Synthesis of novel 1-thia-5,9-diaza-spiro[5.5]undec-2-ene and its recyclization to 1,5,9-triaza-spiro[5.5]undec-2-ene and/or spiro(piperidine-4,2'-thieno[2,3-d]pyrimidine)

Raafat M. Shaker,* Yusria R. Ibrahim, Fathy F. Abdel-Latif, and Asmaa Hamoda

Chemistry Department, Faculty of Science, El-Minya University, El-Minya, Egypt E-mail: <u>rmshaker@yahoo.com</u>

DOI: <u>http://dx.doi.org/10.3998/ark.5550190.0012.205</u>

Abstract

An efficient and direct procedure for the synthesis of 1-thia-5,9-diaza-spiro[5.5]undec-2-ene has been described. The base-catalyzed recyclization of the latter has been studied. The structures of the products were proved by elemental analyses, IR, MS, ¹H- and ¹³C- NMR spectroscopy.

Keywords: Spiro-piperidine, spiro-1,3-thiazine, spiro-pyrimidine, spiro-thieno[2,3-d]pyrimidine

Introduction

Spiro heterocyclic compounds are well known to possess varied pharmacological activities and hence their synthesis has always been a challenge and of attraction to organic chemists. These compounds, display pronounced antimicrobial,¹ analgesic,² anti-inflammatory,² antimycobacterial,³ antifungal,⁴ antitumor^{5,6} and antiviral^{5,6} activities. Among these heterocycles, spiropiperidines have been identified as privileged structures in medicinal chemistry⁷ and have attracted increasing interest in the past five years. The most recent reports are representative of their wide range of biological activities as components of new SCD-1 inhibitors,⁸ nociceptin receptor ligands,⁹ CCR5 antagonists,¹⁰ NPYY¹¹ receptor antagonists,¹¹ CGRP receptor antagonists,¹² tryptase inhibitors,¹³ PGD2 receptor antagonists¹⁴ and ChK1 kinase inhibitors.¹⁵

Furthermore, 1,3-thiazines are an important type of heterocycles showing a wide variety of pharmacological properties.¹⁶⁻²⁰ Prompted by the aforesaid biological and pharmaceutical activities, and as a part of our continuing interest on the synthesis of new polyfunctionally substituted heterocyclic²¹⁻³⁰ and spiro heterocyclic compounds³¹⁻³⁴ of expected biological activity, we now report the versatile and hitherto unreported synthesis of 1-thia-5,9-diaza-spiro[5.5]undec-2-ene, and its base-catalyzed recyclization to 1,5,9-triaza-spiro[5.5]undec-2-ene and spiro(piperidine-4,2'-thieno[2,3-*d*]pyrimidine) derivatives with the purpose of investigating in the future their possible biological activity.

Results and Discussion

Scheme 1 outlines the synthesis of the ethyl ester of 3-cyano-4-oxo-2-phenylamino-1-thia-5,9-diaza-spiro[5.5]undec-2-ene-9-carboxylic acid **3a,b** from the cyclocondensation of 2-cyano-3-mercapto-3-phenylamino-acrylamide **1** with ethyl 4-oxo-piperidine-1-carboxylate **2a** and/or 1-benzylpiperidin-4-one **2b** in the presence of catalytic amounts of *p*-toluenesulfonic acid (*p*-TSA) in boiling ethanol.

Scheme 1

The structure of compounds **3a,b** was determined by elemental analysis, spectroscopic data and the chemical transformations outlined below. Thus, compound **3a** exhibits an IR spectrum with strong absorption bands at 3157, 2205 and 1675 cm⁻¹ corresponding to the NH, CN and CO, respectively. Its ¹H NMR spectrum shows characteristic singlets at δ 10.11 and 8.22 ppm for the exocyclic and endocyclic NH protons, respectively, in addition to an eight-proton- multiplet in the region of δ 1.93–3.67 due to the methylene protons, and a multiplet at δ 7.23–7.42 ppm for the aromatic protons. Moreover, the ¹³C NMR spectrum of **3a** shows signals at δ_C 63.37, 163.86 and 164.48 ppm corresponding to the quaternary sp³ carbon (spiro carbon) and two carbonyl groups of the ester group and thiazine ring respectively. In addition to signals at δ_C 14.47 (CH₃), 36.27 (2CH₂), 38.73 (2CH₂), 60.85 (OCH₂), 76.91(C-3), 116.00 (CN), 120.50, 120.72, 125.32, 125.54, 126.75, 128.94, 137.98 (C-Ar) and 154.32 (C=O, ester). The structure assigned for compound **3a** was fully supported by its mass spectrum, which showed a molecular formula C₁₈H₂₀N₄O₃S (*m*/*z* (%) = 372.00 (M⁺, 78.30).

Next, we moved on to study the alkylation of **3a** using dimethyl sulfate, ethyl iodide, and benzyl chloride as alkylating agents under basic conditions (Scheme 2). The reaction proved to involve the sulfur atom, thus affording the S-alkylated derivatives **4-6** (Scheme 2). The structural assignments of compounds **4-6** were confirmed by their spectroscopic data. The distinction between the thiazine and pyrimidine structural types is clearly manifested in the ¹H- and ¹³C-NMR spectra. For example, the ¹H NMR spectrum of **4** showed the absence of exocyclic NH proton, and in its ¹³C NMR spectrum the resonance of the aminal carbon atom in compound **4** (δ 73.41) are shifted downfield from those of the thioaminal carbon atom in compound **3a**.

Scheme 2

According to the literature survey, few examples of Dimroth rearrangements are known which involve the transformation of amino-1,3-thiazines to pyrimidinethiones.^{21,35,36} From this evidence, the mechanistic picture for the pyrimidine forming process emerged as shown in Scheme 3. Seemingly, a base causes proton abstraction from the nitrogen atom in position 5 and thiazine ring- opening to afford the intermediate **A** which possesses a thio-keto enolic equilibrium forming intermediate **B**, which allows free rotation around the single bond affording the E- diastereomer that could close to the pyrimidines **4**, **5** and **6**, respectively.

Scheme 3

In addition, formation of the pyrimidines **4** and **5** was further confirmed by an alternative synthesis. Thus, the reaction of **7a**,**b** with 4-oxo-piperidine-1-carboxylic acid ethyl ester **2a** in boiling ethanol, in the presence of catalytic amounts of *p*-toluenesulfonic acid (*p*-TSA) afforded **4** and/or **5** in excellent yields (Scheme 4). The identity of the products prepared in Scheme 4 with those obtained previously in Scheme 2 was confirmed by comparison of their IR and ¹H NMR spectra.

Scheme 4

Treatment of **3a** with ethyl bromoacetate and/or bromoacetonitrile, in aq. KOH furnished the spiro-thienopyrimidine derivatives **9a,b** (Scheme 5). The structures of **9a,b** were established by their correct analyses and compatible spectroscopic data. The IR and ¹H- NMR spectra of **9a** revealed the absence of the CN group, signals attributable to the exocyclic NH proton of **3a**, and the presence of signal attributable to the NH₂ protons at δ 6.85 ppm which exchange with D₂O. Furthermore, the fragmentation patterns of the mass spectra of **9a** and **9b** show molecular ion peaks at m/z 458.70 (M⁺, 48.3%) and m/z 411.65 (M⁺, 89.36%), respectively, which are in good agreement with the assigned structure. The structures of **9a,b** are rationalized in terms of the initial formation of the intermediate **8**, which on subsequent intramolecular cyclization under the reaction conditions affords the final product .

Scheme 5

Similarly, compound **3b** was reacted with alkylating reagents such as dimethyl sulfate and ethyl iodide under basic conditions to give the corresponding *S*-alkylated derivatives **10** and **11** (Scheme 6).

Scheme 6

The molecular formulae of compounds **10** and **11** are supported by elemental analyses and mass spectra that gave the expected molecular ion peaks and their corresponding fragmentation patterns. The IR as well as the ¹H NMR spectra agree with the proposed structures. The reaction of the spirothiazine **3b** with benzyl chloride in EtOH in the presence of triethylamine did not afford the expected *S*-benzylated derivative, but rather the dibenzylated derivative **12** (Scheme 6). Both the mass spectrum and elemental analysis established the molecular formula of **12** as $C_{36}H_{34}N_4OS$. The IR and ¹H- NMR spectra of **12** revealed the absence of NH group and signals attributable to the endo- and exo-cyclic NH protons of **12**, respectively. Furthermore, the structure assigned for compound **12** was fully supported by their ¹³C NMR.

The alkylation of **3b** with ethyl bromoacetate in aq. KOH gave the spiro S-substituted thiopyrimidine **13** (Scheme 7), whose elemental analysis and spectral data are in good agreement with the proposed structure. The IR spectrum revealed the presence of CN group with strong absorption band at 2196, NH group at 3145 and CO (ester group) at 1698 cm⁻¹. The ¹H NMR of **13** revealed the presence of signals at $\delta = 3.70$ and 8.17 attributable to the SCH₂ and NH protons, respectively. Moreover the mass spectrum of **13** exhibited a molecular ion peak at m/z = 476.20 (M⁺, 52.54%). On the other hand, the alkylation of **3b** with bromo-acetonitrile under the previous conditions gave the spiro-thienopyrimidine **13** (Scheme 7). Depending upon the spectroscopic data the structure of compound **14** is undoubtedly confirmed. Thus, the ¹H- NMR of **14** revealed the absence of signals attributable to the exocyclic NH proton of **3b**, and the presence of signal

attributable to the NH₂ protons. The mass spectrum of **14** showed the molecular ion peak m/z = 429.60 (M⁺, 65.59%) corresponding to the molecular formula C₁₄H₁₀N₄OS.

Scheme 7

Experimental Section

General. Melting points were measured with a Gallenkamp apparatus and are uncorrected. The reactions and purity were monitored by thin layer chromatography (TLC) on aluminum plates coated with silica gel with fluorescent indicator (Merck, 60 F_{254}) using CHCl₃ / CH₃OH (10:1) as eluent. Infrared spectra were recorded on a Jasco FT/IR-450 Plus spectrophotometer. The NMR spectra were obtained on a JHA-LAA 400 WB-FT spectrometer at 400 MHz for ¹H- NMR, and 100 MHz for ¹³C, with CDCl₃ and DMSO-d₆ as solvent. Chemical shifts are quoted in δ and are referenced to TMS or the solvent signal. The mass spectra were recorded on a Trace GC 2000 / Finnegan Mat SSQ 7000 and Shimadzu GCMS-QP-1000EX mass spectrometer at 70 eV. Elemental analyses were measured with a Vario EL III CHNOS Elemental Analyzer, Germany, in the Microanalytical Center of Cairo University. Compounds **1**,³⁷ **7a**,³⁸ and **7b**,²¹ were synthesized using the published procedures.

General procedure for synthesis of 1-thia-5,9-diazaspiro[5.5]undec-2-ene (3a,b)

A mixture of compound 1 (10 mmol), piperidine-4-one 2a,b (10 mmol) and *p*-toluenesulfonic acid (2 mmol) was refluxed in ethanol (20 mL). A pale yellow precipitate was formed after 4-6 h, the precipitate was filtered off, washed with ethanol, dried and recrystallized from DMF/EtOH.

Ethyl 3-cyano-4-oxo-2-phenylamino-1-thia-5,9-diazaspiro[**5.5**]**undec-2-ene-9-carboxylate (3a).** Pale yellow crystals, yield (78%, mp 220°C, IR (v_{max} , cm⁻¹): 3157 (2-NH), 3028 (Ar-H), 2931 (Alph-H), 2205 (CN), 1675 (C=O, ester), 1632 (C=O). ¹H NMR (300 MHz, DMSO- d_6), δ_H 1.16 (3H, t, J = 7.0 Hz, CH₃), 1.93-2.08 (4H, m, 2CH₂), 3.15-3.22(2H, m, CH₂), 3.60-3.67 (2H, m, CH₂), 4.04 (2H, q, J = 7.2 Hz, OCH₂), 7.23-7.42 (5H_{arom}, m, 5CH), 8.22 (1H, s, NH, D₂O-exchangeable), 10.11 (1H, s, NH, D₂O-exchangeable). ¹³C NMR (75 MHz, DMSO- d_6), δ_C 14.47 (CH₃), 36.27 (2xCH₂), 38.73 (2CH₂), 60.85 (OCH₂), 63.37 (C-6), 76.91(C-3), 116.00 (CN), 120.50, 120.72, 125.32, 125.54, 126.75, 128.94, 137.98, 146.56 (C-Ar), 154.32 (C=O, ester), 163.86 (C=O), 164.48 (C-2). MS, m/z, (%) = 372.00 (M⁺, 78.30), 171.05 (C₁₀H₆N₂OH, 100). Anal. Calcd for C₁₈H₂₀N₄O₃S (372.44): C, 58.05; H, 5.41; N, 15.04; S, 8.61%, Found: C, 57.97; H, 5.52; N, 14.99; S, 8.56%.

9-Benzyl-4-oxo-2-phenylamino-1-thia-5,9-diazaspiro[**5.5**]**undec-2-ene-3-carbonitrile** (**3b**). Pale yellow crystal, yield 76%, mp 212-214 °C, IR (ν_{max} , cm⁻¹): 3252 (2NH), 3059 (Ar-H), 2942 (Alph-H), 2198 (CN), 1640 (C=O). ¹H NMR (300 MHz, DMSO- d_6), δ_H 1.98-2.07 (4H, m, 2CH₂), 2.11-2.24 (2H, m, CH₂), 2.62-2.66 (2H, m, CH₂), 3.49 (2H, s, NCH₂Ph), 7.21-7.42 (10H_{aro}, m, 10CH), 8.19 (1H, s, NH), 10.20 (1H, s, NH). ¹³C NMR (75 MHz, DMSO- d_6), δ_C 36.62 (2CH₂), 48.69 (2CH₂), 61.29 (NCH₂Ph), 63.46 (C-6), 76.95(C-3), 116.14 (CN), 125.37, 126.64, 127.05, 128.14, 128.83, 128.91, 131.33, 137.48, 138.06 (C-Ar), 163.80 (C=O), 164.15 (C-2). Anal. Calcd for C₂₂H₂₂N₄OS (390.50): C, 67.67; H, 5.68; N, 14.35; S, 8.21%, Found: C, 67.61; H, 5.76; N, 14.29; S, 8.14%.

Ethyl 3-cyano-2-methylthio-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]undec-2-ene-9-carboxylate (4). To a stirred 0.75 N aqueous KOH solution (20 mL), compound **3a** (10 mmol) and dimethyl sulfate (20 mmol) were added successively. A resulting precipitate was filtered off, washed with water, dried and recrystallized from ethanol. White powder, yield 84%, mp 220-224 °C, IR (v_{max} , cm⁻¹): 3216 (NH), 3059 (Ar-H), 2958 (Alph-H), 2212 (CN), 1690 (C=O, ester), 1646 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.12 (3H, t, *J* = 6.6 Hz, CH₃), 1.54-1.62 (2H, m, CH₂), 1.90-194 (2H, m, CH₂), 2.33 (3H, s, SCH₃), 3.70-3.95 (4H, m, 2CH₂), 3.99 (2H, q, J = 6.9 Hz, OCH₂), 7.33-7.44(5H_{arom}, m, 5CH), 8.41 (1H, s, NH). ¹³C NMR (75 MHz, [DMSO-*d*₆), $\delta_{\rm C}$ 14.46 (CH₃), 17.06 (SCH₃), 33.69 (2CH₂), 38.66 (2CH₂), 60.78 (OCH₂), 73.41 (C-6), 85.45 (C-3), 116.47 (CN), 129.13, 129.27, 129.88, 138.59 (C-Ar), 154.17 (C=O), 161.02 (C=O), 166.14 (C-2). Anal. Calcd for C₁₉H₂₂N₄O₃S (386.47): C, 59.05; H, 5.74; N, 14.50; S, 8.30%, Found: C, 58.97; H, 5.82; N, 14.41; S, 8.23%.

Ethyl 3-cyano-2-ethylthio-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]undec-2-ene-9-carboxylate (5). Ethyl iodide (2 mmol) was added to a mixture of **3a** (10 mmol) and anhydrous potassium carbonate (20 mmol) in DMF (5mL). The reaction mixture was stirred for 18-20 h at room temperature and then poured into cold water. After stirring for 15 minutes, the precipitated product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yellow crystal, yield 76%, mp 230 °C, IR (v_{max} , cm⁻¹): 3216 (NH), 3057 (Ar-H), 2963 (Alph-H), 2212 (CN), 1685 (C=O, ester), 1646 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.08-1.15 (6H, m, 2CH₃), 1.59-1.64 (2H, m, CH₂), 1.91-1.95 (2H, m, CH₂), 2.82 (2H, q, *J* = 7.2 Hz, SCH₂), 3.04

(2H, m, CH₂), 3.82-3.86 (2H, m, CH₂), 3.98 (2H, q, J = 7.2 Hz, OCH₂), 7.31-7.46 (5H_{aro}, m, 5CH), 8.43 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆), $\delta_{\rm C}$ 14.40 (CH₃), 14.46 (CH₃), 28.24 (SCH₂), 33.71 (2CH₂), 38.95 (2CH₂), 60.77 (OCH₂), 73.48 (C-6), 87.11(C-3), 116.87 (CN), 129.11, 129.23, 129.87, 138.74 (C-Ar), 154.16 (C=O, ester), 160.87 (C=O), 163.99 (C-2). MS, m/z, (%) = 400.30 (M⁺, 11.16), 169.00 (C₈H₁₃N₂O₂, 100). Anal. Calcd for C₂₀H₂₄N₄O₃S (400.49): C, 59.98; H, 6.04; N, 13.99; S, 8.01%, Found: C, 59.93; H, 6.16; N, 13.89; S, 7.95%. **Ethyl 3-cyano-2-benzylthio-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]undec-2-ene-9-carboxylate (6).**

A mixture of compound **3a** (10 mmol), benzyl chloride (10 mmol), and triethylamine (2.1 mL, 1.5 mmol) in ethanol (20 mL), the reaction was continued for 2h., a white precipitate was formed after cooling. A resulting precipitate was filtered off, dried, and recrystallized from ethanol. White crystal, yield 80%, m. p. 240 °C, IR (v_{max} , cm⁻¹): 3278 (NH), 3043 (Ar-H), 2981 (Alph-H), 2214 (CN), 1689 (C=O, ester), 1647 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.10 (3H, t, *J* = 7.2 Hz, CH₃), 1.44-1.52 (2H, m, CH₂), 1.80-1.84 (2H, m, CH₂), 2.96-3.04 (2H, m, CH₂), 3.77-3.82 (2H, m, CH₂), 3.99 (2H, q, *J* = 7.2 Hz, OCH₂), 4.14 (2H, s, *J* = 7.2 Hz, SCH₂), 7.07-7.45 (10H_{aro}, m, 10CH), 8.36 (1H, s, NH). MS, *m*/*z*, (%) = 462.15 (M⁺, 10.45), 91.05 (C₇H₇, 100). Anal. Calcd for C₂₅H₂₆N₄O₃S (462.56): C, 64.91; H, 5.67; N, 12.11; S, 6.93%, Found: C, 64.82; H, 5.77; N, 12.03; S, 6.89%.

Alternative synthesis of (4) and (5). A mixture of 4-oxo-piperidine-1-carboxylic acid ethyl ester 2a (0.01 mol), 7a, b (0.01 mol), and *p*-toluenesulfonic acid (0.01 mol) in ethanol (20 mL) was refluxed. A precipitate was formed after 7 h. The precipitate was filtered off, washed with ethanol, dried and recrystallized from ethanol.

General procedure for synthesis of spiro(piperidine-4,2'-thieno[2,3-d]pyrimidine) (9a,b)

To a stirred 0.75 N aqueous KOH solution (20 mL), compound **3a** (10 mmol) and ethyl bromoacetate or bromoacetonitrile (20 mmol) were added successively. A resulting precipitate was filtered off, washed with water, dried and recrystallized from ethanol.

Ethyl 5'-amino-4'-oxo-1'-phenyl-3',4'-dihydro-1'H-spiro[piperidine-4,2'-thieno[2,3-d]pyrimidine]-1,6'-dicarboxylate (9a). White crystal, yield 74%, mp 230-232 °C, IR (v_{max} , cm⁻¹): 3478-3359 (NH₂), 3202 (NH), 2972 (Alph-H), 1704 (C=O, ester), 1671 (C=O, ester), 1632 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.07-1.15 (6H, m, 2CH₃), 1.47-1.48 (2H, m, CH₂), 2.12-2.16 (2H, m, CH₂), 3.13-3.25 (2H, m, CH₂), 3.81-3.86 (2H, m, CH₂), 3.95 (2H, q, *J* = 7.2 Hz, OCH₂), 4.03 (2H, q, *J* = 7.2 Hz, OCH₂), 6.85 (2H, s, NH₂, D₂O-exchangeable), 7.41-7.56 (5H_{aro}, m, 5CH), 8.28 (1H, s, NH, D₂O-exchangeable). MS, *m*/*z*, (%) = 458.70 (M⁺, 48.30%), 242.20 (C₁₂H₈N₃OS, 100%). Anal. Calcd for C₂₂H₂₆N₄O₅S (458.53): C, 57.63; H, 5.72; N, 12.22; S, 6.99%, Found: C, 57.59; H, 5.79; N, 12.18; S, 6.91%.

Ethyl 5'-amino-6'-cyano-4'-oxo-1'-phenyl-3',4'-dihydro-1'H-spiro(piperidine-4,2'-thieno[2,3-*d*]pyrimidine)-1-carboxylate (9b). Pale brown, yield 80%, mp 245-248 °C, IR (v_{max} , cm⁻¹): 3403-3318 (NH₂), 3165 (NH), 2175 (CN), 1697 (C=O, ester), 1659 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.09 (3H, t, *J* = 7.2 Hz, CH₃), 1.43-1.51(2H, m, CH₂), 2.11-2.15 (2H, m, CH₂), 3.17-3.21 (2H, m, CH₂), 3.81-3.85 (2H, m, CH₂), 3.95 (2H, q, *J* = 7.2 Hz, OCH₂), 6.80

(2H, s, NH₂, D₂O-exchangeable), 7.42-7.56 (5H_{aro}, m, 5CH), 8.37 (1H, s, NH, D₂O-exchangeable). MS, m/z, (%) = 411.65 (M⁺, 89.36), 82.08 (C₄H₄NO, 100). Anal. Calcd for C₂₀H₂₁N₅O₃S (411.48): C, 58.38; H, 5.14; N, 17.02; S, 7.79%, Found: C, 58.29; H, 5.23; N, 16.96; S, 7.72%.

9-Benzyl-3-cyano-2-methylthio-4-oxo-1-phenyl-1,5,9-triazaspiro[**5.5**]**undec-2-ene** (**10**)**.** To a stirred 0.75 N aqueous KOH solution (20 mL), compound **3b** (10 mmol) and dimethyl sulfate (20 mmol) were added successively. A resulting precipitate was filtered off, washed with water, dried and recrystallized from ethanol. Pale yellow crystal, yield 79%, mp 208-210 °C, IR (v_{max} , cm⁻¹): 3169 (NH), 3049 (Ar-H), 2927 (Alph-H), 2210 (CN), 1644 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.67-1.70 (2H, m, CH₂), 1.85-1.89 (2H, m, CH₂), 2.26 (2H, m, CH₂), 2.33 (3H, s, SCH₃), 2.57-2.60 (2H, m, CH₂), 3.42 (2H, s, NCH₂), 7.23-7.45 (10H_{aro}, m, 10CH), 8.15 (1H, s, NH, D₂O-exchangeable). MS, *m*/*z*, (%) = 404.50 (M⁺, 2.09), 90.85 (C₇H₇, 100). Anal. Calcd for C₂₃H₂₄N₄OS (404.53): C, 68.29; H, 5.98; N, 13.85, S, 7.93%. Found; C, 68.23; H, 6.11; N, 13.78; S, 7.89%.

9-Benzyl-3-cyano-2-ethylthio-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]undec-2-ene (11). Ethyl iodide (2mmol) was added to a mixture of **3b** (10 mmol) and anhydrous potassium carbonate (20 mmol) in DMF (5mL). The reaction mixture was stirred for 18-20 h at room temperature and then poured into cold water. After stirring for 15 minutes, the precipitated product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yellow crystal, yield 75%, mp 208 °C, IR (v_{max} , cm⁻¹): 3181 (NH), 3051(Ar-H), 2928 (Alph-H), 2210 (CN), 1644 (C=O). ¹H NMR (300 MHz, DMSO- d_6), δ_H 1.10 (3H, t, J = 7.2 Hz, CH₃), 1.68-1.69 (2H, m, CH₂), 1.88-1.92 (2H, m, CH₂), 2.27 (2H, m, CH₂), 2.58-2.62 (2H, m, CH₂), 2.84 (2H, q, J = 7.5 Hz, SCH₂), 3.44 (2H, s, NCH₂), 7.22-7.48 (10H_{aro}, m, 10CH), 8.18 (1H, s, NH, D₂O-exchangeable). MS, m/z, (%) = 419.05 (M⁺, 1.49%), 90.85 (C₇H₇, 100%). Anal. Calcd for C₂₄H₂₆N₄OS (418.55): C, 68.87; H, 6.26; N, 13.39; S, 7.66%, Found: C, 68.82; H, 6.31; N, 13.31; S, 7.59%.

3-Cyano-5,9-dibenzyl-2-(benzylthio)-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]-undec-2-ene

(12). A mixture of compound **3b** (10 mmol), benzyl chloride (10 mmol), and triethylamine (2.1 mL, 1.5 mmol) in ethanol (20 mL), the reaction was continued for 2h., a white precipitate was formed after cooling. A resulting precipitate was filtered off, dried, and recrystallized from ethanol. White crystal, yield 80%, mp 180-182 °C, IR (v_{max} , cm⁻¹): 3065 (Ar-H), 2995 (Alph-H), 2220 (CN), 1665 (C=O). ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ 1.67 (2H, m, CH₂), 1.95-1.99 (2H, m, CH₂), 2.22 (2H, m, CH₂), 2.74 (20H, m, CH₂), 3.50 (2H, s, NCH₂Ph), 4.20 (2H, s, SCH₂), 4.68 (2H, s, NCH₂Ph), 6.84-7.44 (20H_{aro}, m, 20CH). ¹³C NMR (75 MHz, CDCl₃), $\delta_{\rm C}$ 34.45 (2CH₂), 39.09 (SCH₂), 43.79 (NCH₂), 48.34 (2CH₂), 62.00 (NCH₂), 69.10 (C-6), 73.04 (C-3), 116.96 (CN), 126.00, 127.90, 128.31, 128.65, 129,14, 129.33, 129.66, 135.35, 138.44 (C-Ar), 172.86 (C=O), 173.01 (C-2), MS, m/z, (%) = 572.55 (M⁺ + 2, 1.45), 91.05 (C₇H₇, 100). Calcd for C₃₆H₃₄N₄OS (570.75): C, 75.76; H, 6.00; N, 9.82; S, 5.62%, Found: C, 75.69; H, 6.11; N, 9.78; S, 5.59%.

Ethyl 2-(9-benzyl-3-cyano-4-oxo-1-phenyl-1,5,9-triazaspiro[5.5]undec-2-en-2-ylthio)acetate (13). To a stirred 0.75N aqueous KOH solution (20 mL), compound **3b** (10 mmol) and ethyl bromoacetate (20 mmol) were added successively. A resulting precipitate was filtered off, washed with water, dried and recrystallized from ethanol. Grey powder, yield 78%, mp 186-188 °C, IR (v_{max} , cm⁻¹): 3145 (NH), 2931(Alph-H), 2196 (CN), 1698 (C=O, ester), 1642 (C=O). ¹H NMR (300 MHz, DMSO- d_6), $\delta_{\rm H}$ 1.18 (3H, t, J = 7.2 Hz, CH₃), 1.64-1.71 (2H, m, CH₂), 1.84-1.88 (2H, m, CH₂), 2.23-2.31 (2H, m, CH₂), 2.58-2.62 (m, 2H, CH₂), 3.45 (2H, s, NCH₂Ph), 3.70 (2H, s, SCH₂), 4.09 (2H, q, J = 7.2 Hz, OCH₂), 7.19-7.50 (10H_{aro}, m, 10CH), 8.17 (1H, s, NH, D₂O-exchangeable). MS, m/z, (%) = 476.20 (M⁺, 52.54), 91.10 (C₇H₇, 100). Calcd for C₂₆H₂₈N₄O₃S (476.59): C, 65.52; H, 5.92; N, 11.76; S, 6.73%. Found; C, 65.43; H, 6.01; N, 11.71; S, 6.68%.

5'-Amino-1-benzyl-6'-cyano-4'-oxo-1'-phenyl-3',4'-dihydro-1'H-spiro-[piperidine-4,2'-

thieno [2,3-d]pyrimidine] (14). To a stirred 0.75 N aqueous KOH solution (20 mL), compound **3b** (10 mmol) and bromoacetonitrile (20 mmol) were added successively. A resulting precipitate was filtered off, washed with water, dried and recrystallized from ethanol. Pale orange, yield 78%, mp 218-220 °C, IR (v_{max} , cm⁻¹): 3423-3321 (NH₂), 3208 (NH), 3060 (Ar-H), 2179 (CN), 1653 (C=O). ¹H NMR (300 MHz, DMSO-*d*₆), $\delta_{\rm H}$ 1.58-1.60 (2H, m, CH₂), 2.05-2.09 (2H, m, CH₂), 2.37-2.42 (2H, m, CH₂), 2.56-2.60 (2H, m, CH₂), 3.42 (2H, s, NCH₂Ph), 6.78 (2H, s, NH₂, D₂O-exchangeable), 7.18-7.57 (10H_{aro}, m, 10CH), 8.09 (1H, s, NH, D₂O-exchangeable). MS, *m*/*z*, (%) = 429.60 (M⁺, 65.59), 282.50 (C₁₄H₁₀N₄OS, 100), 90.80 (C₇H₇, 100%). Calcd for C₂₄H₂₃N₅OS (429.54): C, 67.11; H, 5.40; N, 16.30; S, 7.47%, Found: C, 66.98; H, 5.49; N, 16.23; S, 7.36%.

References

- 1. Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Eur. J. Med. Chem. 2009, 44, 959.
- 2. Amin, K. M.; Kamel, M. M.; Anwar, M. M.; Khedr, M.; Syamb, Y. M. *Eur. J. Med. Chem.* **2010**, *45*, 2117.
- 3. Kumar, R. R.; Perumal, S.; Manju, S. C.; Bhatt, P.; Yogeeswari, P.; Sriram, D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3461.
- 4. Dandia, A.; Singh, R.; Khaturia, S.; Me´rienne, C.; Morgant, G.; Loupy, A. *Bioorg. Med. Chem.* **2006**, *14*, 2409.
- 5. Lang, G.; Pinkert, A.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 2005, 68, 1796.
- 6. Maier, C. A.; Wuensch, B. J. Med. Chem. 2002, 45, 438.
- 7. Wilson, R. A.; Chan, R.; Wood, R.; Brown, R. C. D. Org. Biomol. Chem. 2005, 3, 3228. and references cited therein.

- 8. Uto, Y.; Kiyotsuka, Y.; Ueno, Y.; Miyazawa, Y.; Kurata, H.; Ogata, T.; Deguchi, T.; Yamada, M.; Watanabe, N.; Konishi, M.; Kurikawa, N.; Takagi, T.; Wakimoto, S.; Kono, K.; Ohsumi, J. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 746.
- 9. Caldwell, J. P.; Matasi, J. J.; Fernandez, X.; McLeod, R. L.; Zhang, H.; Fawsi, A.; Tulshian, D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1164.
- Rotstein, D. M.; Gabriel, S. D.; Makra, F.; Filonova, L.; Gleason, S.; Brotherton Pleiss, C.; Setti, L. Q.; Trejo-Martin, A.; Lee, E. K.; Sankuratri, S.; Ji, C.; de Rosier, A.; Dioszegi, M.; Heilek, G.; Jekle, A.; Berry, P.; Weller, P.; Mau, C. *Bioorg. Med. Chem. Lett.* 2009, 19, 5401.
- Takahashi, T.; Haga, Y.; Sakamoto, T.; Moriya, M.; Okamoto, O.; Nonoshita, K.; Shibata, T.; Suga, T.; Takahashi, H.; Hirohashi, T.; Sakuraba, A.; Gomori, A.; Iwaasa, H.; Ohe, T.; Ishihara, A.; Ishii, Y.; Kanatani, A.; Fukami, T. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3511.
- 12. Burgey, C. S.; Potteiger, C. M.; Deng, J. Z.; Mosser, S. D.; Salvatore, C. A.; Yu, S.; Roller, S.; Kane, S. A.; Vacca, J. P.; Williams, T. M. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6368.
- 13. Costanzo, M. J.; Yabut, S. C.; Tounge, B.; Maryanoff, B. E.; Zhang, H. WO Patent 200906720, 2009; Chem. Abstr. 2009, 151, 8305.
- 14. Stearns, B. A.; Truong, Y. P.; Hutchinson, J. H. WO Patent 2009061676, 2009; Chem. Abstr. 2009, 150, 515047.
- Converso, A.; Hartingh, T.; Garbaccio, R. M.; Tasber, E.; Rickert, K.; Fraley, M. E.; Yan, Y.; Kreatsoulas, C.; Stirdivant, S.; Drakas, B.; Walsh, E. S.; Hamilton, K.; Buser, C. A.; Mao, X.; Abrams, M. T.; Beck, S. C.; Tao, W.; Lobell, R.; Sepp-Lorenzino, L.; Zugay-Murphy, J.; Sardana, V.; Munshi, S. K.; Jezequel-Sur, S. M.; Zuck, P. D.; Hartman, G. D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1240.
- 16. Kai, H.; Morioka, Y.; Koriyama, Y.; Okamoto, K.; Hasegwa, Y.; Hattori, M.; Koike, K.; Chiba, H.; Shinohara, S.; Iwamoto, Y.; Takahashi, K.; Tanimoto, N. *Bioorg. Med. Chem. Lett.* 2008, 18, 6444.
- Suárez, M.; Novoa, H.; Verdecia, Y.; Ochoa, E.; Alvarez, A.; Pérez, R.; Martínez-Alvarez, R.; Molero, D.; Seoane, C.; Blaton, N. M.; Peeters, O. M.; Martín, N. *Tetrahedron* 2006, 62, 1365.
- 18. Ingarsal, N.; Amutha, P.; Nagarajan, S. J. Sulfur Chem. 2006, 27, 455.
- 19. Koketsu, M.; Tanaka, K.; Takenaka, Y.; Kwong, C. D.; Ishihara, H. *Eur. J. Pharm. Sci.* **2002**, *15*, 307.
- 20. Tozkoparan, B.; Aktay, G.; Yeilada, E. Il Farmaco 2002, 57, 145.
- 21. Shaker, R. M.; Ibrahim, Y. R.; Abdel-Latif, F. F.; Hamoda A. Z. Naturforsch. 2010, 65b, 1148.
- 22. Shaker, R. M.; Ameen, M. A.; Abdel Hameed, A. M.; Abd Elrady, M. Z. Naturforsch. 2009, 64b, 1193.
- 23. Shaker, R. M.; Abd Elrady. M. Z. Naturforsch. 2008, 63b, 1431.
- 24. El-Shaieb, K. M.; Shaker, R. M.; Aly, A. A. Synth. Commun. 2008, 38, 2054.
- 25. Shaker, R. M. Arkivoc 2006, (xiv), 59.

ARKIVOC 2011 (ii) 57-68

- 26. Shaker, R. M. Arkivoc 2006, (xiv), 68.
- 27. Shaker, R. M.; Mahmoud, A. F.; Abdel-Latif, F. F. Phosphorus, Sulfur, Silicon and Relat. Elem. 2005, 180, 397.
- 28. Aly, A. A.; Hassan, A. A.; El-Shaieb, K. M.; Shaker, R. M. Z. Naturforsch. 2005, 60b, 999.
- 29. Shaker, R. M. Heteroatom Chem. 2005, 16, 507.
- 30. Hassan, A. A.; El-Shaieb, K. M.; Shaker, R. M.; Döpp, D. Heteroatom Chem. 2005, 16, 12.
- 31. Shaker, R. M. Phosphorus, Sulfur Silicon and Relat. Elem. 2003, 178, 1175.
- 32. Shaker, R. M.; Mahmoud, A. F.; Abdel-Latif, F. F. J. Chin. Chem. Soc. 2005, 52, 563.
- 33. Shaker, R. M. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 149, 7.
- 34. Abdel-Latif, F.F.; Shaker, R. M. Bull. Soc. Chim. Fr. 1991, 127, 87.
- Glasnov, T. N.; Vugts, D. J.; Koningstein, M. M.; Desai, B.; Fabian, W. M. F.; Orru, R. V. A.; Kappe, C. O. *QSAR Comb. Sci.* 2006, *25*, 509; Vovk, M. V.; Sukach, V. A.; Chernega, A. N.; Pyrozhenko, V. V.; Bol'but, A. V.; Pinchuk, A. M. *Heteroatom Chem.* 2005, *16*, 426.
- 36. Goerdeler, J.; Keuser, U. Chem. Ber. 1964, 97, 3106.
- 37. Elgemeie, G. H.; Elghandour, A. H.; Abd Elaziz, G. W.; Synth. Commun. 2007, 37, 2827.