Supplementary materials

An anionic chromogenic chemosensor based on 4–(4–nitrobenzylideneamine)–2,6–diphenylphenol for selective detection of cyanide in acetonitrile–water mixtures

Vanderléia G. Marini,a Eliane Torri,a Lizandra M. Zimmermann,a and Vanderlei G. Machadoa,b*

aDepartamento de Química, Universidade Regional de Blumenau, FURB, CP 1507, Blumenau, SC, 89010–971, Brazil
bDepartamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC, 88040–900, Brazil
E–mail: vander@qmc.ufsc.br

Table of Contents

1. Figure S1. UV–vis spectra and titration curve for the behavior of 3a in acetonitrile with 1.0% of water and the addition of increasing amounts of $F^–$ S2
2. Figure S2. UV–vis spectra and titration curve for the behavior of 3a in acetonitrile with the addition of increasing amounts of $CN^–$ S3
3. Figure S3. IR spectrum of compound 3a S4
4. Figure S4. 1H NMR spectrum of compound 3a (400 MHz, CDCl$_3$) S5
5. Figure S5. 13C NMR spectrum of compound 3a (100.6 MHz, CDCl$_3$) S6
6. Figure S6. APT spectrum of compound 3a (100.6 MHz, CDCl$_3$) S7
Figure S1. (A) UV–vis spectra at 25°C for the behavior of 3a (5.9×10⁻⁵ mol dm⁻³) in acetonitrile with 1.0% of water and the addition of increasing amounts of F⁻. (B) Titration curve for compound 3a with F⁻. The final concentration of F⁻ was 5.2×10⁻⁴ mol dm⁻³ and the absorbance values were collected at 565 nm.
Figure S2. (A) UV–vis spectra at 25°C for the behavior of 3a (5.9×10^{-5} mol dm$^{-3}$) in acetonitrile with the addition of increasing amounts of CN$^-$. (B) Titration curve for compound 3a with CN$^-$. The final concentration of CN$^-$ was 1.6×10^{-4} mol dm$^{-3}$ and the absorbance values were collected at 592 nm.
Figure S3. IR spectrum of compound 3a.
Figure S4. 1H NMR spectrum of compound 3a (400 MHz, CDCl$_3$).
Figure S5. 13C NMR spectrum of compound 3a (100.6 MHz, CDCl$_3$).
Figure S6. APT spectrum of compound 3a (100.6 MHz, CDCl₃).