Supplementary Material

New approach to synthesis of nitronyl and imino nitroxides based on S_N^{H} methodology

Evgeny V. Tretyakov,^a* Irina A. Utepova,^b Mikhail V. Varaksin,^b Svyatoslav E. Tolstikov,^a Galina V. Romanenko,^a Artem S. Bogomyakov,^a Dmitry V. Stass,^c Victor I. Ovcharenko,^a and Oleg N. Chupakhin^{b,d}

^aInternational Tomography Center, Siberian Branch of the Russian Academy of Sciences,

3a Institutskaya str., 630090 Novosibirsk, Russian Federation

^bDepartment of Organic Chemistry, Ural Federal University, 19 Mira str.,

Ekaterinburg, 620002, Russian Federation

^cInstitute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation

^dInstitute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences,

20 S. Kovalevskoy str., Ekaterinburg, 620990, Russian Federation

E-mail: tev@tomo.nsc.ru

Table of Contents

1.	Dependences of $\mu_{eff}(T)$ for the nitroxides 3a,b , 4a,b , 5 , 6b and 13	S 2
2.	ESR spectra of 3b and 4b and the result of its modeling	S 3
3.	Molecule structure of 11	S 4

Figure S1. Dependences of $\mu_{\text{eff}}(T)$ for **3a** and **4a**.

Figure S2. Dependences of $\mu_{eff}(T)$ for **3b** and **4b**.

Figure S3. Dependences of $\mu_{eff}(T)$ for **6b** and **13**.

Figure S4. Dependence of $\mu_{eff}(T)$ for **5**.

Figure S5. ESR spectra of **3b** and **4b** (bottom trace) and the result of its modeling (top trace).

Figure S6. Molecule structure of 11.

Table. Selected bond lengths (\AA) and angles (deg) for 11

O(1)-N(1)	1.276(4)	N(2)-C(4)	1.496(5)	O(5)-C(13)	1.472(4)
N(1)-C(7)	1.350(5)	O(3)-C(8)	1.364(5)	C(7)-C(8)	1.426(5)
N(1)-C(1)	1.501(5)	O(3)-N(3)	1.404(4)	C(8)-C(9)	1.350(5)
C(1)-C(4)	1.547(6)	N(3)-C(10)	1.314(5)	C(9)-C(10)	1.412(5)
N(2)-O(2)	1.273(4)	O(4)-C(11)	1.188(5)	C(10)-C(11)	1.493(6)
N(2)-C(7)	1.349(5)	O(5)-C(11)	1.325(5)	C(13)-C(14)	1.412(6)
O(1)-N(1)-C(7)	125.5(4)	C(11)-O(5)-C(13)	116.2(4)	N(3)-C(10)-C(9)	112.6(4)
O(1)-N(1)-C(1)	122.9(4)	N(2)-C(7)-N(1)	109.3(4)	N(3)-C(10)-C(11)	118.3(5)
C(7)-N(1)-C(1)	111.4(4)	N(2)-C(7)-C(8)	122.7(4)	C(9)-C(10)-C(11)	129.1(5)
O(2)-N(2)-C(7)	125.1(4)	N(1)-C(7)-C(8)	128.0(5)	O(4)-C(11)-O(5)	126.3(5)
O(2)-N(2)-C(4)	122.7(4)	C(9)-C(8)-O(3)	109.6(4)	O(4)-C(11)-C(10)	124.6(5)
C(7)-N(2)-C(4)	111.8(3)	C(9)-C(8)-C(7)	132.3(5)	O(5)-C(11)-C(10)	109.0(5)
C(8)-O(3)-N(3)	108.7(3)	O(3)-C(8)-C(7)	118.1(4)	C(14)-C(13)-O(5)	109.1(4)
C(10)-N(3)-O(3)	104.9(4)	C(8)-C(9)-C(10)	104.2(4)		