Efficient method for a synthesis of \(N\)-substituted dithiazinanes via transamination of \(N\)-methyl-1,3,5-dithiazinane with arylamines and hydrazines

Zalifa T. Niatshina, Natal’ya N. Murzakova, Inna V. Vasilieva, Elena B. Rakhimova,* Vnira R. Akhmetova, and Askhat G. Ibragimov

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences
141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation
E-mail: Rakhimovaelena@mail.ru

Dedicated to Professor Usein M. Dzhemilev on the occasion of his 65\(^{\text{th}}\) birthday

DOI: \text{http://dx.doi.org/10.3998/ark.5550190.0012.810}

Abstract
The efficient method for a synthesis of \(N\)-substituted dithiazinanes based on the transamination reaction of \(N\)-methyl-1,3,5-dithiazinane with arylamines and hydrazines in the presence of Sm and Co catalysts has been developed.

Keywords: Transamination, dithiazinanes, arylamines, phenylenediamines, hydrazines, catalysis

Introduction
Dithiazinanes have attracted notable research interest due to its applicability in synthesis of biologically active compounds,\(^1\)-\(^5\) as sorbents for noble metals,\(^6\) and even as food additives in some countries.\(^7\)-\(^13\) Cyclothiomethylation of primary amines with \(\text{CH}_2\text{O}\) and \(\text{H}_2\text{S}\) is one of the first and well-known procedures to synthesize \(N\)-substituted 1,3,5-dithiazinanes.\(^14\) In recent years, this reaction have been extensively studied on the example of aliphatic\(^15\),\(^16\) and aromatic amines,\(^17\),\(^18\) aminophenols,\(^19\) amino acids,\(^20\),\(^21\) hydrazine and its derivatives.\(^22\)-\(^25\) Nevertheless, this method has definite limitation associated with the use of gaseous \(\text{H}_2\text{S}\) and aqueous solution of \(\text{CH}_2\text{O}\). As a rule, these reactions furnish a mixture of heterocyclic compounds. At the same time, the synthesis of \(N\)-substituted 1,3,5-dithiazinanes by thermal transamination of \(N\)-\(\text{tert}\)-butyl-1,3,5-dithiazinane with the aid of 1,3,5-trimethyltriazinane (68 °C, 3 h) has been also reported.\(^26\)
Results and discussion

In order to develop more effective method for synthesizing N-substituted 1,3,5-dithiazinanes with high selectivity and yields we have studied the catalytic reaction of primary arylamines and hydrazines with N-methyl-1,3,5-dithiazinane as a synthetic equivalent of H_2S and CH_2O. Preliminary experiments showed that non-catalytic interaction between equimolar amount of N-methyl-1,3,5-dithiazinane and aniline (CHCl_3, 20 °C, 3 h) affords N-phenyl-1,3,5-dithiazinane 1a in low yields (less than 10%).

To optimize overall product yield we performed this transamination reaction in the presence of transition metal-based (Cu, Pd, Co, Mn, Ti, Hf, V, Fe, Sm) catalysts, which showed high catalytic activity in the aminomethylation reaction of CH acids with gem-diamines.\(^{27}\) For a series of catalysts tested, the catalytic activity of Sm(NO$_3$)$_3$*$6\text{H}_2\text{O}$ (5 mol%) was the highest. In this case, N-phenyl-1,3,5-dithiazinane 1a (Scheme 1) has been obtained at r. t. for 3 h in 68% yield. Under optimized conditions (5 mol% Sm(NO$_3$)$_3$*$6\text{H}_2\text{O}$, 20 °C, 3 h, CHCl$_3$) p-anizidine entered into reaction with N-methyl-1,3,5-dithiazinane to give 5-(4-methoxyphenyl)-1,3,5-dithiazinane 1b in 70% yield. The interaction between N-methyl-1,3,5-dithiazinane and o-nitroaniline was found to afford 5-(2-nitrophenyl)-1,3,5-dithiazinane 1c in 64% yield.

\[
\begin{array}{c}
\text{R} = \text{H} (a), \text{p-OCH}_3 (b), \text{o-NO}_2 (c) \\
\end{array}
\]

Scheme 1

The NMR experiments showed that the samarium ions are coordinated by the nitrogen atom of arylamine to form the intermediate complex. In the ^1H and ^{13}C NMR spectra of this complex the signals attributable to protons of the amino group and the carbon atom associated with the nitrogen atom, respectively, were shifted in a higher field as compared to those appeared in the spectra of initial arylamine. Probably, under reaction conditions, the N-H bond in original arylamine is activated due to the coordination of the lone electron pair of the nitrogen atom with the metal ion. As a result, transamination of N-methyl-1,3,5-dithiazinane occurs giving rise to thermodynamically more stable N-aryl-1,3,5-dithiazinane.

As reported,\(^{28}\) the multicomponent condensation of o-, m-, and p-phenylenediamines with H$_2$S and CH$_2$O proceeds unambiguously giving rise to a mixture of heterocyclic compounds for o-isomer, and a mixture of macroheterocycles in the case of m-isomer. The thiomethylation reaction of p-phenylenediamine with the above reagents has failed.

We have examined the transamination reaction of N-methyl-1,3,5-dithiazinane with phenylenediamines (o- and p-isomers) in the presence of transition metal-based (Sm, Cu, Pd, Co, Fe, Ni) catalysts. It became clear that o-phenylenediamine enters into reaction with equimolar
amount of N-methyl-1,3,5-dithiazinane under above optimized conditions (5 mol% CoCl₂, 20 °C, 3 h, CHCl₃) furnishing 1,2,6,7-tetrahydro-3,5,1,7-benzodithiazalone 2 in 75% yield (Scheme 2).

The ¹H NMR spectrum of 2 contains the broadened singlets [δ 4.29 and 4.76 (1:2 ratio)] of the methylene protons located between two sulfur atoms as well as S and N atoms respectively. Two duplets and two triplets for the aromatic protons at δ 6.72–8.29 are also observed. The ¹³C NMR spectra of 2 exhibit the triplet signals belonging to the C-4 and C-2(C-6) atoms at δ 32.50 and 55.16 ppm respectively. The mass spectrum of compound 2 has the molecular ion peak at m/z 212 [M]+ as well as characteristic fragment ion peaks at m/z 134 [M-SCH₂S]+, m/z 120 [M-CH₂SCH₂S]+, m/z 92 [CH₂SCH₂S]+, m/z 78 [C₆H₆]+, and m/z 46 [CH₂S]+. The spectral results have confirmed the structure of compound 2 namely 1,2,6,7-tetrahydro-3,5,1,7-benzodithiazalone.

Unlike α-phenylenediamine, its p-isomer reacts with N-methyl-1,3,5-dithiazinane under the action of 5 mol% Sm(NO₃)₃·6H₂O (20 °C, 3 h, DMF) involving only one NH₂ group to form 4-(1,3,5-dithiazinane-5-yl)phenylamine 3 in 70% yield.

In the ¹H NMR spectrum of compound 3, the methylene protons of the 1,3,5-dithiazinane ring located between two S atoms and also S and N atoms appear as broadened singlets at δ 4.25 and 4.97. The aromatic protons resonated at δH 6.7–7.7. The ¹³C NMR spectrum of 3 exhibits triplets at δ 34.30 and 55.40 assigned to the C-2 and C-4 (C-6) atoms of the 1,3,5-dithiazinane ring. According to these spectroscopic results, under reaction conditions the transamination product 3 namely 4-(1,3,5-dithiazinane-5-yl)phenylamine is formed.

Scheme 2

The positive results on catalytic cyclothiomethylation of arylamines providing formation of dithiazinanes 1–3 have encouraged us and gave hope for the successful implementation of N-methyl-1,3,5-dithiazinane transamination with aryl hydrazine (Scheme 3).

As an example, we have employed the transamination reaction of N-methyl-1,3,5-dithiazinane with 4-nitrophenylhydrazine, which in the presence of 5 mol% CoCl₂ under selected conditions (20 °C, 3 h) afforded 4-nitrophenyl-1,3,5-dithiazinane-5-amine 4 in 78% yield.

The formation of dithiazinane ring was indicated by ¹H and ¹³C NMR spectral data. Thus, in the ¹H NMR spectrum of compound 4 we observed two characteristic singlets at δH 3.7 and 4.4 ppm with an intensity ratio of 1:2 due to the methylene protons. The aromatic protons resonated
at a lower field at $\delta_H 6.7$–8.07 ppm. In the ^{13}C NMR spectrum of 4 the carbon C-2 и C-4 (C-9) atoms manifest themselves by triplet signals at δ 33.30 and 57.40 ppm respectively. Mass-spectrum of 4 is characterized by the presence of the molecular ion peak at m/z 258 $[M]^+$ as well as characteristic fragment ion peaks at m/z 134 $[M-SCH_2S]^+$, m/z 120 $[M-CH_2SCH_2S]^+$, m/z 92 $[CH_2SCH_2S]^+$, m/z 78 $[C_6H_5]^+$, and m/z 46 $[CH_2S]^+$. These spectral data have confirmed the proposed by us structure of compound 4.

In an analogous fashion, we have successfully performed the transamination reaction of N-methyl-1,3,5-dithiazinane with 2,4-dinitrophenylhydrazine mediated by 5 mol% CoCl$_2$ under optimized conditions (20 °C, 3 h, CHCl$_3$) providing 2,4-dinitrophenyl-1,3,5-dithiazinane-5-amine 5 in 75% yield.

![Scheme 3](image)

Scheme 3

Catalytic transamination of N-methyl-1,3,5-dithiazinane with phenyl- and benzylhydrazines, in contrast to the well-known25 procedure based on cyclothiomethylation with H$_2$S and CH$_2$O, provides high yields (more than 80%) of individual N-phenyl-1,3,5-dithiazinane-5-amine 6 and N-benzyl-1,3,5-dithiazinane-5-amine 7. In the absence of a catalyst the transamination products 1–7 were obtained in 5–15% yield. It should be noted that, unlike the transamination procedure, thiomethylation of phenyl- and benzylhydrazines by a classical method using CH$_2$O and H$_2$S, as mentioned above, affords a mixture of heterocyclic compounds.25 Furthermore, under these conditions one can not thiomethylate nitrophenyhydrazines.

Conclusions

In summary we have developed an efficient method for synthesizing a variety of N-substituted 1,3,5-dithiazinanes via catalytic transamination of N-methyl-1,3,5-dithiazinane with arylamines and arylhydrazines. Unique structure of N-substituted 1,3,5-dithiazinanes opens up new possibilities for using these classes of compounds as potential biologically active compounds, food additives, extractants and other valuable substances.
Experimental Section

General. Progress of the reaction was monitored by thin-layer chromatography (TLC) using Silufol W-254 plates and iodine vapor as a revealing agent. Analysis of the reaction products was performed by high performance liquid chromatography (HPLC) using Beckman Altex gradient liquid Chromatograph (model 330, U.S.A.) with UV detection at 340 nm. The one-dimensional (1H, 13C) and two dimensional homo- (COSY) and heteronuclear (HSQC, HMBC) NMR spectra were recorded in CDCl3 on a spectrometer Bruker Avance 400 [400.13 MHz (1H) and 100.62 MHz (13C)] in accordance with a standard Bruker protocol. Infrared spectra (IR) spectra were recorded using a Specord IR-75 instrument in liquid paraffin and in KBr pellets. Chromato-mass spectrometric analysis of compounds was performed on a Finnigan 4021 instrument (glass capillary column 50000x0.25mm, stationary phase HP-5, helium as the carrier gas, temperature programming from 50 to 300 °C at a rate of 5 °C min⁻¹, evaporator temperature 280 °C, the temperature of the ion source 250 °C [EI, 70 eV]) and also using SHIMADZU QP-2010Plus instrument (Supelco PTE-5 capillary column 30m x 0.25mm). Elemental analysis of the samples was carried out using Carlo Erba Elemental Analyzer model 1106. The products were isolated by column chromatography on silica gel SiO2. Compounds 1a, 1b, 6 and 7 were identified by comparison with the known samples.17,25

Transamination of N-methyl-1,3,5-dithiazinane with arylamines and hydrazines

The calcined and argon-filled Schlenk vessel equipped by magnetic stirrer under continuous stirring was charged with CHCl3 (5 mL), Sm(NO3)3*6H2O (or CoCl2) catalyst (0,16 mmol), the corresponding arylamine or hydrazine (10 mmol) and N-methyl-1,3,5-dithiazinane (11 mmol). The reaction mixture was stirring at r.t. (~20 °C) for 3 h. The end products 1–7 were purified by column chromatography on silica gel SiO2 and identified by means of spectral methods.

5-(2-Nitrophenyl)-1,3,5-dithiazinane (1c). Yield 64%. 1H NMR δ 3.38 (s, 2H, C(2)H2); 4.75 (s, 4H, C(4)H2, C(6)H2); 6.74 (t, 1H, C(10)H, J = 7.4 Hz); 7.13 (d, 1H, C(12)H, J = 7.4 Hz); 7.55 (t, 1H, C(11)H, J = 7.4 Hz); 8.06 (d, 1H, C(9)H, J = 7.4 Hz) ppm. 13C NMR δ 43.0 (t, C(2)); 63.4 (t, C(4), C(6)); 115.6 (d, C(10)); 116.2 (d, C(12)); 126.1 (d, C(11)); 135.9 (d, C(11)); 143.0 (s, C(8)); 143.3 (s, C(7)) ppm. Anal. Calcd for CoH18N2O2S2: C, 44.61; H, 4.16; N, 11.56; S, 26.47%. Found: C, 44.84; H, 4.33; N, 11.05; S, 26.47%.

1,2,6,7-Tetrahydro-3,5,1,7-benzodithiadizzone (2). Yield 75 %. 1H NMR δ 4.29 (br s, 2H, CH(2)); 4.76 (br s, 4H, CH(2) (4, 9)); 6.72 (d, 1H, CH (10)); 6.79 (t, 1H, CH (11)); 7.02 (t, 1H, CH (12)); 8.29 (d, 1H, CH (13)) ppm. 13C NMR δ 32.50 (t, C-2); 55.16 (t, C-4, C-9); 116.75 (d, C-10, C-13); 120.26 (d, C-11, C-12); 134.77 (s, C-6, C-7) ppm. MS m/z: 212 [M]+ (20); 134 [M-SCH2S]+ (15); 133 [M-SCH2SH]+ (100); 120 [M-C4H2SCH2]+ (20); 119 [M-C4H2SCH2S]+ (85); 92 [C4H2SCH2]+ (20); 78 [C4H6]+ (15); 46 [CH2S]+ (65). Anal. Calcd for C6H12S2N2: C, 50.91; H, 5.70; N, 13.19; S, 30.20%. Found: C, 50.82; H, 5.67; N, 13.20; S, 30.71%.

1,3,5-Dithiazinane-5-yl)phenylamine (3). Yield 70%. IR ν 720 1500, 1650, 2900, 3300 cm⁻¹. 1H NMR δ 4.25 (br s, 2H, CH(2)); 4.97 (br s, 4H, CH(2) (4, 6)); 6.7 (d, 2H, CH (8, 12)); 7.7 (d,
2H, CH (9, 11)) ppm. 13C NMR δ 34.3 (t, C(2)); 55.4 (t, C(6,4)); 115.4 (d, C(8,12)); 116.6 (d, C(9,11)) ppm. Anal. Caled for C$_9$H$_2$S$_2$N$_2$: C, 50.91; H, 5.70; N, 13.19; S, 30.20%. Found: C, 50.80; H, 5.63; N, 13.10; S, 30.50%.

N-(4-Nitrophenyl)-1,3,5-dithiazinan-5-amine (4). Yield 82%. 1H NMR δ 3.6 (s, 1H, NH (7)); 3.7 (s, 2H, CH$_2$ (2)); 4.4 (s, 4H, CH$_2$ (4,6)); 6.7 (s, 2H, CH (10,12)); 8.07 (s, 2H, CH (9,13)) ppm. 13C NMR δ 36.3 (t, C(2)); 57.4 (t, C(6,4)); 112.4 (d, C(13,9)); 123.6 (d, C(12,10)); 141.7 (s, C(11)); 154.3 (s, C(8)) ppm. MS m/z: 258 [M]$^+$ (20); 134 [M-SCH$_2$SH]$^+$ (15); 133 [M-SCH$_2$SH]$^+$ (100); 120 [M-CH$_2$CH$_2$SH]$^+$ (20); 119 [M-CH$_2$CH$_2$SH]$^+$ (85); 92 [CH$_2$SCH$_2$]$^+$ (20); 78 [C$_6$H$_6$]$^+$ (15); 46 [CH$_3$]$^+$ (65). Anal. Caled for C$_{3}$H$_{14}$N$_2$O$_2$: C, 42.01; H, 4.31; N, 16.33; S, 24.92; O, 12.43%. Found: C, 41.95; H, 4.29; N, 16.25; S, 24.88; O, 12.28%.

N-(2,4-Dinitrophenyl)-1,3,5-dithiazinan-5-amine (5). Yield 79%. 1H NMR δ 3.3 (s, 1H, NH (7)); 4.1 (s, 2H, CH$_2$ (2)); 4.4 (s, 4H, CH$_2$ (4,6)); 7.9 (d, H, CH (13)); 8.2 (d, H, CH (12)); 9.1 (s, H, CH (10)) ppm. 13C NMR δ 35.1 (t, C(2)); 56.5 (t, C(6,4)); 115.2 (d, C(13)); 122.3 (d, C(12)); 128.4 (s, C(9)); 130.8 (s, C(12)); 134.5 (s, C(11)); 154.5 (s, C(8)) ppm. Anal. Caled for C$_9$H$_3$N$_2$O$_2$: C, 35.75; H, 3.33; N, 18.53; S, 21.17; O, 21.21%. Found: C, 35.63; H, 3.27; N, 18.36; S, 21.09; O, 21.15%.

N-Phenyl-(perhydro-1,3,5-dithiazine-5-yl)amine (6). Yield 71%. R$_f$ 0.54 (C$_6$H$_{14}$-C$_6$H$_6$, 1:3). IR ν 750, 1380, 1600, 2900, 3300–3400 (br) cm$^{-1}$. 1H NMR δ 4.79 (s, 2H, H$_2$C(2)); 5.20 (s, 4H, H$_2$C(4,6)); 7.37–8.13 (m, 5H, H$_2$C (8–13)) ppm. 13C NMR δ 32.19 (t, C(2)); 58.64 (t, C(4,6)); 114.45 (d, C(9,13)); 120.28 (d, C(10,12)); 129.13 (d, C(11)); 145.87 (s, C(8)) ppm. MS m/z: 212 [M]$^+$ (91); 166 [M-CH$_2$S]$^+$ (7); 134 [M-SCH$_2$S]$^+$ (48); 120 [M-CH$_2$CH$_2$S]$^+$ (100). Anal. Caled for C$_{9}$H$_{12}$N$_2$: C, 50.94; H, 5.66; N, 13.21; S, 30.19%. Found: C, 51.23; H, 5.47; N, 13.27; S, 30.03%.

N-Benzyl-(perhydro-1,3,5-dithiazine-5-yl)amine (7). Yield 63%. R$_f$ 0.28 (CCl$_4$-EtOEt, 5:1). 1H NMR δ 4.25 (s, 2H, H$_2$C(2)); 4.63 (s, 2H, H$_2$C(8)); 4.72 (s, 4H, H$_2$C(4,6)); 7.87–8.05 (br s, 5H, H$_2$C (9–14)) ppm. 13C NMR δ 31.74 (t, C(2)); 58.17 (t, C(4,6)); 59.03 (t, C(8)); 127.34 (d, C(12)); 128.42 (d, C(11,13)); 129.04 (d, C(10,14)); 138.15 (s, C(9)) ppm. MS m/z: 226 [M]$^+$ (30); 192 [M-H$_2$S]$^+$ (5); 147 [M-C$_6$H$_5$-2]$^+$ (10); 131 [C$_6$H$_5$CH$_2$NCC]$^+$ (58); 118 [C$_6$H$_5$CN]$^+$ (23); 91 [CHSCH$_2$]$^+$ (100); 77 [C$_6$H$_5$]$^+$ (58); [SCH]$^+$ (80). Anal. Caled for C$_{10}$H$_{14}$N$_2$: C, 53.10; H, 6.19; N, 12.39; S, 28.32%. Found: C, 53.07; H, 6.30; N, 12.38; S, 28.63%.

Acknowledgements

The authors thank the Russian Foundation of Basic Research and President RF for financial support (Grants 08-03-00789 and NSh-2349.2008.3).
References and Notes