 (t, J 6.6 Hz, 1H), 8.02 (s, 1H), 9.65 (s, 1H). 13C NMR (101 MHz, CDCl$_3$): δ 8.01, 20.92, 21.36, 24.95, 39.27, 66.19, 68.86, 73.60, 84.43, 87.10, 143.98, 150.20, 160.04, 170.08, 170.32. ESI-MS: m/z [M+Na]$^+$ calcd for C$_{15}$H$_{19}$IN$_2$O$_7$: 489.0; found: 489.1.

3′,5′-Di-O-acetyl-2′-deoxy-5-ido-4′-C-propyluridine (12c). White foam, yield 1.53 g, 89%, R_f 0.63 (EtOAc-PE, 3:1). 1H NMR (400 MHz, CDCl$_3$): δ 0.92 (t, J 7.1 Hz, 3H), 1.26-1.69 (m, 4H), 2.09 (s, 3H), 2.19 (s, 3H), 2.33 (dt, J 14.3, 7.0 Hz, 1H), 2.47 (dd, J 14.4, 6.2, 3.8 Hz, 1H), 4.16 (d, J 12.4 Hz, 1H), 4.19 (d, J 12.4 Hz, 1H), 5.34 (dd, J 7.0, 3.8 Hz, 1H), 6.17 (t, J 6.6 Hz, 1H), 7.99 (s, 1H), 9.41 (s, 1H). 13C NMR (101 MHz, CDCl$_3$): δ 14.83, 17.10, 21.01, 21.46, 34.42, 39.35, 66.61, 68.91, 73.69, 84.50, 87.06, 144.05, 150.22, 160.03, 170.16, 170.38. ESI-MS: m/z [M+Na]$^+$ calcd for C$_{16}$H$_{21}$IN$_2$O$_7$: 503.0; found: 503.4.

General synthetic procedure, exemplified by 2′-deoxy-5-ido-4′-C-methyluridine (3a)

Compound 12a (0.08 g, 0.17 mmol) was stirred with 0.1 M NaOMe/MeOH (8 mL) at r.t. for 1 h. After the reaction was completed, addition of 2 mL of demin. H$_2$O was followed by neutralization (pH 6) with Amberlite IR-120 (H$^+$ form) ion-exchange resin. The resin was filtered and washed with 50% aq MeOH (20 mL). The combined filtrate and washings were evaporated and purified by silica gel column chromatography (EtOAc).
3a. White foam, yield 0.057 g, 91%, \(R_f \) 0.35 (EtOAc). \(^1\)H NMR (400 MHz, MeOD): \(\delta \) 1.16 (s, 3H), 2.30-2.44 (m, 2H), 3.57 (d, \(J \) 11.7 Hz, 1H), 3.62 (d, \(J \) 11.7 Hz, 1H), 4.40 (t, \(J \) 6.2 Hz, 1H), 6.14 (t, \(J \) 6.0 Hz, 1H), 8.64 (s, 1H). \(^13\)C NMR (101 MHz, MeOD): \(\delta \) 18.01, 41.55, 67.01, 67.82, 71.82, 85.73, 89.51, 147.47, 152.02, 162.92. ESI-MS: \(m/z \) [M+Na]\(^+\) calcd for \(\text{C}_{10}\text{H}_{13}\text{IN}_{2}\text{O}_{5} \): 391.0; found: 391.1. HRMS: \(m/z \) [M+H]\(^+\) calcd for \(\text{C}_{10}\text{H}_{13}\text{IN}_{2}\text{O}_{5} \): 368.99419; found: 368.99329.

2′-Deoxy-5-iodo-4′-C-ethyluridin (3b). White foam, yield 0.093 g, 97%, \(R_f \) 0.43 (EtOAc). \(^1\)H NMR (400 MHz, MeOD): \(\delta \) 0.97 (t, \(J \) 7.6 Hz, 3H), 1.58 (dq, \(J \) 14.8, 7.5 Hz, 1H), 1.72 (dq, \(J \) 15.1, 7.6 Hz, 1H), 2.30-2.42 (m, 2H), 3.58 (d, \(J \) 11.6 Hz, 1H), 3.71 (d, \(J \) 11.6 Hz, 1H), 4.46 (t, \(J \) 5.9 Hz, 1H), 6.14 (t, \(J \) 6.2 Hz, 1H), 8.63 (s, 1H). \(^13\)C NMR (101 MHz, MeOD): \(\delta \) 8.52, 25.15, 41.96, 64.68, 67.86, 72.23, 85.93, 91.30, 147.47, 152.03, 162.91. ESI-MS: \(m/z \) [M+Na]\(^+\) calcd for \(\text{C}_{11}\text{H}_{15}\text{IN}_{2}\text{O}_{5} \): 405.0; found: 405.1. HRMS: \(m/z \) [M+H]\(^+\) calcd for \(\text{C}_{11}\text{H}_{15}\text{IN}_{2}\text{O}_{5} \): 383.00984; found: 383.00858.

2′-Deoxy-5-ido-4′-C-propyluridine (3c). White foam, yield 0.089 g, 97%, \(R_f \) 0.63 (EtOAc). \(^1\)H NMR (400 MHz, MeOD): \(\delta \) 0.95 (t, \(J \) 7.0 Hz, 3H), 1.28-1.69 (m, 4H), 2.29-2.43 (m, 2H), 3.58 (d, \(J \) 11.6 Hz, 1H), 3.70 (d, \(J \) 11.6 Hz, 1H), 4.45 (t, \(J \) 5.9 Hz, 1H), 6.14 (t, \(J \) 6.2 Hz, 1H), 8.62 (s, 1H). \(^13\)C NMR (101 MHz, MeOD): \(\delta \) 15.40, 18.27, 35.13, 42.07, 65.26, 68.02, 72.43, 86.07, 91.33, 147.62, 152.18, 163.05. ESI-MS: \(m/z \) [M+Na]\(^+\) calcd for \(\text{C}_{12}\text{H}_{17}\text{IN}_{2}\text{O}_{5} \): 419.0; found: 419.2. HRMS: \(m/z \) [M+H]\(^+\) calcd for \(\text{C}_{12}\text{H}_{17}\text{IN}_{2}\text{O}_{5} \): 397.02549; found: 397.02489.

General synthetic procedure, exemplified by 3′,5′-di-(O-tert-butylidimethylsilyl)-2′-deoxy-5-ido-4′-C-methyluridine (13a)

To a solution of 3a (0.463 g, 1.26 mmol) in DMF (3 mL) TBDMSI (1.22 g, 8.1 mmol) and imidazole (0.81 g, 11.6 mmol) were added. The clear solution was stirred at r.t. for 60 h. Deamin.

3′,5′-Di-(O-tert-butylidimethylsilyl)-2′-deoxy-5-ido-4′-C-ethyluridine (13b). White foam, yield 1.670 g, 90%, \(R_f \) 0.31 (EtOAc-PE, 1:4). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 0.07 (s, 3H), 0.08 (s, 3H), 0.15 (s, 3H), 0.15 (s, 3H), 0.91 (s, 9H), 0.95 (s, 9H), 1.15 (s, 3H), 2.18 (ddd, \(J \) 13.4, 7.4, 6.2 Hz, 1H), 2.33 (ddd, \(J \) 13.2, 5.9, 3.1 Hz, 1H), 3.55 (d, \(J \) 10.9 Hz, 1H), 3.71 (d, \(J \) 10.9 Hz, 1H), 4.33 (dd, \(J \) 6.1, 3.1 Hz, 1H), 6.18 (dd, \(J \) 7.3, 6.0 Hz, 1H), 8.13 (s, 1H), 8.17 (s, 1H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) -5.03, -4.94, -4.93, -4.53, 18.21, 18.50, 18.72, 25.87, 26.36, 42.63, 68.04, 68.24, 73.08, 84.94, 89.15, 144.77, 149.74, 159.82. ESI-MS: \(m/z \) [M+Na]\(^+\) calcd for \(\text{C}_{22}\text{H}_{45}\text{IN}_{2}\text{O}_{5}\text{Si}_{2} \): 619.2; found: 619.0.

3′,5′-Di-(O-tert-butylidimethylsilyl)-2′-deoxy-5-ido-4′-C-ethyluridine (13b). White foam, yield 1.670 g, 90%, \(R_f \) 0.31 (EtOAc-PE, 1:4). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 0.07 (s, 3H), 0.08 (s, 3H), 0.15 (s, 3H), 0.16 (s, 3H), 0.90 (s, 9H), 0.94 (t, \(J \) 7.5 Hz, 3H), 0.95 (s, 9H), 1.47 (dq, \(J \) 14.8, 7.5 Hz, 1H), 1.74 (dq, \(J \) 15.1, 7.6 Hz, 1H), 2.11-2.21 (m, 1H), 2.31 (ddd, \(J \) 13.2, 5.9, 2.9 Hz, 1H), 3.57 (d, \(J \) 10.8 Hz, 1H), 3.74 (d, \(J \) 10.8 Hz, 1H), 4.40 (dd, \(J \) 6.2, 2.9 Hz, 1H), 6.16 (dd, \(J \) 7.5, 6.0 Hz, 1H), 8.11 (s, 1H), 8.26 (s, 1H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) -5.06, -4.95, -4.92, -4.44, 8.41, 18.17, 18.68, 24.96, 25.88, 26.55, 42.69, 66.34, 68.14, 73.38, 84.98, 90.62, 144.76, 149.79, 159.87. ESI-MS: \(m/z \) [M+Na]\(^+\) calcd for \(\text{C}_{23}\text{H}_{43}\text{IN}_{2}\text{O}_{5}\text{Si}_{2} \): 633.2; found: 633.1.
3′,5′-Di-(O-tert-butyldimethylsilyl)-2′-deoxy-5-ido-4′-C-propyluridine (13c). White foam, yield 1.13 g, 91%, R_f 0.39 (EtOAc-PE, 1:4). 1H NMR (400 MHz, CDCl₃) δ 0.07 (s, 3H), 0.08 (s, 3H), 0.15 (s, 3H), 0.15 (s, 3H), 0.90 (s, 9H), 0.91 (t, J = 2.9 Hz, 3H) 0.94 (s, 9H), 1.23-1.51 (m, 2H), 1.63 (dt, J = 9.5, 5.8 Hz, 2H), 2.05-2.23 (m, 1H), 2.31 (ddd, J = 13.2, 5.9, 2.9 Hz, 1H), 3.56 (d, J = 10.9 Hz, 1H), 3.74 (d, J = 10.9 Hz, 1H), 4.38 (dd, J = 6.2, 2.9 Hz, 1H), 6.16 (dd, J = 7.5, 6.0 Hz, 1H), 8.11 (s, 1H), 8.59 (s, 1H). 13C NMR (101 MHz, CDCl₃) δ -5.06, -4.95, -4.93, -4.45, 14.95, 17.24, 18.17, 18.68, 25.79, 25.87, 26.35, 34.75, 42.68, 66.72, 68.20, 73.42, 84.99, 90.53, 144.75, 149.93, 160.05. ESI-MS: m/z [M+Na]⁺ calcd for C₂₄H₄₅IN₂O₅S₂: 647.2; found: 647.0.

General synthetic procedure, exemplified by 3′,5′-di-(O-tert-butyldimethylsilyl)-2′-deoxy-5-iodo-4′-C-methylcytididine (14a)

The solution of DMAP (0.113 g, 0.93 mmol), TPSCI (0.282 g, 0.86 mmol) and compound 13a (0.191 g, 0.32 mmol) in MeCN (9 mL) was treated with freshly distilled Et₃N (0.65 mL, 4.67 mmol). After the yellow mixture was stirred for 50 h at room temperature, a 28% aq solution of NH₂OH (14 mL) was added and stirring was maintained for 3 h. MeCN was removed under vacuum and the aqueous layer was extracted with EtOAc (4×50 mL). The organic layer was dried over MgSO₄, concentrated and purified by silica gel column chromatography (EtOAc-PE, 4:1).

14a. White foam, yield 0.148 g, 78%, R_f 0.17 (EtOAc-PE, 3:1). 1H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H), 0.06 (s, 3H), 0.12 (s, 3H), 0.13 (s, 3H), 0.89 (s, 9H), 0.93 (s, 9H), 1.15 (s, 3H), 2.12 (dt, J = 13.2, 6.5 Hz, 1H), 2.49 (ddd, J = 13.4, 6.1, 4.0 Hz, 1H), 3.54 (d, J = 10.8 Hz, 1H), 3.68 (d, J = 10.8 Hz, 1H), 4.29 (dd, J = 6.3, 4.0 Hz, 1H), 5.55 (s, 1H), 6.12 (t, J = 6.3 Hz, 1H), 8.10 (s, 1H), 8.63 (s, 1H). 13C NMR (101 MHz, CDCl₃) δ -5.06, -5.01, -4.98, -4.45, 18.16, 18.32, 18.66, 25.87, 26.32, 42.84, 55.91, 67.83, 72.50, 85.78, 88.82, 146.79, 154.88, 163.84. ESI-MS: m/z [M+Na]⁺ calcd for C₂₂H₄₂IN₂O₄S₂: 618.2; found: 618.2.

3′,5′-Di-(O-tert-butyldimethylsilyl)-2′-deoxy-5-iodo-4′-C-ethylcytididine (14b). White foam, yield 0.150 g, 77%, R_f 0.18 (EtOAc-PE, 3:1). 1H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H), 0.06 (s, 3H), 0.12 (s, 3H), 0.12 (s, 3H), 0.88 (s, 9H), 0.92 (s, 9H), 0.93 (t, J = 7.7 Hz, 3H), 1.48 (dq, J = 14.8, 7.4 Hz, 1H), 1.73 (dq, J = 15.1, 7.6 Hz, 1H), 2.09 (dt, J = 13.3, 6.6 Hz, 1H), 2.46 (ddd, J = 13.4, 6.1, 3.8 Hz, 1H), 3.54 (d, J = 10.8 Hz, 1H), 3.71 (d, J = 10.8 Hz, 1H), 4.37 (dd, J = 6.5, 3.8 Hz, 1H), 5.56 (s, 1H), 6.10 (t, J = 6.4 Hz, 1H), 8.07 (s, 1H), 8.63 (s, 1H). 13C NMR (101 MHz, CDCl₃) δ -5.09, -5.01, -4.37, 8.31, 18.11, 18.61, 24.63, 25.87, 26.30, 42.96, 52.61, 65.83, 72.87, 85.78, 90.28, 146.73, 154.91, 163.89. ESI-MS: m/z [M+Na]⁺ calcd for C₂₃H₄₄IN₂O₄S₂: 632.2; found: 632.2.

3′,5′-Di-(O-tert-butyldimethylsilyl)-2′-deoxy-5-ido-4′-C-propylcytididine (14c). White foam, yield 0.160 g, 80%, R_f 0.21 (EtOAc-PE, 3:1). 1H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H), 0.06 (s, 3H), 0.11 (s, 3H), 0.12 (s, 3H), 0.88 (s, 9H), 0.90-0.95 (m, 12H), 1.21-1.50 (m, 3H), 1.57-1.67 (m, 1H), 2.01-2.13 (m, 1H), 2.45 (ddd, J = 13.4, 6.0, 3.7 Hz, 1H), 3.54 (d, J = 10.8 Hz, 1H), 3.71 (d, J = 10.8 Hz, 1H), 4.35 (dd, J = 6.5, 3.7 Hz, 1H), 5.56 (s, 1H), 6.10 (t, J = 6.4 Hz, 1H), 8.06 (s, 1H), 8.84 (s, 1H). 13C NMR (101 MHz, CDCl₃) δ -5.11, -5.02, -5.01, -4.39, 14.95, 17.15, 18.11,
18.60, 25.86, 26.29, 34.42, 42.97, 56.20, 66.23, 72.59, 85.79, 90.21, 146.68, 154.93, 163.94. ESI-MS: \([M+Na]^+\) calcd for \(C_{24}H_{46}In_3O_4Si_2\): 646.2; found: 646.1.

General synthetic procedure, exemplified by 2′-deoxy-5-iodo-4′-C-methylcytidine (4a)

Compound 14a (0.148 g, 0.25 mmol) was dissolved in THF (10 mL), and a 1 M solution of TBAF (1.0 mL, 1.0 mmol) was added. The mixture was stirred at r.t. for 16 h, concentrated and purified by silica gel column chromatography (EtOAc→MeOH-EtOAc, 1:9).

4a. White foam, yield 0.84 g, 92%, \(R_f\) 0.15 (MeOH-EtOAc, 1:10). \(^1\)H NMR (400 MHz, MeOD) \(\delta\) 1.20 (s, 3H), 2.29 (ddd, \(J_{13.7}, 6.8, 4.9\) Hz, 1H), 2.50 (dt, \(J_{13.2}, 6.5\) Hz, 1H), 3.61 (d, \(J_{11.7}\) Hz, 1H), 3.66 (d, \(J_{11.7}\) Hz, 1H), 4.39 (t, \(J_{6.6}\) Hz, 1H), 6.11 (dd, \(J_{6.5}, 5.0\) Hz, 1H), 8.69 (s, 1H). \(^{13}\)C NMR (101 MHz, MeOD) \(\delta\) 17.93, 41.93, 56.46, 66.75, 71.29, 86.54, 89.42, 149.40, 157.37, 165.88. ESI-MS: \([M+Na]^+\) calcd for \(C_{10}H_{14}In_3O_4\): 390.0; found: 390.0. HRMS: \([M+H]^+\) calcd for \(C_{10}H_{14}In_3O_4\): 368.01018; found: 368.00950.

2′-Deoxy-5-iodo-4′-C-ethylcytidine (4b). White foam, yield 0.85 g, 89%, \(R_f\) 0.16 (MeOH-EtOAc, 1:10). \(^1\)H NMR (400 MHz, MeOD) \(\delta\) 1.01 (t, \(J_{7.6}\) Hz, 3H), 1.62 (dq, \(J_{14.8}, 7.5\) Hz, 1H), 1.77 (dq, \(J_{15.2}, 7.6\) Hz, 1H), 2.28 (ddd, \(J_{13.7}, 6.8, 5.4\) Hz, 1H), 2.49 (ddd, \(J_{13.7}, 6.8, 5.4\) Hz, 1H), 3.60 (d, \(J_{11.6}\) Hz, 1H), 3.76 (d, \(J_{11.6}\) Hz, 1H), 4.32-4.63 (m, 1H), 6.12 (dd, \(J_{6.3}, 5.6\) Hz, 1H), 8.67 (s, 1H). \(^{13}\)C NMR (101 MHz, MeOD) \(\delta\) 8.48, 24.97, 42.41, 56.53, 64.38, 71.81, 86.83, 91.26, 149.41, 157.37, 165.86. ESI-MS: \([M+Na]^+\) calcd for \(C_{11}H_{16}In_3O_4\): 404.0; found: 404.0. HRMS: \([M+H]^+\) calcd for \(C_{11}H_{16}In_3O_4\): 382.02583; found: 382.02489.

2′-Deoxy-5-iodo-4′-C-propylcytidine (4c). White foam, yield 0.80 g, 81%, \(R_f\) 0.17 (MeOH-EtOAc, 1:10). \(^1\)H NMR (400 MHz, MeOD) \(\delta\) 0.99 (t, \(J_{7.1}\) Hz, 3H), 1.40-1.61 (m, 3H), 1.61-1.73 (m, 1H), 2.28 (ddd, \(J_{13.6}, 6.7, 5.5\) Hz, 1H), 2.49 (dt, \(J_{13.6}, 6.2\) Hz, 1H), 3.60 (d, \(J_{11.6}\) Hz, 1H), 3.75 (d, \(J_{11.6}\) Hz, 1H), 4.46 (t, \(J_{6.2}\) Hz, 1H), 6.12 (dd, \(J_{6.4}, 5.6\) Hz, 1H), 8.67 (s, 1H). \(^{13}\)C NMR (101 MHz, MeOD) \(\delta\) 15.26, 18.09, 34.81, 42.38, 56.55, 64.83, 71.84, 86.82, 91.13, 149.41, 157.36, 165.84. ESI-MS: \([M+Na]^+\) calcd for \(C_{12}H_{18}In_3O_4\): 418.0; found: 418.0. HRMS: \([M+H]^+\) calcd for \(C_{12}H_{18}In_3O_4\): 396.04148; found: 396.04016.

Acknowledgements

We gratefully acknowledge funding and scientific support by the Konstanz Research School of Chemical Biology. We thank A.-L. Steck for measuring HRMS, Dr. K.-H. Jung and Dr. F. Streckenbach for helpful discussions.

References

