Arylhydrazonals as aldehyde components in Baylis-Hillman reaction: synthesis of 5-hydroxy-2,3,4,5-tetrahydropyridazine-4-carbonitrile and 6,7,8,8a-tetrahydrocinnolin-5(1H)-one

Ismail Abdelshafy Abdelhamid,a* Elham Sayed Darwish,a* Miead Adel Nasra,a Fathy Mohamed Abdel-Gallil,a and Daisy Hanna Fleita b

aChemistry Department, Faculty of Science, Cairo University; Giza; A. R. Egypt
bChemistry Department, American University in Cairo; Egypt
E-mail: ismail_shafy@yahoo.com, elham_darwish@yahoo.com

Abstract
3-Oxo-2-arylhydrazonals reacted with acrylonitrile to yield hydroxyl tetrahydropyridazine derivatives and with cyclohexenone to yield tetrahydrocinnoline.

Keywords: 3-Oxo-2-arylhydrazonals, hydrooxypyrizidine, dihydropyridazine, hexahydrocinnoline

Introduction

Arylhydrazonals are versatile reagents and their chemistry is receiving considerable interest. In the past our group could successfully utilized arylhydrazonals as precursors to pyridazines and pyrazoles with unique substitution pattern.

Results and Discussion

Very recently one of us has reported the first utility of the aryl hydrazonals as the aldehyde components in Baylis-Hillman reaction under microwave irradiation. In conjunction of this work we tried the reactivity of arylhydrazonals toward α,β-unsaturated nitriles and ketones utilizing the conventional Baylis-Hillman reaction conditions. In this work, not only intermediate Baylis-Hillman adducts could be isolated (characterized in some cases) but also a novel reactivity pattern is achieved. Thus reacting 3-oxo-2-phenylhydrazono-2-yl-propionaldehydes 1a,b with acrylonitrile in presence of DABCO (1,4-diazabicyclo[2.2.2]octane) as a catalyst and dioxane as a solvent, resulted in the formation of compound 4 which could be formed through the Baylis-Hillman intermediate 2 (Pathway A) (cf. scheme 1). Compound 4 can be also formed via intermediate 3 that results most likely via initial addition of the hydrazone NH to the
electrophilic double bond in acrylonitrile followed by normal aldol condensation (Pathway B) (cf. scheme 1). The structure of compound 4 was confirmed based on spectroscopic tools. Thus, the mass spectrum of 4a revealed molecular ion peak as base peak at m/z 311; IR showed OH at 3340 cm⁻¹; ¹H NMR revealed doublet signals at 3.61 and 6.40 for pyridazine H5 and OH respectively, multiplet signal at 3.87 for pyridazine H4 and doublet of doublet signal at 4.51 and 4.94 for pyridazine H3. Also ¹³C NMR showed three SP³ carbons. Heating compound 4 in microwave for five minutes resulted in the formation of 1, 6-dihydropyridazine derivative 5. Product 5 was previously obtained on reacting 1 with acrylonitrile in microwave for three minutes.¹⁷

Scheme 1

Compounds 1a-c reacted with 2-cyclohexen-1-one 6 to yield tetrahydro-1H-cinnolin-5-one derivative 9a-c respectively that are formed most likely via intermediacy of 7 and 8. Trials to isolate the Baylis-Hillman adduct 7 or 8 failed (cf. scheme 2). The structure of the resultant compound 9 has been confirmed by spectral data. Similarly, compound 1c reacted with acrylonitrile to yield the dihydropyridazine 10. Attempts to isolate the intermediate hydroxy compounds in these reactions failed (cf. scheme 2).
Experimental Section

General Procedures. The melting points were determined on a Stuart melting point apparatus and are uncorrected. The IR spectra were recorded as KBr pellets using a FTIR unit Bruker-vector 22 spectrophotometer. The 1H and 13C NMR spectra were recorded in DMSO-d_6 as solvent at 400 MHz on Varian Gemini NMR spectrometer using TMS as internal standard. Chemical shifts are reported in δ units (ppm). Mass spectra were measured on a Shimadzu GMMS -QP-1000 EX mass spectrometer at 70 eV.

General method for synthesis of pyridazine derivatives (4, 5 and 10), cinnoline derivatives 9a-c

Method A (for 4, 5, 9a-c and 10). A mixture of arylhydrazonal derivatives 1 (1 mmol), acrylonitrile or cyclohexenone (2 mmol) and DABCO (1 mmol) was mixed and stirred for 4-7 days in dioxane (the reaction progress was followed using TLC). The mixture was then poured onto water and acidified with dilute hydrochloric acid. Solid products were crystallized from proper solvents.

Method B (for 5, 9a-c and 10). A mixture of arylhydrazonal derivatives 1 (1 mmol), acrylonitrile or cyclohexenone (2 mmol) and DABCO (1 mmol) in a sealed vessel was placed in a single mode cavity Explorer Microwave Synthesizer and irradiated at temperature 160 °C for 5 min. The reaction contents was then poured onto water and acidified with dilute hydrochloric acid. The solid product obtained was crystallized from proper solvent.
5-Hydroxy-2-phenyl-6-(thiophene-2-carbonyl)-2,3,4,5-tetrahydropyridazine-4-carbonitrile (4a). Yellow crystals from ethanol, yield (73%), mp: 162-164°C; MS: m/z = 311 (53.7%), 312 (18.9%), 293 (7.8%), 200 (17%), 111 (100%); IR (KBr): 3340 (OH), 2248 (CN), 1645 (CO); 1H NMR (400 MHz, DMSO-d6): δ 3.61 (d, 1H, pyridazine H5), 3.87 (m, 1H, pyridazine H4), 4.51 (dd, 1H, pyridazine H3), 4.94 (dd, 1H, pyridazine H3), 6.40 (d, 1H, OH), 7.19 (m, 1H, Ph-H), 7.26 (m, 1H, thiophene-H4), 7.47-7.55 (m, 4H, Ph-H) 8.02 (d, 1H, thiophene-H3), 8.05 (d, 1H, thiophene-H5). 13C NMR (100 MHz, DMSO-d6): δ: 18.0, 26.6, 55.4, 115.6, 116.2 (CN), 120.8, 121.1, 126.2, 128.2, 129.3, 131.0, 134.2, 136.6, 187.6 (CO). Anal. Calcd. for C16H13N3O2S (311.36) C, 61.72; H, 4.21; N, 13.50. Found: C, 61.32; H, 4.32; N, 13.38.

6-Acetyl-5-hydroxy-2-phenyl-2,3,4,5-tetrahydropyridazine-4-carbonitrile (4b). Yellow crystals from ethanol, yield (68%), mp 193-195 ºC; MS: m/z = 243(100 %), 244 (16.7%), 225 (13.5%), 224 (5.8%), 200 (17.9%); IR: 3350 (OH), 2245 (CN), 1655 (CO); 1H NMR (400 MHz, DMSO-d6): δ 2.48 (s, 3H, CH3), 3.52 (d, 1H, pyridazine H5), 3.69 (m, 1H, pyridazine H4), 4.42 (dd, 1H, pyridazine H3), 4.71 (dd, 1H, pyridazine H3), 6.40 (d, 1H, OH), 7.13-7.53 (m, 5H, Ph-H); 13C NMR (100 MHz, DMSO-d6): δ:18.5 (CH3), 24.1, 27.2, 54.4, 115.9 (CN), 118.0, 123.5, 129.3,138.7, 145.2, 194.8 (CO). Anal. Calcd. for C13H13N3O2 (243.26) C, 64.19; H, 5.39; N, 17.27. Found: C, 64.43; H, 5.28; N, 17.45.

2-Phenyl-6-(thiophene-2-carbonyl)2,3-dihydro-pyridazine-4-carbonitrile (5). Yellow crystals from ethanol, yield (88%), mp 156-58 ºC; MS: m/z = 293 (M , 80%), 174 (10%), 111 (100%); IR: 2217 (CN), 1614 (CO); 1H NMR (400 MHz, DMSO-d6): δ 4.86 (s, 2H, pyridazine-H6), 7.27 (m, 2H, Ar-H), 7.43 (s, 1H, pyridazine-H4), 7.57-7.52 (m, 4H, Ar-H and thiophene-H), 8.08 (m, 2H, Ar-H and thiophene-H). 13C NMR (100 MHz, DMSO-d6): δ44.6 (CH2), 102.6 (CN) 117.2, 117.9, 125.7, 127.5, 128.3, 129.9, 135.3, 136.5, 137.2, 138.7, 139.2, 144.3, 178.0 (CO). Anal. Calcd. for C16H11N3OS (293.34) C, 65.51; H, 3.78; N, 14.32. Found: C, 65.33; H, 3.65; N, 14.61.

1-Phenyl-3-(thiophene-2-carbonyl)-6,7,8,8a-tetrahydro-cinnolin-5-one (9a). Orange crystals from ethanol, yield (84%), mp =292-294°C; MS: m/z = 335 (8.6%), 336 (20.4%), 111 (100%); IR (KBr): 1705, 1630 (2CO); 1H NMR (400 MHz, DMSO-d6): δ 0.83 (m, 2H, H7), 1.83 (m, 2H, H8), 1.9 (m, 2H, H6) 4.8 (m, 1H, H8a), 7.01(s, 1H, H4), 7.19-8.03(m, 8H, Ph and thiophene-H). 13C NMR (100 MHz, DMSO-d6): δ:18.8, 28,7, 37.9, 55.4, 115.6, 116.2, 120.8, 121.1, 126.2, 127.5, 128.3, 129.2, 131, 134.3, 135.4, 138.6, 177 (CO), 197.6 (CO). Anal. Calcd. for C19H16N2O2S (336.41) C, 67.84; H, 4.79; N, 8.33. Found: C, 67.61; H, 4.92; N, 8.18.

3-Acetyl-1-phenyl-6,7,8,8a-tetrahydrocinnolin-5(1H)-one (9b). Orange crystals from ethanol, yield (84%), mp =184-186°C; MS: m/z = 268 (3.8%), 269 (4.6%), 225 (3.1%); IR (KBr): 1660, 1596 (2 CO);1H NMR (400 MHz, DMSO-d6): δ 1.39 (m, 2H, H7), 2.2 (m, 4H, H6, H8), 2.46 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6): δ 18.8, 28.7, 37.9, 55.4, 115.6, 116.2, 120.8, 121.1, 126.2, 127.5, 128.3, 129.2, 131, 134.3, 135.4, 138.6, 177 (CO), 197.6 (CO). Anal. Calcd. for C16H16N2O2 (336.31) C, 71.62; H, 6.01; N, 10.44. Found: C, 71.82; H, 6.24; N, 10.63.

3-4-Methyl-benzoyl)-1-phenyl-6,7,8,8a-tetrahydro-1H-cinnolin-5-one (9c). Orange solid from ethanol, yield (84%), yield (84%), mp 252-254 ºC; MS: m/z = 344 (21.6%), 345 (5.6%), 119 (100%); IR (KBr): 1703, 1629 (2CO), 1H NMR (400 MHz, DMSO-d6): 1.45 (m, 2H, H7), 2.31-2.38 (m, 4H, H6, H8), 2.41 (s, 3H, CH3), 4.82 (m, 1H, H8a), 7.19(s, 1H, pyridazine-H), 7.25-7.85(m, 9H,
Ar-H). 13C NMR (100 MHz, DMSO-d$_6$): δ 21.0, 29.8, 36.5, 54.9, 108.2, 112.3, 119.3, 123.0, 124.8, 126.0, 129.3, 134.5, 138.9, 141.9, 143.8, 147.2, 187.7 (CO), 197 (CO). *Anal. Calcd. for C$_{22}$H$_{20}$N$_2$O$_2$ (344.41) C, 76.72; H, 5.85; N, 8.13. Found: C, 76.86; H, 5.93; N, 8.24.*

6-(4-Methyl-benzoyl)-2-phenyl-2,3-dihydro-pyridazine-4-carbonitrile (10). Yellow solid from ethanol, yield (84%), mp =178-180ºC; MS: m/z = 301 (76.3%), 303 (15.4%), 119 (100%); IR (KBr): 2214.13 (CN), 1704 (CO); 1H NMR (400 MHz, DMSO-d$_6$): δ 2.39 (s, 3H, CH$_3$), 4.81 (s, 2H, pyridazine-H6), 7.21 (m, 1H, Ar-H), 7.33 (s, 1H, pyridazine-H4), 7.35-7.42 (m, 4H, Ar-H), 7.45 (d, 2H, Ar-H, J = 7.8 Hz), 7.83 (d, 2H, Ar-H, J = 7.8 Hz); 13C NMR (100 MHz, DMSO-d$_6$): δ 21.0 (CH$_3$), 43.6, 102.1, 116.6 (CN), 120.8, 124.7, 127.6, 128.5, 129.3, 130.0, 133.8, 136.5, 142.4, 143.8, 187.0 (CO). *Anal. Calcd. for C$_{19}$H$_{15}$N$_3$O (301.12) C, 75.73; H, 5.02; N, 13.94. Found: C, 75.54; H, 5.13; N, 13.78.*

References