Synthesis and reactions of 1-amino-1,5,6,10b-tetrahydroimidazo-[2,1-a]isoquinolin-2(3H)-ones

Joana Solovjova,a Vytas Martynaitis,a Wolfgang Holzer,b Sven Mangelinckx,c† Norbert De Kimpe,c and Algirdas Šačkus*a

aInstitute of Synthetic Chemistry, Kaunas University of Technology, LT-50270 Kaunas, Lithuania
bDepartment of Drug and Natural Product Synthesis, University of Vienna, Pharmaziezentrum, A-1090 Vienna, Austria
cDepartment of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
E-mail: algirdas.sackus@ktu.lt

Dedicated to Professor Henk Van der Plas on the occasion of his 80th anniversary

Abstract
1-Amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones, as previously unknown ring-annelated isoquinolines with a 3-aminoimidazolidin-4-one scaffold, were selectively prepared upon reacting 2-carbamoylmethyl- or 2-ethoxycarbonylmethyl-3,4-dihydroisoquinolinium salts with hydrazine hydrate. Acylation of the primary amino group with benzoyl chlorides, followed by reductive ring cleavage of the annelated 4-imidazolidinone ring and final cyclodehydration of the N,N'-diacylhydrazines resulted in the synthesis of 1-methyl-2-(5-aryl-[1,3,4]oxadiazol-2-ylmethyl)-1,2,3,4-tetrahydroisoquinolines which are of interest due to their potential use as bioisosteres of biologically active N-aryl-2-(1-methyl-3,4-dihydro-1H-isoquinolin-2-yl)acetamides.

Keywords: Ring annelation, isoquinolines, 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones, hydrazides, 1,3,4-oxadiazoles

Introduction

Due to the natural occurrence and interesting chemical or biological properties of ring-annelated isoquinolines,1 as exemplified by the tetrahydroisoquinoline antitumor antibiotics,2 and lamellarin alkaloids,3 a broad interest in the synthesis of this class of azaheterocyclic compounds

† Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen)
exists. The tricyclic 1,5,6,10b-tetrahydroimidazo[2,1-\(a\)]isoquinolin-2(3H)-ones, which can be prepared via annelation of the imidazolidinone scaffold to 3,4-dihydroisoquinolines, allows further access to heterocyclic compounds with biological interest such as antidepressant activity. Recently, we demonstrated that the hydrazides derived from 1-carbamoylmethyl-3\(H\)-indolinium salts selectively cyclize to 1-amino-1,2,3,9a-tetrahydroimidazo[1,2-\(a\)]indol-2(9\(H\))-ones and that the corresponding six-membered ring systems, that is, 1,2,10,10a-tetrahydro[1,2,4]triazino[4,3-\(a\)]indol-3(4\(H\))-ones, by entering of the terminal NH\(_2\) group into reaction, are not formed. In an effort to broaden the scope of this regioselective ring-annelation reaction of hydrazides and to further expand the chemical space of ring-fused isoquinoline derivatives, the objective of this work is to investigate the synthesis of the unknown 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-\(a\)]isoquinolin-2(3H)-ones and to study the transformation of the novel cyclic products to 1,3,4-oxadiazoles. Considerable interest in the synthesis of substituted 1,3,4-oxadiazoles exists due to their numerous pharmacological properties, including analgesic, antiinflammatory, anticonvulsive, diuretic, antiemetic, hypnotic and sedative activities. More specific, 2-amino-1,3,4-oxadiazoles act as muscle relaxants and possess antimitotic activity.

Results and Discussion

As previously reported, the annelation of the imidazolidine ring to the isoquinoline nucleus starts by reaction of 3,4-dihydroisoquinoline or the corresponding 6,7-dimethoxy derivative with chloroacetamide which affords 2-carbamoylmethyl-3,4-dihydroisoquinolinium chloride 1. It was shown previously that the reaction of 2-carbamoylmethyl-3,4-dihydroisoquinolinium chloride 1 with aqueous potassium hydroxide afforded 10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-\(a\)]isoquinolin-2(3H)-one. During the present investigations, it was found that heating 2-carbamoylmethyl-3,4-dihydroisoquinolinium chlorides 1 in the presence of hydrazine hydrate regioselectively lead to the formation of five-membered heterocycles, i.e. 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-\(a\)]isoquinolin-2(3H)-ones 3 in good yields, with hydrazines as potential intermediates and without any observation of the corresponding six-membered compounds 4 (Scheme 1). Similarly, 2-ethoxycarbonylmethyl-3,4-dihydroisoquinolinium bromide 6, prepared by treatment of 1-methyl-3,4-dihydroisoquinoline with ethyl 2-bromoacetate, efficiently reacted with hydrazine hydrate under mild reaction conditions to afford 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-\(a\)]isoquinolin-2(3H)-ones 3 (Scheme 2). The main evidence for the assignment of structures 3a,b containing the 1-amino-4-imidazolidinone ring, followed from the \(^{15}\)N NMR data. The \(^{15}\)N NMR spectrum showed three different N-atoms with chemical shifts at –341.7, –327.0 and –227.0 ppm (for compound 3a) and –342.1, –327.2 and –226.6 (for compound 3b). In \(^{15}\)N DEPT experiments without \(^1\)H-decoupling the central \(^{15}\)N NMR resonance (~ 327 ppm) showed a triplet multiplicity (\(^1\)J = 68.9 Hz), thus unequivocally indicating the presence of an NH\(_2\) moiety. This definitely ruled out the corresponding six-membered structure 4, for which two NH substructures and a tertiary nitrogen.
atom would be expected. Moreover, the 15N,1H-HMBC spectrum of compound 3a exhibited a clear correlation between the nitrogen atom with the largest chemical shift (N-1, $\delta = -227.0$ ppm) and the methyl protons of 10b-CH$_3$ ($\delta = 1.70$ ppm), what seems improbable with structure 4 where the involved nuclei would be separated by four bonds and thus no correlation is expected. In addition, the 1H NMR spectra of compounds 3 contained only one sharp signal (at 3.97 ppm for 3a and at 3.98 ppm for 3b) with a relative intensity of two protons attributed to the NH$_2$-function. In contrast, for the corresponding six-membered structure 4, two different NH-signals each with a relative intensity of one proton would be expected.

Scheme 1

Scheme 2

The assignments presented in Figures 1(a) and 2(a) were based on the combined application of standard NMR techniques such as NOE-difference (Figure 1(b) and 2(b)), NOESY, APT, DEPT, HSQC, HMBC and long-range INEPT spectra with selective excitation.13

As in the case of 1-amino-1,2,3,9a-tetrahydroimidazo[1,2-a]indol-2(9H)-ones,7 no other ring-chain tautomeric forms of 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones (3a,b) were visible by 1H and 13C NMR in CDCl$_3$ or DMSO-d_6. Due to higher substitution and thereby higher conjugation, the tricyclic compound 3 is expected to be more favored than the
corresponding open-chain hydrazide. Nevertheless, by the action of protic acids on 1-amo-
1,5,6,10b-tetrahydroimidazo[2,1-\textit{a}]isoquinolin-2(3\textit{H})-ones 3, a heterolytic cleavage of the N1-
C10b bond in the imidazolidine ring took place with formation of isoquinolinium salts 5.
Formation of the latter was proven by NMR spectra of heterocycles 3 in deuterated
trifluoroacetic acid. The appearance of a signal at 184.6 ppm (starting from compound 3a) and
181.6 ppm (starting from compound 3b) in 13C NMR was indicative of a N$^+$=C carbon and
cleavage of the imidazolidine ring.

Further proof for the presence of the primary amino group in the cyclized compounds was
obtained by reacting 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-\textit{a}]isoquinolin-2(3\textit{H})-ones 3 with
benzoyl chlorides and benzaldehydes. Acylation of 3-amino-4-imidazolidinones 3 with benzoyl
chlorides afforded \textit{N,N'}-diacylhydrazines 7a-f in 67-96\% yield. Further reduction of the latter
compounds with sodium borohydride upon heating in tetrahydrofuran resulted in ring cleavage
of the annelated 4-imidazolidinone ring,14 to give \textit{N,N'}-diacylhydrazines 8a-f (Scheme 3). The
latter easily underwent cyclodehydration to 1-methyl-2-(5-aryl-[1,3,4]oxadiazol-2-ylmethyl)-

Figure 1. (a) 1H (italics), 13C and 15N NMR (bold) chemical shifts [ppm; ref. TMS (1H and 13C)
and CH$_3$NO$_2$ (15N)] for 3a in CDCl$_3$. (b) Relevant NOE correlations.

Figure 2. (a) 1H (italics), 13C and 15N NMR (bold) chemical shifts [ppm; ref. TMS (1H and 13C)
and CH$_3$NO$_2$ (15N)] for 3b in CDCl$_3$. (b) Relevant NOE correlations.
1,2,3,4-tetrahydroisoquinolines 9a-f under modified Appel conditions. The 2-(5-aryl-[1,3,4]oxadiazol-2-ylmethyl)-1,2,3,4-tetrahydroisoquinoline moiety was present as a structural feature in compounds acting as urotensin-II receptor antagonists. 1,3,4-Oxadiazoles are used as bioisosteres of amide functionalities in bioactive compounds, and, therefore, congeners 9 have potential for bioisosteric replacement of N-aryl-2-(1-methyl-3,4-dihydro-1H-isoquinolin-2-yl)acetamides which act as antagonists of SNS sodium channels, inhibitors of voltage-gated sodium channels, and antiprotozoal agents.20

The exocyclic amino group in compounds 3 reacted with aromatic aldehydes by heating in ethanol in the presence of catalytic amounts of piperidine and afforded the corresponding hydrazones 10a-c, albeit in low yields. Compounds 10 could also be forced to reductive ring opening by reaction with sodium borohydride in THF to give acylated hydrazones 11 (Scheme 4).21

Scheme 3
Scheme 4

Conclusions

2-Carbamoylmethyl- or 2-ethoxycarbonylmethyl-3,4-dihydroisoquinolinium salts regioselectively cyclised to 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones upon treatment with hydrazine hydrate. The latter heterocyclic compounds occurred as single tautomeric forms and were the first ring-annelated isoquinolines with a 3-aminoimidazolidin-4-one scaffold. The primary amino group was used as a handle via aroylation, reductive ring cleavage and cyclodehydration for further transformation to new 1,3,4-oxadiazoles which have potential as bioisosteres of biologically active N-aryl-2-(3,4-dihydro-1H-isoquinolin-2-yl)acetamides.

Experimental Section

General Procedures. Melting points were determined in open capillary tubes with a Büchi B-540 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer Spectrum One spectrometer using potassium bromide pellets. 1H NMR spectra were recorded at 300 MHz on a Varian Unity Inova spectrometer and at 500 MHz on a Bruker Avance 500 spectrometer; 13C NMR spectra were registered at 75 and 125 MHz, respectively. Chemical shifts, expressed in ppm, were relative to tetramethylsilane (TMS). 15N NMR spectra (50.69 MHz) were obtained on a Bruker Avance 500 spectrometer using a ‘directly’ detecting broadband observe probe and were referenced against neat, external nitromethane (coaxial capillary). Mass spectra were recorded on a Agilent 110 (series MS with VL) instrument. Elemental analyses were measured with a CE-440 elemental analyzer, Model 440 CHN/O/S. For thin layer chromatographic (TLC) analyses, Merck precoated TLC plates (silica gel 60 F254) were used.
General procedures for the synthesis of 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones 3

Procedure 1. A mixture of 1-methyl-2-carbamoylmethyl-3,4-dihydroisoquinolinium chloride 1 (10 mmol) and hydrazine hydrate (55%, 10 mL) was heated at 70 °C for 5 h. The reaction mixture was cooled to room temperature, 10 mL of water was added and extraction was performed with dichloromethane (5 x 20 mL). The combined extracts were washed with water (25 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel with hexane/ethyl acetate/methanol 2:4:1 (for 3a) or dichloromethane/methanol 100:5 (for 3b) as eluent to yield 3.

Procedure 2. A mixture of 2-carbamoylmethyl-3,4-dihydroisoquinolinium bromide 6 (10 mmol) and hydrazine hydrate (55%, 10 mL) was stirred at room temperature for 1 h. Water (10 mL) was added and extraction was performed with dichloromethane (5 x 20 mL). The combined extracts were washed with water (25 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel with hexane/ethyl acetate/methanol 2:4:1 (for 3a) or dichloromethane/methanol 100:5 (for 3b) as eluent to yield 3.

1-Amino-10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one (3a). Yield 82% (procedure 1), 88% (procedure 2). Mp 134-135 °C. 1H NMR (500 MHz, CDCl 3): δ 1.70 (3H, s, CH3), 2.63 (1H, m, 2J = 16.6 Hz, 3J5A = 4.3 Hz, 3J5B = 4.5 Hz, 6-CHB), 3.01 (1H, m, 2J = 16.6 Hz, 3J5A = 9.6 Hz, 3J5B = 4.6 Hz, 6-CHA), 3.09 (1H, m, 2J = 13.4 Hz, 3J6A = 4.6 Hz, 3J6B = 4.5 Hz, 5-CHB), 3.21 (1H, m, 2J = 13.4 Hz, 3J6A = 9.6 Hz, 3J6B = 4.3 Hz, 5-CHA), 3.58 (1H, A-part of an AB-system, 2J = 15.0 Hz, 3-CHA), 3.46 (1H, B-part of an AB-system, 2J = 15.0 Hz, 3-CHB), 3.97 (2H, s, NH2), 7.10 (1H, m, 7-CH), 7.21 (2H, m, 8-CH, 9-CH), 7.85 (1H, m, 10-CH). 13C NMR (125 MHz, CDCl 3): δ 24.1 (6-CH2), 26.4 (10b-CH3), 44.5 (5-CH2), 51.0 (3-CH2), 78.3 (10b-C), 126.4 (9-C), 127.4 (10-C), 127.5 (8-C), 128.8 (7-C), 133.4 (6a-C), 136.8 (10a-C), 169.7 (2-C). 15N NMR (50 MHz, CDCl 3): –341.7 (4-N), –327.0 (t, J = 68.9 Hz, NH2), –227.0 (1-N). IR (KBr, cm -1): ν N-H = 3300; ν N-H = 3173; ν C=O = 1716. MS m/z (%): 218 (M + H +, 100). Anal. Calcd for C12H15N3O: C 66.34; H 6.96; N 19.34. Found: C 65.99; H 6.36; N 19.54.

1-Amino-8,9-dimethoxy-10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one (3b). Yield 90% (procedure 1), 71% (procedure 2). Mp 123-124 °C. 1H NMR (500 MHz, CDCl 3): δ 1.66 (3H, s, CH3), 2.51 (1H, m, 2J = 16.4 Hz, 3J5A = 4.3 Hz, 3J5B = 4.5 Hz, 6-CHB), 2.92 (1H, m, 2J = 16.4 Hz, 3J5A = 9.6 Hz, 3J5B = 4.6 Hz, 6-CHA), 3.06 (1H, m, 2J = 13.4 Hz, 3J6A = 4.6 Hz, 3J6B = 4.5 Hz, 5-CHB), 3.18 (1H, m, 2J = 13.4 Hz, 3J6A = 9.6 Hz, 3J6B = 4.3 Hz, 5-CHA), 3.53 (1H, A-part of an AB-system, 2J = 15.0 Hz, 3-CHA), 3.42 (1H, B-part of an AB-system, 2J = 15.0 Hz, 3-CHB), 3.83 (3H, s, 8-OCH3), 3.85 (3H, s, 9-OCH3), 3.98 (2H, s, NH2), 6.53 (1H, m, 7-CH), 7.38 (1H, m, 10-CH). 13C NMR (125 MHz, CDCl 3): δ 23.4 (6-CH2), 26.4 (10b-CH3), 44.3 (5-CH2), 50.8 (3-CH2), 55.7 (8-OCH3), 55.9 (9-OCH3), 78.1 (10b-C), 110.0 (10-C), 110.7 (7-C), 125.6 (6a-C), 128.9 (10a-C), 147.3 (9-C), 148.3 (8-C), 169.7 (2-C). 15N NMR (50 MHz, CDCl 3): –342.1 (4-N), –327.2 (t, J = 68.9 Hz, NH2), –226.6 (1-N). IR (KBr, cm -1): ν N-H = 3317; ν N-H = 3202; νC=O = 1712. MS m/z (%): 218 (M + H +, 100). Anal. Calcd for C14H19N3O3: C 60.63; H 6.91; N 15.15. Found: C 60.86; H 6.76; N 14.80.
General procedure for the acylation of 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones 3 with benzoyl chlorides

To a stirred solution of 3 (10 mmol) in dry acetonitrile (7.5 mL), a solution of benzoyl chloride (11 mmol) in dry acetonitrile (10 mL) was added dropwise at room temperature and the mixture was stirred for 1 hour. The formed crystals were separated by filtration and dissolved in water (25 mL). Solid NaHCO₃ was added in portions to basify the mixture to pH 8-9. The mixture was extracted with dichloromethane (3 × 25 mL), the combined extracts were washed with water (25 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo and the residue was purified by flash chromatography with acetone/hexane 1:1 (for 7a-c) or dichloromethane/methanol 9:1 (for 7d-f) to give the corresponding N,N’-diacylhydrazines 7.

N-(10b-Methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7a). Yield 85%. Mp 82 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.69 (3H, s, 10b-CH₃), 2.63-3.08 (5H, m, 2×CH₂ and CH(H)), 3.59 (1H, d, J = 15.8 Hz, CH(H)), 7.09-7.77 (9H, m, aromatic protons), 9.21 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 24.8 (CH₂), 26.2 (10b-CH₃), 45.4 (CH₂), 51.4 (CH₂), 80.3 (C), 126.5, 127.1, 127.5 (2×CH), 127.8, 128.4 (2×CH), 128.8, 131.1, 132.1, 133.6 (Ar-C), 166.1 (C=O), 170.3 (C=O). IR (KBr, cm⁻¹): νN-H = 3250; νC=O = 1723; νC=O = 1686. MS m/z (%): 322 (M + H⁺, 100). Anal. Calcd for C₁₉H₁₉N₃O₂: C 71.01; H 5.96; N 13.08. Found: C 71.18; H 5.98; N 12.71.

3-Chloro-N-(10b-methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7b). Yield 67%. Mp 162 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.69 (3H, s, 10b-CH₃), 2.64-3.09 (5H, m, 2×CH₂ and CH(H)), 3.60 (1H, d, J = 15.8 Hz, CH(H)), 7.10-7.69 (8H, m, aromatic protons), 9.47 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 24.6 (CH₂), 26.1 (10b-CH₃), 45.3 (CH₂), 51.3 (CH₂), 80.4 (C), 125.1, 126.6, 127.1, 127.9, 128.1, 128.9, 129.7, 132.2, 132.4, 133.5, 134.6 (Ar-C), 164.4 (C=O), 170.3 (C=O). IR (KBr, cm⁻¹): νN-H = 3193; νC=O = 1721; νC=O = 1691. MS m/z (%): 356/58 (M + H⁺, 100). Anal. Calcd for C₁₉H₁₈ClN₃O₂: C 64.13; H 5.10; N 11.81. Found: C 64.50; H 5.07; N 11.43.

4-Fluoro-N-(10b-methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7c). Yield 96%. Mp 94 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.67 (3H, s, 10b-CH₃), 2.59-3.12 (5H, m, 2×CH₂ and CH(H)), 3.55 (1H, d, J = 15.8 Hz, CH(H)), 6.89 – 7.80 (8H, m, aromatic protons), 9.47 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 24.5 (CH₂), 26.1 (10b-CH₃), 44.9 (CH₂), 51.1 (CH₂), 80.3 (C), 115.4 (d, J = 21.9 Hz, Ph 3,5-C), 126.6, 126.9 (d, J = 2.5 Hz, 1-C), 127.2, 127.9, 128.8, 129.9 (d, J = 9.1 Hz, Ph 2,6-C), 133.5, 164.9 (d, J = 252.9 Hz, Ph 4-C), 164.7 (C=O), 170.6 (C=O). IR (KBr, cm⁻¹): νN-H = 3250; νC=O = 1722; νC=O = 1686. MS m/z (%): 340 (M + H⁺, 100). Anal. Calcd for C₁₉H₁₈F₂N₃O₂: C 64.13; H 5.10; N 11.81. Found: C 67.63; H 5.57; N 12.15.

N-(8,9-Dimethoxy-10b-methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7d). Yield 74%. Mp 93 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.66 (3H, s, 10b-CH₃), 2.49-3.09 (5H, m, 2×CH₂ and CH(H)), 3.53 (1H, d, J = 15.5 Hz, CH(H)), 3.77 (3H, s, CH₃), 3.86 (3H, s, CH₃), 6.54 (1H, s, C₇-H), 6.85 (1H, s, C₁₀-H), 7.18-7.24 (2H, m, C₃-H and
C₅-H), 7.32-7.37 (1H, m, C₄-H), 7.74-7.76 (2H, m, C₂-H and C₆-H), 9.63 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 24.0 (CH₂), 26.3 (10b-CH₃), 45.2 (CH₂), 50.9 (CH₂), 55.9 (CH₃), 56.1 (CH₃), 80.4 (C), 109.9, 110.9, 125.7, 127.7 (2×CH), 128.7 (2×CH), 130.9, 132.4, 147.7, 148.7 (Ar-C), 166.3 (C=O), 170.9 (C=O). IR (KBr, cm⁻¹): vₙ-NH = 3245; vₙ-C=O = 1720; vₙ-C=O = 1684. MS m/z (%): 382 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₃N₃O₄: C 66.13; H 6.08; N 11.02. Found: C 66.49; H 6.46; N 11.04.

3-Chloro-N-(8,9-dimethoxy-10b-methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7e). Yield 95%. Mp 105 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.64 (3H, s, 10b-CH₃), 2.48-3.13 (5H, m, 2×CH₂ and C₅(H)), 3.53 (1H, d, J = 15.6 Hz, CH(₃)), 3.79 (3H, s, CH₃), 3.86 (3H, s, CH₃), 6.53 (1H, s, C₇-H), 6.81 (1H, s, C₁₀-H), 7.15-7.21 (1H, m, C₅'-H), 7.34-7.38 (1H, m, C₄-H), 7.67-7.69 (2H, m, C₂-H, C₆-H), 9.87 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 23.5 (CH₂), 25.9 (10b-CH₃), 44.7 (CH₂), 50.4 (CH₂), 55.6 (CH₃), 55.8 (CH₃), 80.2 (C), 109.6, 110.7, 124.8, 125.4, 128.2, 129.6, 132.1, 132.2, 134.7, 147.4, 148.5 (Ar-C), 164.4 (C=O), 170.8 (C=O). IR (KBr, cm⁻¹): vₙ-NH = 3194; vₙ-C=O = 1721; vₙ-C=O = 1686. MS m/z (%): 416/18 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₂ClN₃O₄: C 60.65; H 5.33; N 10.10. Found: C 60.32; H 5.88; N 9.86.

4-Fluoro-N-(8,9-dimethoxy-10b-methyl-2-oxo-2,3,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-1(5H)-yl)benzamide (7f). 76% yield. Mp 111 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.64 (3H, s, 10b-CH₃), 2.47-3.14 (5H, m, 2×CH₂ and C₅(H)), 3.51 (1H, d, J = 15.6 Hz, CH(₃)), 3.79 (3H, s, CH₃), 3.86 (3H, s, CH₃), 6.53 (1H, s, C₇-H), 6.81 (1H, s, C₁₀-H), 6.86-6.91 (2H, m, C₃'-H and C₅'-H), 7.77-7.82 (2H, m, C₂-H, C₆-H), 9.81 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): δ 23.4 (CH₂), 25.8 (10b-CH₃), 44.5 (CH₂), 50.3 (CH₂), 55.6 (CH₃), 55.8 (CH₃), 80.1 (C), 109.6, 110.6, 115.4 (d, J = 21.9 Hz, 2×CH), 125.3, 126.7 (d, J = 2.4 Hz, Ph 1-C), 129.9 (br d, J = 8.9 Hz, Ph 2,6-C), 147.4, 148.4, 164.9 (d, J = 253.2 Hz, Ph 4-C) (Ar-C), 164.7 (C=O), 170.9 (C=O). IR (KBr, cm⁻¹): vₙ-NH = 3194; vₙ-C=O = 1721; vₙ-C=O = 1686. MS m/z (%): 400 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₂FN₃O₄: C 63.15; H 5.55; N 10.52. Found: C 63.41; H 5.83; N 10.75.

General procedure for the reduction of N-substituted 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones (7a-f, 10a,b) with sodium borohydride

To a solution of N-substituted 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one 7 or 10 (1.35 mmol) in 7 mL of dry tetrahydrofuran, sodium borohydride (0.153 g, 4.05 mmol) was added. The mixture was heated at 70 °C for one hour, then cooled to room temperature, poured into water (30 mL) and extracted with dichloromethane (3 × 20 mL). The combined extracts were washed with water (20 mL) and dried over sodium sulfate. After filtration, the solvent was removed under reduced pressure and the residue purified by flash chromatography on silica gel with acetone/hexane 1:1 (for 8a-f) or acetone/hexane 1:3 (for 11a,b) to obtain the various hydrazines 8 and 11.

N’-[2-(1-Methyl-3,4-dihydro-1(1H)-isoquinolinonyl)acetyl]benzohydrazide (8a). Yield 65%. Mp 115 °C. ¹H NMR (300 MHz, DMSO-d₆): δ 1.33 (3H, d, J = 6.6 Hz, CH₃), 2.71-3.10 (4H, m, 2×CH₂), 3.27 (1H, d, J = 15.6 Hz, CH(CH₃)), 3.37 (1H, d, J = 15.6 Hz, CH(CH)), 3.95 (1H, q, J =
6.6 Hz, CH), 6.10-7.91 (9H, m, aromatic protons), 9.76 (1H, s, NH), 10.39 (1H, s, NH). 13C NMR (75 MHz, DMSO-d_6): δ 19.5 (CH$_3$), 27.3 (CH$_2$), 44.8 (CH$_2$), 56.3 (CH), 56.5 (CH$_2$), 125.6, 125.8, 127.2, 127.5 (2×CH), 128.5 (2×CH), 128.6, 131.8, 132.5, 133.9, 139.8 (Ar-C), 165.3 (C=O), 169.6 (C=O). IR (KBr, cm$^{-1}$): ν$_{N-H}$ = 3172; ν$_{C=O}$ = 1698; ν$_{C=O}$ = 1645. MS m/z (%): 324 (M + H$^+$, 100). Anal. Calcd for C$_{19}$H$_{21}$N$_3$O$_2$: C 70.57; H 6.55; N 12.99. Found: C 70.19; H 6.67; N 12.77.

3-Chloro-N$'$-[1-methyl-3,4-dihydro-2(1H)-isoquinoliny]acetyl]benzohydrazide (8b). Yield 85%. Mp 149 °C. 1H NMR (300 MHz, DMSO-d_6): δ 1.32 (3H, d, J = 6.6 Hz, CH$_3$), 2.69-3.09 (4H, m, 2×CH$_2$), 3.28 (1H, d, J = 15.6 Hz, CH(H)), 3.37 (1H, d, J = 15.6 Hz, CH(H)), 3.94 (1H, q, J = 6.6 Hz, CH), 7.08-7.93 (8H, m, aromatic protons), 9.82 (1H, s, NH), 10.54 (1H, s, NH). 13C NMR (75 MHz, DMSO-d_6): δ 19.5 (CH$_3$), 27.3 (CH$_2$), 44.8 (CH$_2$), 56.3 (CH), 56.6 (CH$_2$), 125.6, 125.8, 126.2, 127.1, 127.3, 128.6, 130.6, 131.7, 133.3, 133.9, 134.5, 139.8 (Ar-C), 163.9 (C=O), 169.6 (C=O). IR (KBr, cm$^{-1}$): ν$_{N-H}$ = 3213; ν$_{C=O}$ = 1700; ν$_{C=O}$ = 1646. MS m/z (%): 358/60 (M + H$^+$, 100). Anal. Calcd for C$_{19}$H$_{20}$ClN$_3$O$_2$: C 63.77; H 5.63; N 11.74. Found: C 64.02; H 5.65; N 11.62.

4-Fluoro-N$'$-[2-(1-methyl-3,4-dihydro-1H-isoquinolin-2-yl)acetyl]benzohydrazide (8c). Yield 82%. Mp 106 °C. 1H NMR (300 MHz, DMSO-d_6): δ 1.32 (3H, d, J = 6.6 Hz, CH$_3$), 2.69-3.10 (4H, m, 2×CH$_2$), 3.27 (1H, d, J = 15.6 Hz, CH(H)), 3.37 (1H, d, J = 15.6 Hz, CH(H)), 3.94 (1H, q, J = 6.6 Hz, CH), 7.07-7.99 (8H, m, aromatic protons), 9.78 (1H, s, NH), 10.44 (1H, s, NH). 13C NMR (75 MHz, DMSO-d_6): δ 19.5 (CH$_3$), 27.3 (CH$_2$), 44.8 (CH$_2$), 56.3 (CH), 56.6 (CH$_2$), 115.5 (d, J = 21.9 Hz, Ph 3,5-C), 125.6, 125.8, 127.1, 127.3, 128.6, 130.6, 131.7, 133.3, 133.9, 134.5, 139.8 (Ar-C), 164.2 (d, J = 249.3 Hz, Ph 4-C), 164.3 (C=O), 169.6 (C=O). IR (KBr, cm$^{-1}$): ν$_{N-H}$ = 3252; ν$_{C=O}$ = 1701; ν$_{C=O}$ = 1650. MS m/z (%): 342 (M + H$^+$, 100). Anal. Calcd for C$_{19}$H$_{20}$FN$_3$O$_2$: C 66.85; H 5.91; N 12.31. Found: C 66.48; H 6.16; N 12.30.

N$'$-[2-(6,7-Dimethoxy-1-methyl-3,4-dihydro-1H-isoquinolin-2-yl)acetyl]benzohydrazide (8d). Yield 61%. Mp 69 °C. 1H NMR (300 MHz, CDCl$_3$): δ 1.47 (3H, d, J = 6.6 Hz, CH$_3$), 2.65-3.25 (4H, m, 2×CH$_2$), 3.37 (2H, s, CH$_2$), 3.83 (3H, s, CH$_3$), 3.84 (3H, s, CH$_3$), 3.81-3.89 (1H, m, CH), 6.53 (1H, s, C$_5$-H), 6.58 (1H, s, C$_8$-H), 7.35-7.40 (2H, m, C$_3'$-H and C$_5'$-H), 7.46-7.51 (1H, m, C$_4'$-H), 7.79-7.82 (2H, m, C$_2'$-H and C$_6'$-H), 9.55 (2H, br s, 2×NH). 13C NMR (75 MHz, CDCl$_3$): δ 20.5 (CH$_3$), 26.7 (CH$_2$), 45.2 (CH$_2$), 55.8 (CH$_3$), 55.9 (CH$_3$), 57.0 (CH), 57.2 (CH$_2$), 109.9, 111.3, 125.2, 127.2 (2×CH), 128.5 (2×CH), 128.5 (2×CH), 130.6, 131.3, 132.2, 147.3, 147.5 (Ar-C), 164.7 (C=O), 168.8 (C=O). IR (KBr, cm$^{-1}$): ν$_{N-H}$ = 3279; ν$_{C=O}$ = 1701; ν$_{C=O}$ = 1650. MS m/z (%): 384 (M + H$^+$), 100. Anal. Calcd for C$_{21}$H$_{25}$N$_3$O$_4$: C 65.78; H 6.57; N 10.96. Found: C 65.70; H 6.94; N 11.33.

3-Chloro-N$'$-[2-(6,7-dimethoxy-1-methyl-3,4-dihydro-1H-isoquinolin-2-yl)acetyl]benzohydrazide (8e). Yield 69%. 1H NMR (300 MHz, CDCl$_3$): δ 1.42 (3H, d, J = 6.5 Hz, CH$_3$), 2.65-3.24 (4H, m, 2×CH$_2$), 3.38 (2H, s, CH$_2$), 3.84 (3H, s, CH$_3$), 3.84 (3H, s, CH$_3$), 3.81-3.89 (1H, m, CH), 6.53 (1H, s, C$_5$-H), 6.58 (1H, s, C$_8$-H), 7.27-7.78 (4H, m, aromatic protons), 10.09 (2H, br s, 2×NH). 13C NMR (75 MHz, CDCl$_3$): δ 20.5 (CH$_3$), 26.7 (CH$_2$), 45.1 (CH$_2$), 55.8 (CH$_3$), 55.9 (CH$_3$), 56.9 (CH), 57.2 (CH$_2$), 109.9, 111.3, 125.1, 125.3, 127.7, 129.8, 130.5, 132.1, 132.9,
134.6, 147.3, 147.5 (Ar-C), 163.4 (C=O), 169.3 (C=O). IR (KBr, cm⁻¹): ν\textsubscript{N-H} = 3279; ν\textsubscript{C=O} = 1701; ν\textsubscript{C=O} = 1659. MS m/z (%): 418/20 (M + H⁺, 100). Anal. Caled for C\textsubscript{21}H\textsubscript{24}ClN\textsubscript{3}O\textsubscript{4}: C 60.36; H 5.79; N 10.06. Found: C 60.37; H 5.59; N 9.68.

4-Fluoro-N'-[2-(6,7-dimethoxy-1-methyl-3,4-dihydro-1\textsubscript{H}-isoquinolin-2-yl)acetyl]benzohydrazide (8f). Yield 80%. Mp 161 °C. 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 1.39 (3H, d, J = 6.6 Hz, CH₃), 2.63-3.22 (4H, m, 2×CH\textsubscript{2}), 3.32 (1H, d, J = 17.1 Hz, CH(H)), 3.38 (1H, d, J = 16.9 Hz, CH(H)), 3.82 (6H, s, 2×CH\textsubscript{3}), 3.81-3.87 (1H, m, CH), 6.52 (1H, s, C\textsubscript{7}-H), 6.56 (1H, s, C\textsubscript{10}-H), 6.97-7.03 (2H, m, C\textsubscript{3}'-H and C\textsubscript{5}'-H), 7.77-7.82 (2H, m, C\textsubscript{2}'-H and C\textsubscript{6}'-H), 9.98 (2H, br s, 2×NH). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 20.4 (CH\textsubscript{3}), 26.6 (CH\textsubscript{2}), 45.1 (CH\textsubscript{2}), 55.8 (CH\textsubscript{3}), 55.9 (CH\textsubscript{3}), 57.0 (CH), 57.2 (CH\textsubscript{2}), 109.9, 111.3, 115.5 (d, J = 21.9 Hz, Ph 3,5-C), 125.1, 127.3 (d, J = 2.5 Hz, Ph 1-C), 129.7 (d, J = 8.8 Hz, Ph 2,6-C), 130.5, 147.3, 147.5, 164.9 (d, J = 253.3 Hz, Ph 4-C), 163.9 (C=O), 169.6 (C=O). IR (KBr, cm⁻¹): ν\textsubscript{N-H} = 3254; ν\textsubscript{C=O} = 1694; ν\textsubscript{C=O} = 1650. MS m/z (%): 402 (M + H⁺, 100). Anal. Caled for C\textsubscript{21}H\textsubscript{24}FN\textsubscript{3}O\textsubscript{4}: C 62.83; H 6.03; N 10.47. Found: C 62.52; H 6.41; N 10.18.

N'-[(1\textsubscript{E})-(4-Chlorophenyl)methylene]-2-(1-methyl-3,4-dihydro-2(1\textsubscript{H})-isoquinolinyl)aceto-hydrazide (11a). Yield 24%. Oil. 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 1.39 (3H, d, J = 6.7 Hz, CH₃), 2.28-3.19 (4H, m, 2×CH\textsubscript{2}), 3.37 (1H, d, J = 17.1 Hz, CH(H)), 3.43 (1H, d, J = 17.1 Hz, CH(H)), 3.92 (1H, q, J = 6.7 Hz, CH), 7.06-7.69 (8H, m, aromatic protons), 8.12 (1H, s, NH), 10.34 (1H, s, N=CH). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 19.6 (CH\textsubscript{3}), 27.9 (CH\textsubscript{2}), 45.5 (CH\textsubscript{2}), 57.5 (CH), 57.9 (CH\textsubscript{2}), 126.1, 126.4, 127.1, 128.8 (2×CH), 128.9 (2×CH), 132.0, 133.0, 136.4, 138.9, 147.0 (Ar-C), 147.0 (C=N), 167.2 (C=O). IR (KBr, cm⁻¹): ν\textsubscript{N-H} = 3207; ν\textsubscript{C=O} = 1679; ν\textsubscript{C=N} = 1596. MS m/z (%): 342/44 (M + H⁺, 100). Anal. Caled for C\textsubscript{19}H\textsubscript{20}ClN\textsubscript{3}O: C 66.76; H 5.90; N 12.29. Found: C 66.43; H 5.75; N 11.93.

N'-[(1\textsubscript{E})-(4-Fluorophenyl)methylene]-2-(1-methyl-3,4-dihydro-2(1\textsubscript{H})-isoquinolinyl)aceto-hydrazide (11b). Yield 24%. Oil. 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 1.41 (3H, d, J = 6.7 Hz, CH₃), 2.78-3.20 (4H, m, 2×CH\textsubscript{2}), 3.40 (2H, s, CH\textsubscript{2}), 3.93 (1H, q, J = 6.6 Hz, CH), 7.03-7.76 (8H, m, aromatic protons), 8.13 (1H, s, NH), 10.33 (1H, s, N=CH). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 19.7 (CH\textsubscript{3}), 27.9 (CH\textsubscript{2}), 45.5 (CH\textsubscript{2}), 57.5 (CH), 57.8 (CH\textsubscript{2}), 115.8 (d, J = 21.9 Hz, Ph 3,5-C), 126.1, 126.4, 127.2, 128.9, 129.5 (d, J = 8.6 Hz, Ph 2,6-C), 129.7 (d, J = 3.5 Hz, Ph 1-C), 133.0, 138.9, 147.2 (C=N), 164.1 (d, J = 251.0 Hz, Ph 4-C), 167.1 (C=O). IR (KBr, cm⁻¹): ν\textsubscript{N-H} = 3212; ν\textsubscript{C=O} = 1682; ν\textsubscript{C=N} = 1603. MS m/z (%): 326 (M + H⁺, 100). Anal. Caled for C\textsubscript{19}H\textsubscript{20}FN\textsubscript{3}O: C 70.13; H 6.20; N 12.91. Found: C 69.85; H 6.43; N 12.87.
General procedure for the synthesis of 1-methyl-2-(5-aryl-[1,3,4]oxadiazol-2-ylmethyl)-1,2,3,4-tetrahydroisoquinolines (9a-f)

To a stirred suspension of hydrazide 9 (1 mmol) in dichloromethane (12 mL) was added triphenylphosphine (1.57 mmol), carbon tetrachloride (5 mmol) and triethylamine (1.57 mmol), after which the mixture was heated to reflux for 24 h. The mixture was cooled to room temperature, poured into water (15 mL) and extracted with dichloromethane (3 × 15 mL). The combined organic layers were dried over sodium sulfate, filtered and the solvent was evaporated under reduced pressure. The residue was chromatographed on silica gel with hexane/acetone 2:1 to yield 1,3,4-oxadiazoles 9 as oils.

1-Methyl-2-(5-phenyl-[1,3,4]oxadiazol-2-ylmethyl)-1,2,3,4-tetrahydroisoquinoline (9a).
Yield 42%. 1H NMR (300 MHz, DMSO-d6): δ 1.34 (3H, d, J = 6.6 Hz, CH3), 2.69 – 3.17 (4H, m, 2×CH2), 3.92 (1H, q, J = 6.5 Hz, CH), 4.07 (1H, d, J = 15.1 Hz, CH(H)), 4.17 (1H, d, J = 15.1 Hz, CH(H)), 7.07 – 8.02 (9H, m, aromatic protons). 13C NMR (75 MHz, DMSO-d6): δ 19.4 (CH3), 27.3 (CH2), 44.6 (CH2), 47.6 (CH2), 55.5 (CH), 123.3, 125.6, 125.7, 126.4 (2×CH), 127.0, 128.5, 129.4 (2×CH), 131.8, 135.5, 139.3 (Ar-C), 164.3, 164.4 (C-O-C). IR (KBr, cm⁻¹): νC=N = 1609. MS m/z (%): 306 (M + H⁺, 100). Anal. Calcd for C19H19N3O: C 74.73; H 6.27; N 13.76. Found: C 74.76; H 6.32; N 13.70.

2-[5-(3-Chlorophenyl)][1,3,4]oxadiazol-2-ylmethyl]-1-methyl-1,2,3,4-tetrahydroisoquinoline (9b).
Yield 68%. 1H NMR (300 MHz, DMSO-d6): δ 1.37 (3H, d, J = 6.6 Hz, CH3), 2.71 – 3.20 (4H, m, 2×CH2), 3.93 (1H, q, J = 6.6 Hz, CH), 4.10 (1H, d, J = 15.1 Hz, CH(H)), 4.20 (1H, d, J = 15.1 Hz, CH(H)), 7.08 – 7.98 (8H, m, aromatic protons). 13C NMR (75 MHz, DMSO-d6): δ 19.5 (CH3), 27.3 (CH2), 44.7 (CH2), 47.7 (CH2), 55.6 (CH), 125.2, 125.3, 125.7, 125.8, 125.9, 127.1, 128.6, 131.5, 131.8, 133.6, 134.0, 139.4 (Ar-C), 163.3, 164.9 (C-O-C). IR (KBr, cm⁻¹): νC=N = 1606. MS m/z (%): 340/42 (M + H⁺, 100). Anal. Calcd for C19H18ClN3O: C 67.15; H 5.34; N 12.37. Found: C 66.78; H 4.99; N 12.19.

2-[5-(4-Fluorophenyl)][1,3,4]oxadiazol-2-ylmethyl]-1-methyl-1,2,3,4-tetrahydroisoquinoline (9c).
Yield 77%. 1H NMR (300 MHz, DMSO-d6): δ 1.36 (3H, d, J = 6.6 Hz, CH3), 2.68 – 3.17 (4H, m, 2×CH2), 3.92 (1H, q, J = 6.6 Hz, CH), 4.09 (1H, d, J = 15.1 Hz, CH(H)), 4.19 (1H, d, J = 15.1 Hz, CH(H)), 7.08 – 8.02 (8H, m, aromatic protons). 13C NMR (75 MHz, DMSO-d6): δ 19.5 (CH3), 27.3 (CH2), 44.7 (CH2), 47.7 (CH2), 55.5 (CH), 116.7 (d, J = 22.5 Hz, Ph 3,5-C), 120.1 (d, J = 3.6 Hz, Ph 1-C), 125.7, 125.8, 127.1, 128.6, 129.2 (d, J = 9.5 Hz, Ph 2,6-C), 133.6, 139.4, 164.1 (d, J = 250.2 Hz, Ph 4-C), 163.7, 164.5 (C-O-C). IR (KBr, cm⁻¹): νC=N = 1610. MS m/z (%): 324 (M + H⁺, 100). Anal. Calcd for C19H18ClN3O: C 70.47; H 5.61; N 12.99. Found: C 70.32; H 5.33; N 12.74.

6,7-Dimethoxy-1-methyl-2-(5-phenyl-[1,3,4]oxadiazol-2-ylmethyl)-1,2,3,4-tetrahydroisoquinoline (9d).
Yield 52%. 1H NMR (300 MHz, CDCl3): δ 1.45 (3H, d, J = 6.6 Hz, CH3), 2.67 – 3.27 (4H, m, 2×CH2), 3.83 (6H, s, 2×CH3), 3.90 (1H, q, J = 6.6 Hz, CH), 4.08 (1H, d, J = 14.7 Hz, CH(H)), 4.16 (1H, d, J = 14.7 Hz, CH(H)), 6.55 (1H, s, C5-H), 6.56 (1H, s, C6-H), 7.46-7.55 (3H, m, C3-H, C4-H and C5-H), 8.05-8.08 (2H, m, C2-H and C6-H). 13C NMR (75 MHz, CDCl3): δ 20.1 (CH3), 26.6 (CH2), 45.2 (CH2), 48.2 (CH2), 55.8 (CH), 55.9 (CH3), 56.0 (CH3), 128.6, 129.2 (d, J = 9.5 Hz, Ph 2,6-C), 133.6, 139.4, 164.1 (d, J = 250.2 Hz, Ph 4-C), 163.7, 164.5 (C-O-C). IR (KBr, cm⁻¹): νC=N = 1610. MS m/z (%): 324 (M + H⁺, 100). Anal. Calcd for C19H18ClN3O: C 70.57; H 5.61; N 12.99. Found: C 70.32; H 5.33; N 12.74.
109.9, 111.2, 123.7, 125.4, 126.9 (2×CH), 128.9 (2×CH), 130.7, 131.7, 147.3, 147.4 (Ar-C), 164.2, 165.4 (C-O-C). IR (KBr, cm⁻¹): ν C=N = 1610. MS m/z (%): 366 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₃N₃O₃: C 69.02; H 6.34; N 11.50. Found: C 69.35; H 6.28; N 11.23.

2-[5-(3-Chlorophenyl)-[1,3,4]oxadiazol-2-ylmethyl]-6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (9e). Yield 82%. ¹H NMR (300 MHz, CDCl₃): δ 1.44 (3H, d, J = 6.6 Hz, CH₃), 2.66 – 3.26 (4H, m, 2×CH₂), 3.82 (6H, s, 2×CH₃), 3.88 (1H, q, J = 6.6 Hz, CH), 4.06 (1H, d, J = 14.8 Hz, CH(H)), 4.15 (1H, d, J = 14.8 Hz, CH(H)), 6.55 (1H, s, C₅-H), 6.56 (1H, s, C₈-H), 7.40-7.51 (2H, m, C₄'-H and C₅'-H), 7.97-8.04 (2H, m, C₂'-H and C₆'-H). ¹³C NMR (75 MHz, CDCl₃): δ 20.1 (CH₃), 26.6 (CH₂), 45.2 (CH₂), 48.2 (CH₂), 55.8 (CH), 55.9 (CH₃), 56.1 (CH₃), 110.1, 111.2, 125.0, 125.4, 126.9, 130.3, 130.7, 131.8, 135.1, 147.4, 147.5 (Ar-C), 164.2, 164.6 (C-O-C). IR (KBr, cm⁻¹): ν C=N = 1611. MS m/z (%): 400/02 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₂ClN₃O₃: C 63.08; H 5.55; N 10.51. Found: C 63.33; H 5.45; N 10.63.

2-[5-(4-Fluorophenyl)-[1,3,4]oxadiazol-2-ylmethyl]-6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (9f). Yield 87%. ¹H NMR (300 MHz, CDCl₃): δ 1.45 (3H, d, J = 6.6 Hz, CH₃), 2.67 – 3.27 (4H, m, 2×CH₂), 3.83 (6H, s, 2×CH₃), 3.89 (1H, q, J = 6.6 Hz, CH), 4.06 (1H, d, J = 14.7 Hz, CH(H)), 4.14 (1H, d, J = 14.7 Hz, CH(H)), 6.55 (1H, s, C₅-H), 6.56 (1H, s, C₈-H), 7.15-7.22 (2H, m, C₃'-H and C₅'-H), 8.03-8.10 (2H, m, C₂'-H and C₆'-H). ¹³C NMR (75 MHz, CDCl₃): δ 20.1 (CH₃), 26.5 (CH₂), 45.1 (CH₂), 48.1 (CH₂), 55.8 (CH), 55.9 (CH₃), 56.1 (CH₃), 109.9, 111.1, 116.3 (d, J = 22.1 Hz, Ph 3,5-C), 120.1 (d, J = 3.3 Hz, Ph 1-C), 125.3, 129.2 (d, J = 9.2 Hz, Ph 2,6-C), 130.6, 147.3, 147.4, 164.7 (d, J = 253.5 Hz, Ph 4-C), 164.2, 164.6 (C-O-C). IR (KBr, cm⁻¹): ν C=O = 1703; ν C=N = 1599. MS m/z (%): 384 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₂FN₃O₃: C 65.78; H 5.78; N 10.96. Found: C 65.49; H 5.76; N 10.64.

General procedure for the condensation of 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones 3 with aromatic aldehydes

To a solution of amine 3 (4 mmol) and 4-substituted benzaldehyde (4.4 mmol) in absolute ethanol (20 mL), 3 drops of piperidine were added and the mixture was refluxed for 5 h. Evaporation of the solvent gave a residue, which was chromatographed on silica gel with hexane/acetone 3:1 (for 10a, b) or dichloromethane/methanol 9:1 (for 10c) to give the corresponding hydrazones 10.

1-[(4-Chlorobenzylidene)amino]-10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one (10a). Yield 15%. Mp 150 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.89 (3H, s, CH₃), 2.64 – 3.38 (4H, m, 2×CH₂), 3.60 (1H, d, J = 15.2 Hz, CH(H)), 3.68 (1H, d, J = 15.2 Hz, CH(H)), 7.10 – 7.81 (8H, m, aromatic protons), 9.58 (1H, s, N=CH). ¹³C NMR (75 MHz, CDCl₃): δ 23.6 (CH₂), 27.9 (CH₃), 43.9 (CH₂), 52.0 (CH₂), 80.3 (C), 126.5, 127.6, 127.8, 128.5 (2×CH), 128.8, 128.9 (2×CH), 133.2, 133.8, 136.2, 136.9 (Ar-C), 152.3 (C=N), 167.6 (C=O). IR (KBr, cm⁻¹): ν C=O = 1703; ν C=N = 1599. MS m/z (%): 340/42 (M + H⁺, 100). Anal. Calcd for C₁₉H₁₈ClN₃O: C 67.15; H 5.34; N 12.37. Found: C 66.96; H 5.44; N 12.48.

1-[(4-Fluorobenzylidene)amino]-10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one (10b). Yield 22%. Mp 115 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.98 (3H, s, CH₃),
2.73 – 3.47 (4H, m, 2×CH₂), 3.68 (1H, d, \(J = 15.2 \) Hz, CH(H)), 3.76 (1H, d, \(J = 15.2 \) Hz, CH(H)), 7.18 – 7.91 (8H, m, aromatic protons), 9.62 (1H, s, N=CH). \(^{13}\)C NMR (75 MHz, CDCl₃): \(\delta \) 23.6 (CH₂), 27.7 (CH₃), 43.8 (CH₂), 51.9 (CH₂), 80.2 (C), 115.7 (d, \(J = 21.9 \) Hz, Ph 3,5-C), 126.4, 127.5, 127.7, 128.6, 129.1 (d, \(J = 8.5 \) Hz, Ph 2,6-C), 131.3 (d, \(J = 2.7 \) Hz, Ph 1-C), 133.1, 136.8 (Ar-C), 152.6 (C=N), 163.9 (d, \(J = 251.1 \) Hz, Ph 4-C), 167.3 (C=O). IR (KBr, cm⁻¹): \(\nu_{C=O} = 1703; \nu_{C=N} = 1601. \) MS m/z (%): 324 (M + H⁺, 100). Anal. Calcd for C₁₉H₁₈FN₃O: C 70.57; H 5.61; N 12.99. Found: C 70.96; H 5.30; N 12.88.

1-[(4-Chlorobenzylidene)amino]-8,9-dimethoxy-10b-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-one (10c). Yield 8%. Oil. \(^{1}\)H NMR (300 MHz, CDCl₃): \(\delta \) 1.86 (3H, s, CH₃), 2.87 – 3.34 (4H, m, 2×CH₂), 3.56 (1H, d, \(J = 15.2 \) Hz, CH(H)), 3.64 (1H, d, \(J = 15.2 \) Hz, CH(H)), 3.74 (3H, s, CH₃), 3.82 (3H, s, CH₃), 6.53 – 7.71 (6H, m, aromatic protons), 9.68 (1H, s, N=CH). \(^{13}\)C NMR (75 MHz, CDCl₃): \(\delta \) 23.0 (CH₃), 27.8 (CH₂), 43.8 (CH₂), 51.8 (CH₂), 55.6 (CH₃), 55.7 (CH₃), 80.1 (C), 110.2, 110.7, 125.5, 128.1 (2×CH), 128.8, 128.9 (2×CH), 133.7, 136.2, 147.4, 148.4 (Ar-C), 152.0 (C=N), 167.5 (C=O). IR (KBr, cm⁻¹): \(\nu_{C=O} = 1703; \nu_{C=N} = 1603. \) MS m/z (%): 400 (M + H⁺, 100). Anal. Calcd for C₂₁H₂₂ClN₃O₃: C 63.08; H 5.55; N 10.51. Found: C 63.28; H 5.25; N 10.63.

Acknowledgements

The authors are indebted to the Research Foundation - Flanders (FWO-Vlaanderen) for financial support of this research.

References

