Supplementary Material

Total synthesis of structures proposed for quinocitrinines A and B and their analogs. Microwave energy as efficient tool for generating heterocycles

Victoria Machtey, Hugo E. Gottlieb and Gerardo Byk*

Laboratory of Nano-Biotechnology, Department of Chemistry
Bar Ilan University 52900-Ramat Gan, Israel
E-mail: bykger@mail.biu.ac.il

Table of Contents

S2-24: Analyses of compound 7
S25-30: Analyses of compound 6b
S30-33: Analyses of compound 6a
S33-37: Analyses of compound 6c
S38-39: Analyses of compound 6d
S40-43: Analyses of compound 6e
S44-47: Analyses of compound 6f
S48-50: Analyses of compound 6g
S51-55: Analyses of compound 2-amino-4-methoxybenzaldehyde and intermediates.
S56-58: Analyses of compound 5h
S58-61: Analyses of compound 6h
S61-64: Analyses of compound 5a
S64-67: Analyses of compound 5b
S68-70: Analyses of compound 5c
S71-73: Analyses of compound 5d
S74-76: Analyses of compound 5e
S76-79: Analyses of compound 5f
S79-81: Analyses of compound 5g
Figure S1. Arbitrary atom numbering of quinocitrinines 7 for NMR assignments.
Figure S2. H-NMR of 7 in pyridine
Figure S3. H-NMR of 7 in pyridine (enlarged)
Figure S4. H-NMR of 7 in pyridine (enlarged)
Figure S5. H-NMR of 7 in pyridine (enlarged)
Figure S6. C-NMR of 7 in pyridine
Figure S7. COSY spectrum of 7 in pyridine
Figure S8. COSY spectrum of 7 in pyridine (enlarged)
Figure S9. COSY spectrum of 7 in pyridine (enlarged)
Figure S10. HMQC spectrum of 7 in pyridine

Figure S11. HMQC spectrum of 7 in pyridine (enlarged)
Figure S12. HMQC spectrum of 7 in pyridine (enlarged)

Figure S13. HMBC spectrum of 7 in pyridine
Figure S14. HMBC spectrum of 7 in pyridine (enlarged)
Figure S15. HMBC spectrum of 7 in pyridine (enlarged)
Figure S16. H-NMR of 7 in DMSO

Figure S17. H-NMR of 7 in DMSO (enlarged)
Figure S18. H-NMR of 7 in DMSO (enlarged)

Figure S19. H-NMR of 7 in DMSO (enlarged)
Figure S20. C-NMR of 7 in DMSO
Figure S22. COSY spectrum of 7 in DMSO

Figure S23. COSY spectrum of 7 in DMSO (enlarged)
Figure S24. COSY spectrum of 7 in DMSO (enlarged)

Figure S25. HMQC spectrum of 7 in DMSO (enlarged)
Figure S26. HMQC spectrum of 7 in DMSO (enlarged)

Figure S27. HMQC spectrum of 7 in DMSO (enlarged)
Figure S28. HMBC spectrum of 7 in DMSO

Figure S29. HMBC spectrum of 7 in DMSO (enlarged)
Figure S30. HMBC spectrum of 7 in DMSO (enlarged)

Figure S31. HMBC spectrum of 7 in DMSO (enlarged)
Figure S32. QTOF-MS of 7

Figure S33. HR-MALDI-TOF MS of compound 7

7 220nm

7 254nm
Figure S34. HPLC of compound 7

Figure S35. IR spectrum of compound 7
Figure S36. Arbitrary atom numbering of compound 6b for NMR assignments.
Figure S38. C-NMR of compound 6b in DMSO

Figure S39. COSY of compound 6b in DMSO
Figure S40. HMQC of compound 6b in DMSO

Figure S41. HMBC of compound 6b in DMSO
Figure S42. QTOF-MS of compound 6b

Figure S43. QTOF-MS of compound 6b
Figure S44. QTOF-MS of compound 6b

Generated Molecular Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Mass</th>
<th>Error</th>
<th>Dbieq</th>
<th>N rule</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16H19N2O1</td>
<td>255.1492</td>
<td>0.1471</td>
<td>8.50</td>
<td>ok</td>
<td>even</td>
</tr>
</tbody>
</table>

Figure S45. MALDI-TOF MS of compound 6b
Figure S46. HPLC of compound 6b

Figure S47. H-NMR of compound 6a in DMSO
Figure S48. C-NMR of compound 6a in DMSO

Figure S49. DEPT of compound 6a in DMSO
Figure S50. QTOF-MS of compound 6a

Figure S51. HR-MALDI-TOF MS of compound 6a

Generated Molecular Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Mass</th>
<th>Error</th>
<th>DoE EQ</th>
<th>N rule</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12H11N2O2</td>
<td>199.0866</td>
<td>5.4030</td>
<td>8.50</td>
<td>ok</td>
<td>even</td>
</tr>
</tbody>
</table>
Figure S52. HPLC of compound 6a

Figure S53. H-NMR of compound 6c in DMSO
Figure S54. C-NMR of compound 6c in DMSO

Figure S55. COSY of compound 6c in DMSO
Figure S56. HMQC of compound 6c in DMSO

Figure S57. HMBC of compound 6c in DMSO
Figure S58. QTOF-MS of compound 6c

Figure S59. QTOF-MS of compound 6c

File Name: QTOFdataTraining\by3\VC1090\VC1090_DHB(THF)_RP\PEP\M95\A1-61

Generated Molecular Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Mass</th>
<th>Error</th>
<th>DbiEq</th>
<th>N rule</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{15}H_{17}N_{2}O_{1}</td>
<td>241.1335</td>
<td>1.4888</td>
<td>8.59</td>
<td>ok</td>
<td>even</td>
</tr>
</tbody>
</table>

Date: 21-Feb-2010

VICTORIA23A 15 (0.278) Cn (Cen, 4, 80.00, Ar); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (1:290) TOF MSMS 283.
Figure S60. MALDI-TOF MS of compound 6c

Figure S61. HPLC of compound 6c
Figure S62. H-NMR of compound 6d in DMSO

Figure S63. C-NMR of compound 6d in DMSO
Figure S64. QTOF-MS of compound 6d

Figure S65. HPLC of compound 6d
Figure S66. H-NMR of compound 6e in DMSO

Figure S67. C-NMR of compound 6e in DMSO
Figure S68. DEPT of compound 6e in DMSO

Figure S69. QTOF-MS of compound 6e
Figure S70. QTOF-MS of compound 6e

Figure S71. QTOF-MS of compound 6e

Figure S72. QTOF-MS of compound 6e
Figure S73. MALDI-TOF MS of compound 6e

![MALDI-TOF MS of compound 6e](image)

Figure S74. HPLC of compound 6e

![HPLC of compound 6e](image)
Figure S75. H-NMR of compound 6f in DMSO

Figure S76. C-NMR of compound 6f in DMSO
Figure S77. QTOF-MS of compound 6f

Figure S78. QTOF-MS of compound 6f
Figure S79. QTOF-MS of compound 6f

Figure S80. QTOF-MS of compound 6f

Generated Molecular Formulas
Figure S81. MALDI-TOF MS of compound 6f

![MALDI-TOF MS of compound 6f](image)

Figure S82. HPLC of compound 6f

![HPLC of compound 6f](image)
Figure S83. H-NMR of compound 6g in DMSO

Figure S84. C-NMR of compound 6g in DMSO
Figure S85. QTOF-MS of compound 6g

Figure S86. QTOF-MS of compound 6g
Figure S87. MALDI-TOF MS of compound 6f

Figure S88. HPLC of compound 6g

4-methoxy-2-nitrobenzaldehyde

\[\text{\chemimage{H\ring{}O\to\ring{}|O\to\ring{}}H} \]

^1HNMR: (300 MHz, DMSO-d$_6$), δ_{H} (ppm): 3.94 (s,3H), 7.42 (dd,1H,$J=8.7$Hz, $J=2.4$Hz), 7.62(d,1H,$J=2.4$Hz), 7.96 (s,3H, $J=8.7$Hz), 10.04 (s,1H).
\(^{13}\text{CNMR} \): (75 MHz, DMSO-\text{d}_6), \delta_C (ppm): 56.72, 109.8, 118.58, 122.05, 132.61, 151, 163.54, 188.22. (yield 11\%) \textbf{MS}: MW=181 g/mol, MH\(^+\)=182. \textbf{HPLC}: t_R = 2.974 min.

Figure S89. H-NMR of 4-methoxy-2-nitrobenzaldehyde in DMSO.
Figure S90. C-NMR of 4-methoxy-2-nitrobenzaldehyde in DMSO

Figure S91. DEPT of 4-methoxy-2-nitrobenzaldehyde in DMSO
Figure S92. HPLC of 4-methoxy-2-nitrobenzaldehyde

2-amino-4-methoxybenzaldehyde

\[
\begin{array}{c}
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\end{array}
\]

\(^{1}\text{HNMR:}\) (300 MHz, DMSO-\(d_6\)), \(\delta (\text{ppm})\): 3.75 (s, 3H), 6.23 (m, 2H), 7.19 (bs, NH), 7.42 (d, 1H, \(J=9.3\text{Hz}\)), 9.63 (s, 1H).

\(^{13}\text{CNMR:}\) (75 MHz, DMSO-\(d_6\)), \(\delta (\text{ppm})\): 55.17, 97.66, 104.30, 112.92, 137.61, 153.02, 164.71, 191.62. (yield 83%). \textbf{MS:}\ MW=151.16 \text{g/mol}, MH\(^+\)=152. \textbf{HPLC:}\ \(t_R=2.51\text{ min}\).
Figure S93. H-NMR of 4-methoxy-2-nitrobenzaldehyde in DMSO

Figure S94. C-NMR of 4-methoxy-2-nitrobenzaldehyde in DMSO
Figure S95. DEPT of 4-methoxy-2-aminobenzaldehyde in DMSO

Figure S96. QTOF-MS of 4-methoxy-2-aminobenzaldehyde
Figure S97. H-NMR of compound 5h in DMSO

Figure S98. C-NMR of compound 5h in DMSO
Figure S99. DEPT of compound 5h in DMSO

Figure S100. QTOF-MS of compound 5h
Figure S101. HPLC of compound 5h

Figure S102. H-NMR of compound 6h in DMSO
Figure S103. C-NMR of compound 6h in DMSO

Figure S104. DEPT of compound 6h in DMSO
Figure S105. QTOF-MS of compound 6h

![QTOF-MS of compound 6h](image)

Figure S106. QTOF-MS of compound 6h

![QTOF-MS of compound 6h](image)
Figure S107. HPLC of compound 6h

5a

$\text{1H}N\text{MR:}$ (300 MHz, DMSO-d$_6$), δ_H(ppm): 4.56 (s,2H), 7.68 (t,1H,J=6.9Hz), 7.89 (t,1H,J=6.9Hz), 8.10 (d,1H,J=8.7Hz), 8.21 (d,1H,J=8.7Hz), 8.76 (s,1H), 8.94(bs,N-H).

$\text{13C}N\text{MR:}$ (75 MHz, DMSO-d$_6$), δ_C(ppm): 46.68, 124.08, 126.62, 127.02, 128.50, 129.87, 131.37, 132.24, 149.12, 163.14, 167.81.(yield 89%) \textbf{MS}: MW=184 g/mol, MH$^+$ =185.

HPLC: $t_R = 3.26$min.
Figure S108. H-NMR of compound 5a in DMSO

Figure S109. C-NMR of compound 5a in DMSO
Figure S110. HPLC of compound 5a

Figure S111. QTOF-MS of compound 5a
Figure S112. QTOF-MS of compound 5a

5b (major SS)

![Chemical Structure of 5a]

1HNMR: (300 MHz, DMSO-d$_6$, δH(PPM): 0.49 (d,3H,J=6.6Hz), 0.98 (t,3H, J=7.5Hz), 1.33 (m,1H), 1.60 (m,1H), 2.24 (m,1H), 4.76 (d,1H,J=2.1Hz), 7.67 (m,1H), 7.87 (m,1H), 8.11 (d,1H,J=8.1Hz), 8.19 (d,1H,J=8.1Hz), 8.71 (s,1H), 9.01 (bs,1H).

13CNMR: (75 MHz, DMSO-d$_6$, δC(PPM): 11.98, 12.64, 15.42, 26.35, 37.32, 60.82, 83.73, 124.45, 126.63, 128.69, 129.79, 131.28, 131.91, 149.19, 165.49, 167.80. (yield 50.8%) **MS:** MW=240 g/mol, MH$^+$ =241. **HPLC:** t_R = 3.88min.

5b (minor RS)

![Chemical Structure of 5b]

1HNMR: (300 MHz, DMSO-d$_6$, δH(PPM): 0.77 (t,3H,J=7.5Hz), 0.93 (d,3H,J=7.2Hz), 0.92 (m,1H), 1.17 (m,1H), 2.16 (m,1H), 4.69 (d,1H,J=2.7Hz), 7.67 (m,1H), 7.87 (m,1H), 8.11
(d,1H,J=8.1Hz), 8.19 (d,1H,J=8.1Hz), 8.70 (s,1H), 9.04 (bs,1H). 13CNMR: (75 MHz, DMSO-d$_6$, $\delta_{(ppm)}$: 11.79, 12.64, 15.42, 23.37, 37.55, 62.01, 83.73, 124.62, 127.09, 128.79, 129.79, 131.28, 131.84, 149.06, 165.09, 167.49. (yield 43.2%) MS: MW=240 g/mol, MH$^+$ =241. HPLC: t_R=3.88 min.

Figure S113. H-NMR of compound 5b in DMSO
Figure S114. C-NMR of compound 5b in DMSO

Figure S115. DEPT of compound 5b in DMSO
Figure S116. QTOF-MS of compound 5b

![QTOF-MS of compound 5b]"}

Figure S117. HPLC of compound 5b

![HPLC of compound 5b]"

5c

\[
\begin{align*}
\text{1H NMR:} & \quad (300 \text{ MHz, DMSO-d6, } \delta_{\text{H}}(\text{ppm}): \\
& 0.65 \text{ (d, } 3\text{H, } J=6.9\text{Hz), } 1.06 \text{ (d, } 3\text{H, } J=6.9\text{Hz), } 2.43 \\
& (\text{m, } 1\text{H), } 4.65 \text{ (d, } 1\text{H, } J=3.3\text{Hz), } 7.67 \text{ (m, } 1\text{H), } 7.87 \text{ (m, } 1\text{H), } 8.11 \text{ (d, } 1\text{H, } J=8.4\text{Hz), } 8.19
\end{align*}
\]
(d,1H,J=8.1Hz), 8.72 (s,1H), 9.04 (bs,1H). 13CNMR: (75 MHz, DMSO-d$_6$, δ$_	ext{C}$ ppm): 15.75, 19.21, 30.77, 62.48, 124.39, 126.65, 127.09, 128.76, 129.78, 131.26, 131.90, 149.12, 165.15, 167.68. (yield 63%) MS: MW=226 g/mol, MH$^+$=227. HPLC: t_R=3.67 min.

Figure S118. H-NMR of compound 5c in DMSO
Figure S119. C-NMR of compound 5c in DMSO

Figure S120. DEPT of compound 5c in DMSO
Figure S121. QTOF-MS of compound 5c

Figure S122. HPLC of compound 5c

5d

\[
\begin{align*}
\text{HNMR:} \quad & (300 \text{ MHz, DMSO-}d_6, \delta \text{ H(ppm)}: 3.25 \text{ (m,2H), 5.09 \ (t,1H,J=4.8Hz), 7.05} \\
& \text{ (m,5H),7.67 \ (m,1H), 7.92 \ (m,1H), 8.15 \ (d,1H,J=8.7Hz), 8.19 \ (m,1H,J=8.1Hz), 8.56 \ (s,1H),} \\
& 9.01 \ (\text{NH, bs}) . \quad 13\text{CNMR:} \quad & (75 \text{ MHz, DMSO-}d_6, \delta \text{ C (ppm)}: 38.07, 57.94, 124.21, 126.26,
\end{align*}
\]
126.71, 127.00, 127.72, 128.69, 129.76, 131.32, 131.88, 135.81, 149.04, 164.88, 166.96.
(yield 88.7%) \textbf{MS}: MW=274 g/mol, MH^+=275.

\textbf{HPLC}: t_R = 3.97 min.

Figure S123. H-NMR of compound 5d in DMSO
Figure S124. C-NMR of compound 5d in DMSO

Figure S125. DEPT of compound 5d in DMSO
Figure S126. QTOF-MS of compound 5d

![QTOF-MS of compound 5d](image)

Figure S127. HPLC of compound 5d

![HPLC of compound 5d](image)

5e

![Chemical structure of 5e](image)

1HNMR: (300 MHz, DMSO-d_6), δ [ppm]: 1.49 (d, 3H, J=6.6Hz), 4.78 (q, 1H, J=6.6Hz), 7.67 (m, 1H), 7.88 (m, 1H), 8.12 (d, 1H, J=8.1Hz), 8.19 (d, 1H, J=8.1Hz), 8.73 (s, 1H), 9.02 (bs, 1H).
13CNMR: (75 MHz, DMSO-d$_6$, δ C (ppm): 19.25, 53.35, 123.46, 126.67, 127.15, 128.64, 129.79, 131.29, 132.33, 149.16, 166.72. (yield 54.7%) MS: MW=198 g/mol, MH$^+$ =199.

HPLC: $t_R = 3.29$ min.

Figure S128. H-NMR of compound 5e in DMSO
Figure S129. C-NMR of compound 5e in DMSO

![C-NMR of compound 5e in DMSO](image1)

Figure S130. QTOF-MS of compound 5e

![QTOF-MS of compound 5e](image2)

![LC-MS of 220nm](image3)

![LC-MS of 254nm](image4)
Figure S131. HPLC of compound 5e

5f

1HNMR: (300 MHz, DMSO-d$_6$), $\delta_{H(\text{ppm})}$: 0.89 (d, 3H, J=6.6Hz), 1.01 (d, 3H, J=6.6Hz), 1.46 (m, 1H), 1.88 (m, 1H), 2.20 (m, 1H), 4.73 (dd, 1H, J=8.7Hz, J=3.9Hz), 7.67 (m, 1H), 7.87 (m, 1H), 8.12 (d, 1H, J=8.1Hz), 8.19 (d, 1H, J=8.1Hz), 8.72 (s, 1H), 9.16 (bs, 1H, NH). 13CNMR: (75 MHz, DMSO-d$_6$), $\delta_{C(\text{ppm})}$: 21.81, 23.47, 24.53, 39.55, 43.10, 55.90, 123.69, 126.65, 127.17, 128.69, 129.80, 130.29, 132.25, 149.16, 166.37, 167.19. (yield 95.8%) MS: MW=240 g/mol, MH$^+$=241. HPLC: $t_R = 3.91$ min.
Figure S132. H-NMR of compound 5f in DMSO

Figure S133. C-NMR of compound 5f in DMSO
Figure S134. DEPT of compound 5f in DMSO

VICA30 274 (5.079) Cn (Cen, Ar); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (223:298:32.79)

[Mass Table]

Figure S135. QTOF-MS of compound 5f

5f 220nm

5f 254nm
Figure S136. HPLC of compound 5f

\[\text{5g} \]

\begin{align*}
^{1}\text{HNMR:} & \quad (300 \text{ MHz, DMSO-}\text{d}_6)\ , \delta_{\text{H}(\text{ppm})}: \quad 3.00 \ (\text{dd,} 1\text{H}, J=6.6\text{Hz, } J=16.2\text{Hz}), \ 3.13 \ (\text{dd,} 1\text{H}, J=5.1\text{Hz, } J=16.2\text{Hz}), \ 5.04 \ (\text{d,} 2\text{H}, J=1.8\text{Hz}), \ 5.08 \ (\text{d,} 1\text{H}, J=5.7\text{Hz}), \ 7.26 \ (\text{m,} 5\text{H}), \\
& \quad 7.69 \ (\text{m,} 1\text{H}), \ 7.89 \ (\text{m,} 1\text{H}), \ 8.09 \ (\text{d,} 1\text{H}, J=8.4\text{Hz}), \ 8.20 \ (\text{dd,} 1\text{H}, J=1.5\text{Hz, } J=8.4\text{Hz}), \ 8.71 \ (\text{s,} 1\text{H}), \ 9.06 \ (\text{bs, } \text{NH}). \\
^{13}\text{CNMR:} & \quad (75 \text{ MHz, DMSO-}\text{d}_6)\ , \delta_{\text{C}(\text{ppm})}:37.35, \ 54.15, \ 65.73, \ 123.91, \\
& \quad 126.73, \ 127.21, \ 127.81, \ 127.90, \ 128.25, \ 128.59, \ 129.82, \ 131.31, \ 132.18, \ 135.73, \ 149.04, \\
& \quad 164.74, \ 167.19, \ 169.55. \ (\text{yield } 66\%) \ \text{MS:} \ MW=332 \ \text{g/mol, } \text{MH}^{+}=332. \ \text{HPLC:} \ t_R = 4.25 \ \text{min.}
\end{align*}
Figure S137. H-NMR of compound 5g in DMSO

Figure S138. C-NMR of compound 5g in DMSO
Figure S139. DEPT of compound 5g in DMSO

![Figure S139](image1)

Figure S140. HPLC of compound 5g

![Figure S140](image2)