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Abstract 

The isoprene-mediated lithiation, with lithium metal, of different imidazole derivatives is an 

interesting methodology for their functionalization. Studies of different possible intermediates 

involved in the reaction employing density functional theory calculations, at the B3LYP/6-

311++G(d,p) level are considered. A plausible mechanism is described, in which isoprene is 

reduced, to the corresponding radical anion, in the presence of Li(s), acting then as a base 

deprotonating N-methylimidazole (NMI) and producing the 1,1-dimethylallyl radical. This 

radical is further reduced by the excess of lithium proceeding once more as a base. This final step 

produces stable final products that compensate the previous equilibriums, making favourable the 

whole process. 
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Introduction 

 

Compounds classified as heterocyclic probably constitute the largest and the most varied family 

of organic compounds, and often display important bioactivities. Actually, more than 67% of the 

compounds listed in the Comprehensive Medicinal Chemistry (CMC) database contain 

heterocyclic rings.1 Indeed, the remarkable ability of heterocyclic nuclei to serve both as 

biomimetics and reactive pharmacophores has largely contributed to their unique value as 

traditional key elements of numerous drugs.2 

Lithium metal in combination with a substoichiometric amount of an arene, as an electron 

carrier, has become a very versatile methodology in the preparation of organolithium 
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intermediates.3 A significant variety of functionalized organolithium reagents have been 

prepared by means of this protocol.4 Additionally the arene-promoted lithiation has been 

employed in the preparation of polylithiated synthons5 and in the generation of active 

nanoparticles by activation of other transition metals.6 In the last years, interesting mechanistic 

studies on the arene-catalyzed lithiation process have been taken into consideration, providing 

interesting information regarding this well-established methodology.7 

Recently, we also found that lithium metal, without any additive, is able to generate 2-lithio-

N-methylimidazole (2-Li-NMI) from N-methylimidazole (NMI, 1), although the use of isoprene 

during the lithiation process gave an improvement in the results.8 Thus, in the last five years, we 

have been working on the use of isoprene as a promoting lithiation agent for the generation of 

different lithio-imidazole derivatives. Isoprene-mediated lithiation of 1-alkyl- 1-4,8,9 1-phenyl- 

510 and 1-(diethoxymethyl)imidazole 611 has been reported (Figure 1). Thus, concerning the role 

of isoprene in the reaction, we have considered, from the beginning, that it can act as an electron 

carrier agent12 and/or as a hydrogen acceptor.13 Lithium metal, under certain reaction conditions, 

can produced the ring opening of the THF,7 employed as solvent, generating the corresponding 

alcoholate which could act as a base.14 However, the mixture Li(s)/isoprene did not produced any 

traces of 1-butanol after hydrolysis.15 In this work we consider some interesting studies towards 

understanding the isoprene-mediated lithiation of imidazole derivatives. 

 

 

Figure 1. Imidazole derivatives employed in the isoprene-mediated lithiation. 

 

 

Results and Discussion 

 

We considered the study of the generation of 2-Li-NMI from NMI 1 employing isoprene as an 

additive during the process. Firstly, in order to obtain a theoretical qualitative description of the 

experimental reactivity for the isoprene/NMI/Li(s) system, semiempirical calculations16 for NMI, 

s-cis- and s-trans-isoprene, both as neutral and anionic species, were performed. Soon it was 

evident that this protocol provided largely defective data when quantitative analyses of the 

energies involved were sought after. Density functional theory calculations17 of neutral and 

anionic structures, energies, and harmonic vibrational analysis of NMI(–1), and s-cis- and s-trans-

isoprene(–1), as well as related species, were carried out thereafter using the Becke-Lee-Yang-

Parr (B3LYP) exchange-correlation functional,18 in an attempt to attain larger accuracies in the 



Issue in Honor of Prof. William F. Bailey  ARKIVOC 2011 (v) 12-22 

 Page 14 ©ARKAT-USA, Inc. 

calculations and set the foundations for a theoretical description of the reactivity and the 

processes involved. The geometries of the isolated neutral and anionic species have been 

optimized both in the gas phase using the 6-311++G (d,p) basis set.19,20 

 

 

 

The substrate NMI was found to occur in only one conformation 1, being a stationary point 

as confirmed by vibrational analysis. Additionally, the corresponding methyl rotamer 1' appears 

as a saddle point some 1.17 kcal mol–1 above (ΔGº‡) conformers of type 1 and was not 

considered in the calculations (Equation 1). Regarding the anionic NMI 1-, the geometry of the 

minimum is well defined and resembles that of the neutral NMI with the corresponding bond 

lengthening within the ring (Equation 2). The relevant calculated energies and thermodynamic 

functions are described later. 

 

 

 

On the other hand, isoprene 7 appears as a mixture of s-trans, gauche and s-cis conformers 

in 95.3% (s-trans) and the rest (ca. 4.7%) corresponding to the gauche (or skew), the s-cis being 

too scarcely populated to be detected, according to vibrational spectroscopy and gas electron 

diffraction studies.21 According to our calculations for the equilibrium depicted in Equation 3, 

three conformers were also detected, corresponding to the s-trans-7 (180º dihedral),22 skew-7 

(38º dihedral)23 and s-cis-7 (0º dihedral),24 in relative amounts of 97.1:2.7:0.2 respectively, being 

in excellent agreement with the experimental observations. For the anionic species, the s-trans-

isoprene radical anion (s-trans-7 -)25 retains the antiperiplanar geometry of the s-trans-7 after the 

electron capture, and both the skew-7 and the s-cis-7 converge to the same synperiplanar anion 

(s-cis-7 -)26 after the electron capture. This latter conformer is the energetic minimum, with a 

meager difference of Gºisom = –1.1 kcal mol–1 for the equilibrium between s-trans-7 - and s-cis-

7 - (Kº = 6.4). In both cases, similar bond lengthening respect to the neutral molecule was 

observed. 
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Electron affinity (EA) calculations. In the context of the quantum mechanics, the experimental 

values of adiabatic electron affinity (AEA) of several small molecules have been well correlated 

by the use of the functional hybrid B3LYP with different basis sets, such as 6-31+G(d),27 which 

has been considered to provide satisfactory reliable results. The B3LYP/6-311++G(d,p) method, 

with vibrational energy corrections at 0 K (ZPE) has been recently employed in the calculation 

of adiabatic electron affinities of small-medium size molecules (up to 6 heavy atoms).28 For 

bigger molecules, up to 15-20 heavy atoms, theoretical calculations in the level of B3LYP/6-

31G(d) with ZPE corrections have been used in the calculation of AEA.29 In this work, AEAs 

have been calculated employing the above mentioned method with the incorporation of the ZPE 

corrections in all the cases.30 The calculated EA for NMI 131 is –0.39 eV, and for isoprene are      

–0.43 eV (for s-trans-isomer) and –0.29 eV (for skew-isomer).32 The small difference between 

these EAs, which is within the ±0.21 eV of average absolute deviation calculated for this method 

in comparison with experimental values,33 did not provide any significant evidence regarding the 

possible mechanism. 

Proton affinity calculations: isolated anions. In order to set out a plausible reaction 

mechanism, different calculations in gas phase were carried out to obtain the estimation of the 

proton affinities for some species involved in the process. The considered process, which is 

represented in Equation 4, shows the deprotonation of NMI by the isoprene radical-anion 7 -,26 

generating the corresponding radical 8 34 and the deprotonated NMI 1-.35 This preliminary result, 

employing isolated anions, showed that the deprotonation between the isoprene radical-anion 7 - 

and the NMI 1 is a highly unfavorable process, having an activation free energy of Gº(4) = 14.5 

kcal mol–1 (Kº = 2.510-11) for the s-trans and s-cis-7 – equilibrium mixture.  

 

 

 

Proton affinity calculations: stabilized anions with Li+. The previous unfavorable results, for 

Equation 4, can be rationalized taking into consideration that the calculations were performed for 

the isolated anions in gas phase without the stabilizing effect of the counterions. Thus, the 

observed energetic balance is principally due to the contribution of NMI (as the only neutral and 

stable species in the equilibrium). For that reason we considered the deprotonation reaction 

having the Li+ as counterion of the anionic species, as depicted in Equation 5. 
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From the data analysis, we observed that the cationic stabilization modified the equilibrium 

in the expected direction.36 The free energy balance is far more equilibrated, with a Gº(5) = 1.8 

kcal mol–1 (Kº = 4.610-2). The structure of the species Li+7·- and Li+1- are depicted in Figure 2. 

These results predicted a deprotonation equilibrium between the isoprene  radical-anion Li+7·- 

and the NMI 1, providing the reaction intermediates Li+1- and 1,1-dimethylallyl radical 8. The 

slightly endergonic balance of this first step, can be made up for a subsequent reaction, 

essentially irreversible, where radical 8· would react.  

 
(a) 

 

(b) 

 

(c) 

 

  

 

Figure 2. (a) Calculated structure for Li+7·-; (b) calculated structure for 2-lithio-N-

methylimidazole Li+1-; (c) calculated structure for dimethylallyllithium Li+8-. 

 

Reaction of dimethylallyl radical. The 1,1-dimethylallyl radical 8· is an unstable reaction 

intermediate and it can progress in various manners. Without dismissing the typical behavior of 

the radicals (such as coupling processes, dismutations, etc.), we considered at this point that 

radical 8· mainly would be transformed into the corresponding anion stabilized with Li+ (1,1-

dimethylallyllithium, Li+8-) by reaction with the excess of Li(s) in the reaction medium (Equation 

6). 

 

 

 

In Equation 6, it is involved a condensed phase, so a strict analysis of the process employing 

calculations is hampered. However, due to the fundamentally irreversible nature of the process, 

the thermodynamic parameters of the process were estimated employing some approximations 

and the experimental values of the reduction potentials, knowing full well that these 

approximations did not affect significantly the energetic balance of the global process, which is 

highly exergonic. For such purpose, 
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a) the values of the half-reactions of reduction depicted in Equations 6a and 6b were used, 

considering the calculated EA for the radical 8· in gas phase34 and the experimental redox 

potential for Li+
(THF)/Li(s), to obtain an approximated value of Gº(6); 

b) the energy of solvation of Li+ in THF and the energy of formation of the Li+8- ion pair were 

equated (Equation 6c). This implies that Gº(6c) = 0, what simplify the thermodynamic 

estimations for the overall process. These estimations, which are without doubt conservative 

(vide infra), avoid including solvation energies, what would make an exceedingly tedious 

calculation, as well as unnecessary. 

 

 

 

Strictly, the solvation energies for intermediates 8· and 8- were not estimated in the 

approximation done in 6c, as well as the energy of the ion pair Li+8-
(THF) formation from the 

corresponding THF solvated ions, being all of them exergonic contributions.37 The free energy 

variations in standard conditions for both half-reaction redox were calculated: Gº(6a) = –7.7 kcal 

mol–1,38 and Gº(6b) = 75.9 kcal mol–1.39 As expected, the standard free energy variation for 

Equation (6), Gº(6) = –83.6 kcal mol–1, showed an irreversible process ruled by the high redox 

potential of Li(s) in THF. Thus, the reduction of the radical 8· by metal lithium means adding an 

essentially irreversible step to the initial proposed step (slightly endergonic), what moves the 

different equilibriums to the formation of the corresponding products. 

Final step. Finally, the corresponding calculations for deprotonation of NMI by 1,1-

dimethylallyllithium Li+8- (Figure 2) were considered (Equation 7).40 The variation of free 

energy for this last step, Gº(7) = –12.0 kcal mol–1 (Kº = 6.8108), shows an exergonic favorable 

process. With this final step, the reagents were transformed to the stable final products, with the 

mediation of isoprene in the deprotonation step of NMI. 
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Conclusions 

 

The deprotonation step in Equation 4, which uses the radical anion of isoprene Li+7 - as base, is 

slightly endergonic. Thus, this step can be considered the rate determinant step, among the 

postulated steps in homogenous phase. The protonation of 7 - occurs, in principle, at the C(1) of 

isoprene. This carbon is the one supporting the highest charge density and has the highest 

contribution to the HOMO, both as a free anion as well as forming an ionic pair with Li+. The 

methylenic character of C(1) [as well as C(4)] in 7 - can facilitate the approximation to the most 

acidic proton of NMI (the one in position 2), and the corresponding radical 1,1-dimethylallyl 8· 

is formed. The following irreversible reduction of 8· with Li(s), depicted in Equation 4, moves the 

previous equilibriums to the products. Finally, the formed dimethylallyllithium Li+8 - in that 

reduction can act also as a base deprotonating another molecule of NMI, so the isoprene can 

participate in substoichiometric amount compare to NMI (Scheme 1).41 

 

 
 

Scheme 1. Proposed mechanism for the isoprene-mediated lithiation of N-methylimidazole 

employing lithium metal. 

 

Although, there is no contribution regarding calculations of specific kinetic studies yet, the 

information provided by those would be, in any case, an incomplete vision of the process. Many 

of the heterogeneous processes involved, such as the initial isoprene reduction with Li(s) giving 
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Li+8 - (which was deliberately omitted in the whole treatment) are not readily accessible from a 

theoretical point of view. Indeed, they are likely to be controlled by a mass-transport 

phenomenon, which is associated with complex, heterogeneous kinetics. To conclude, we have 

to say that different mechanisms, as well as alternative mechanisms running in parallel to this 

one cannot be ruled out, but they have not been further considered.  
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1999, 10, 354. 

33.   Takahata, Y.; Chong, D. P. J. Braz. Chem. Soc. 1999, 10, 354. 

34.   Calculated data [B3LYP/6-311++G(d,p)] for isolated radical 8·, in gas phase 

(thermodynamic parameters calculated at 298.15 K and 1 atm and all the values are zero 

point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): E0K =        

–195.8350; Hº = –195.8273; Sº = 80.926; Gº = –195.8658. 

35.   Calculated data [B3LYP/6-311++G(d,p)] for isolated anion NMI 1-, in gas phase 

(thermodynamic parameters calculated at 298.15 K and 1 atm and all the values are zero 

point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): E0K =        

–246.8852; Hº = –264.8789; Sº = 73.473; Gº = –264.9138. 

36.   Calculated data [B3LYP/6-311++G(d,p)] for isolated s-cis-Li+7·-, in gas phase 

(thermodynamic parameters calculated at 298.15 K and 1 atm and all the values are zero 

point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): E0K =        

–202.7814; Hº = –202.7733; Sº = 80.817; Gº = –202.8117. And for the radical anion of 

2-lithio-NMI Li+1 -, in gas phase (thermodynamic parameters calculated at 298.15 and 1 atm 

and all the values are zero point energy (ZPE) corrected: energies and enthalpies in a.u., 

entropies in e.u.): E0K = –272.4456; Hº = –272.4383; Sº = 73.473; Gº = –272.4756. 

37.   Calculated data [B3LYP/6-311++G(d,p)] for isolated anion 8-, in gas phase 

(thermodynamic parameters calculated at 298.15 K and 1 atm and all the values are zero 

point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): E0K =        

–195.8486; Hº = –195.8407; Sº = 78.616; Gº = –195.8781. And for the anionic pair Li+1 -, 

in gas phase (thermodynamic parameters calculated at 298.15 K and 1 atm and all the values 

are zero point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): 

E0K = –203.3896; Hº = –203.3813; Sº = 80.498; Gº = –203.4195. 

38.   The electron affinity of 8· is EA = +0.37 eV. 

39.   It was estimated by means of Nerst equation, after converting to the SHE the corresponding 

experimental redox potential of Li+/Li: Mortensen, J.; Heinze, J. Tetrahedron Lett. 1985, 26, 

414. 

40.   Calculated data [B3LYP/6-311++G(d,p)] for isolated 2-methyl-2-butene 9, in gas phase 

(thermodynamic parameters calculated at 298.15 K and 1 atm and all the values are zero 

point energy (ZPE) corrected: energies and enthalpies in a.u., entropies in e.u.): E0K = –

196.4658; Hº = –196.4579; Sº = 79.501; Gº = –196.4957. 

41.   After performing the reaction employing the standard conditions (excess of lithium, 20 

mol% of isoprene in THF at 25 ºC), the presence of 2-methyl-2-butene was detected in the 

reaction medium by GC-MS (EI at 70 eV on an Agilent 5973 spectrometer). 


