The photochemistry of some pyranopyrazoles

James W. Pavlik, a* Vuthichai Ervithayasuporn, a John C. MacDonald, a and Supawan Tantayanon b

a Department of Chemistry and Biochemistry, Worcester Polytechnic Institute Worcester, MA 01609
b Department of Chemistry, Chulalongkorn University, Bangkok. 10330, Thailand
E-mail: jwpavlik@wpi.edu

Dedicated to Professor Nicolo Vivona on his 70th birthday

Abstract
Irradiation of 1,3,6-trimethylpyrano[2,3-c]pyrazole-4(1H)-one (1) or 3,6-dimethyl-1-phenylpyrano[2,3-c]pyrazole-4(1H)-one (2) in acetonitrile solution at 254 nm resulted in the formation of the cis-head-to-tail [2+2] dimers 5 or 13 respectively. When the irradiation was carried out in ethanol solvent 1 or 2 underwent dimerization to yield 5 or 13 respectively and also photocleavage to provide ethyl 5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carboxylate (10) or ethyl 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carboxylate (14) respectively.

Keywords: Pyranopyrazoles, photodimerization, photocleavage

Introduction
The photochemical properties of pyranopyrazoles are intriguing because the molecule can be viewed as a 4-pyrene ring fused on to a pyrazole ring. 4-Pyrones are known to undergo a variety of photochemical reactions including photodimerization,1-4 photoisomerization to 2-pyrones,5-10 and photo ring contraction to yield 4-hydroxy-cyclopentenone solvent adducts.11-14 The photochemistry of N-substituted pyrazoles has also been extensively studied and these compounds have been found to undergo photoisomerization to imidazoles15-21 and photocleavage to yield enaminonitriles and enaminoisocyanides.18-21 Although the photochemistry of the individual ring systems have been studied, we are unaware of any reports concerning the photochemistry of the pyranopyrazole ring system. Because of our interest in these compounds, we have undertaken a study of the photochemistry of 1,3,6-trimethylpyrano[2,3-c]pyrazole-4(1H)-one (1) and of 3,6-dimethyl-1-phenylpyrano[2,3-c]pyrazole-4(1H)-one (2). The results of that study are the subject of this manuscript.
Results and Discussion

Pyranopyrazoles 1 and 2 were synthesized in two steps from the methyl- or phenylhydrazone 3a or 3b via the diketopyrazoles 4a or 4b respectively, according to a modification of the method developed by Gelin and colleagues22,23 (Scheme 1).

\[
\begin{align*}
3a, b & \quad \text{CH}_3\text{COOH} \quad \text{H}_3\text{C} \quad \text{CH}_3 \\
& \quad \text{OH} \quad \text{N} \quad \text{N} \\
& \quad \text{N} \quad \text{R} \\
& \quad \text{CH}_3\text{COOH} \quad \text{H}_2\text{SO}_4 \\
4a, b & \quad \text{H}_3\text{C} \\
& \quad \text{CH}_3 \quad \text{O} \\
& \quad \text{N} \quad \text{N} \\
& \quad \text{R} \quad \text{1 (R = CH}_3\text{)} \quad \text{2 (R = Ph)}
\end{align*}
\]

a: R = CH\textsubscript{3} ; b: R = Ph

Scheme 1

The UV-absorption spectra of 1 and 2 in acetonitrile solution exhibited absorption maxima at 250 nm ($\varepsilon = 9,068 \text{ L mol}^{-1} \text{ cm}^{-1}$) and 206.0 nm ($\varepsilon = 14,764 \text{ L mol}^{-1} \text{ cm}^{-1}$) and at 242.5 nm ($\varepsilon = 24,646 \text{ L mol}^{-1} \text{ sec}^{-1}$) respectively. Considering the magnitude of these extinction coefficients, these absorptions were assigned to S_0 to $S_1 (\pi, \pi^*)$ and S_0 to $S_2 (\pi, \pi^*)$ in the case of 1 and to S_0 to $S_1 (\pi, \pi^*)$ in the case of 2.25

A solution of 1 (3.0 mL, 2.0 x 10-2 M) in acetonitrile was irradiated at 254 nm. HPLC analysis as a function of irradiation time showed a continuous decrease in the peak area at 7.3 minutes due to the consumption of the reactant and the appearance of a new peak at 6.7 minutes due to the formation of a photoproduct 5. Analysis revealed, however, that the rate of reactant consumption decreased after 45 minutes of irradiation. Analysis also revealed that the area of the photoproduct 5 peak at 6.7 minutes increased during the first 45 minutes of irradiation and then slowly decreased upon longer irradiation time. This indicates that after 45 minutes of irradiation the product competes with the reactant for the incident light and begins to be consumed in a secondary photoreaction.

A solution of 1 was also irradiated at 254 nm on a preparative scale (20.0 mL, 2.0 x 10-2 M) in acetonitrile until HPLC analysis indicated maximum formation of 5. Preparative-layer chromatography of the resulting solution allowed isolation of a white crystalline product, mp 229-230°C. HPLC analysis of this solid showed a single peak with a retention time identical to the retention time of photoproduct 5 observed during the analytical-scale irradiation. This confirms that the isolated product is the observed photoproduct 5.

The mass spectrum of 5 exhibited a molecular ion at $m/z = 356$, exactly twice the mass of the reactant 1, indicating that 5 is a dimer of 1. The molecular mass and elemental analysis are consistent with the molecular formula $C_{18}H_{20}N_4O_4$, the correct formula for a dimer.
The 1H NMR spectrum of 5 shows singlets at δ1.78, 2.28, 3.41, and 3.22 with an integrated ratio of 3:3:3:1. Thus, although the molecular formula is consistent with the presence of six methyl groups, the 1H NMR spectrum exhibits three different sets of methyl protons. Each set must therefore contain two methyl groups. Similarly, the 13C NMR spectrum shows the presence of nine different sets of carbon atoms. Since the molecular formula shows that 5 contains 18 carbon atoms, each set must contain two identical carbon atoms. The 1H and 13C NMR spectra indicate that the dimer 5 must have a symmetrical structure. Structures consistent with this include the cis or trans-head-to-head (5a or 5b) or head-to-tail (5c or 5d) [2 + 2] cycloaddition adducts shown in Scheme 2.

Scheme 2

These structures are analogous with the known head-to-tail [2 + 2] dimer 7 obtained from the photodimerization of 2,6-dimethyl-4-pyrone 63,4 and head-to-tail [2 + 2] dimer 9 obtained from photodimerization of 2,3-dihydro-2,2-dimethyl-4H-pyran-4-one 8 shown in Scheme 3.26
Scheme 3

Single crystal X-ray diffraction analysis allowed distinction among these possibilities and confirmed that the structure of the photoproduct 5 is the cis-head-to-tail [2 + 2] cycloaddition dimer shown as 5c in Scheme 2. The crystal structure of 5c is shown in Figure 1. The conformations and structures of the cyclobutane ring and dihydropyranone rings in 5c are consistent to those reported for 7 and 9.

Figure 1. Crystal structure of the cis-head-to-tail [2 + 2] cycloaddition dimer 5c viewed from above (a) and from the sides (b and c) of the cyclobutane ring.

HPLC analysis as a function of irradiation time showed that the yield of the dimer 5 reached a maximum of 35% after 45 minutes of irradiation and then slowly decreased upon longer irradiation. This indicates that after 45 minutes of irradiation the dimer 5 was being consumed faster than it was being formed. Irradiation of a pure sample of photodimer 5 revealed that it underwent a retro [2 + 2] reaction leading back to 1.
A solution of pyranopyrazole 1 (20.0 mL, 2.0 x 10^{-2} M) in ethanol was also irradiated at 254 nm. The ^1H NMR spectrum of the crude product mixture revealed singlets at δ1.78, 2.28, 3.41, and 3.22 due to formation of dimer 5 and additional signals due to the formation of a second product 10 which was not observed after irradiation of 1 in acetonitrile solvent. Preparative-layer chromatography led to the isolation of the dimer 5 and to 10 as a white crystalline compound, mp 124-125°C.

The ^1H NMR spectrum of 10 revealed a 2H quartet and a 3H triplet (J = 7.1 Hz) at δ4.28 and 1.24 respectively. Thus, it appears that a molecule of ethanol has been incorporated into the photoproduct 10. The spectrum also shows a 3H singlet at δ3.58, consistent with an N-methyl group, and a 3H singlet at δ2.29, consistent with an allyl methyl group. Significantly, although pyranopyrazole 1 has three methyl groups, the product has only two. One methyl group has been lost. In addition, the 1H singlet due to the α-proton in the 4-pyrone ring in the reactant is not observed in the product. This suggests that the α and β carbons of the pyrone ring have been lost during the photoreaction. Finally, the ^1H NMR spectrum exhibits a broad peak at δ9.24 (D_2O exchangeable) due to the presence of a hydroxyl proton in the structure. The ^13C NMR spectrum shows the presence of eight sets of carbon atoms. These include the three methyl groups absorbing at δ14.6, 14.8, and 33.3, and the methylene carbon of the ethoxy group absorbing at δ60.7. Significantly, the ^13C NMR spectrum also exhibits a signal for a quaternary carbon at δ167.2, consistent with an ester carbonyl carbon, and signals for quaternary carbon atoms at δ157.7, 147.8, and 92.7, consistent with the C3, C5, and C4 atoms respectively of a pyrazole ring.

Taken together, the spectroscopic data suggests that photoproduct 10 is ethyl 5-hydroxy-1, 3-dimethyl-1H-pyrazole-4-carboxylate. This proposed structure for 10 was confirmed by direct comparison of the spectroscopic properties of the isolated photoproduct with an authentic sample of ester 10 synthesized by acetylation of diethyl malonate 11 to provide acetyldiester 12 and treatment of the latter with methylhydrazine as shown in Scheme 4.

![Scheme 4](image)

Scheme 4

The photoreaction of pyranopyrazole 1 in ethanol solvent is summarized in Scheme 5.
Scheme 5

The photochemistry of N-phenylpyranopyrazole 2 was analogous to the photochemistry of N-methylpyranopyrazole 1. Thus, as shown in Scheme 6, irradiation of 2 at 254 nm in acetonitrile solvent led to the formation of a single photoproduct 13, shown by mass spectroscopy, elemental analysis, and 1H and 13C NMR spectroscopy to be the cis-head-to-tail dimer 13 formed in 58% yield.

Scheme 6

Irradiation of 2 in ethanol, however, led to the formation of dimer 13 in 22% yield and to the formation of ethyl 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carboxylate 14. The structure of ester 14 was confirmed by comparison of the photoproduct with an authentic sample of 14 synthesized in this laboratory.

The formation of photodimers 5 and 13 from 1 and 2 respectively is viewed as [2+2] cycloaddition reactions occurring from the S_1 (π, π^*) state of the pyranopyrazole in which the excitation energy is localized within the 4-pyrone ring. In alcohol solvent, it is suggested that the excited state partitions between [2+2] dimerization and 2,6-bridging, as shown in Scheme 7, to yield zwitterionic species 15.
Scheme 7

Such 2,6-bridging is a well-established photochemical pathway for 4-pyrones and is known to be enhanced by the use of polar protic solvents. Although such photochemically generated zwitterions are generally trapped by nucleophilic solvents, such as alcohols, with simultaneous opening of the epoxide ring, in the present case it is suggested that 15 undergoes cleavage to yield ketene 17 via intermediate 16. Whereas such cleavage is not a known pathway for zwitterions photochemically generated from monocyclic 4-pyrones, in the present case it is plausible that the strain associated with two fused five-membered rings in 15 provides the driving force for cleavage of 16 to yield ketene 17. The latter species is then trapped by the alcohol solvents to yield the observed esters. As expected by this mechanistic suggestion, irradiation of pyranopyrazole 1 in methanol solvent led to the formation of dimer 5 and the methyl ester 18, analogous to 10, as shown in Scheme 8.

Scheme 8

Experimental Section

General Procedures. All melting points were determined using a MEL-TEMP apparatus and are uncorrected. 1H NMR spectra (400 MHz) and 13C NMR spectra (100 MHz) were recorded on a Bruker FT-NMR system. 1H and 13C chemical shifts were measured relative to internal TMS
(0 ppm) and CDCl₃ (77.0 ppm) respectively. UV absorption spectra were recorded in 1.0 cm matched quartz cells using a Hitachi U-2000 spectrometer. HPLC analyses were carried out on a Waters Model 510 system equipped with a C-18 90Å 5µm 3.9 x 300 mm column. Analysis of the photoreactions of 1 or 2 were carried out using a mobile phase of 75% methanol-25% water (0.50 ml min⁻¹) or 65% methanol-35% water (0.5 ml min⁻¹) respectively. Preparative layer chromatography was carried out on 20-cm x 20-cm glass plates coated with 2mm Kieselgel 60 F₂₅₄ (Merck).

1-(5-Hydroxy-1,3-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (4a) and 1-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butane-1,3-dione (4b). A solution of dehydroacetic acid N-methylhydrazone (3a) (1.00g, 5.10 mmol) or dehydroacetic acid N-phenylhydrazone (3b) (2.64g, 10.2 mmol) in glacial acetic acid (20 ml) was refluxed for 1 hour. Evaporation of the solvent gave crude 4a (1.06g) or 4b (2.81g) which was recrystallized from ethyl acetate or acetonitrile.

4a was obtained as yellow crystals: mp 136-137°C; yield 0.75g (3.83 mmol, 75%); ¹H NMR (CDCl₃) enol (major) δ 15.0 (s, 1H), 11.3 (br, OH), 5.61 (s, 1H), 3.56 (s, 3H), 2.34 (s, 3H), 2.11 (s, 3H); keto (minor) δ 11.3 (br, OH), 3.80 (s, 2H), 3.56 (s, 3H), 2.33 (s,3H) 2.29 (s, 3H); ¹³C NMR enol (major) δ188.6, 181.5, 158.9, 146.4, 99.9, 97.1, 32.9, 22.8, 15.8; keto (minor) δ188.6, 181.5, 159.6, 147.1, 103.6, 55.6, 32.9, 31.1, 15.5; MS (ESI): (M+Na)⁺ = 218.8.

4b was obtained as a yellow solid: mp 95-97°C; yield 1.90g (7.34 mmol, 72%); ¹H NMR (CDCl₃) enol (major) δ 14.9 (s, 1H), 12.2 (br, OH), 7.81 (d, J = 8.3 Hz, 2H) 7.47 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 6.8 Hz, 1H), 5.71 (s, 1H), 2.47 (s, 3H), 2.11 (s, 3H); keto (minor) δ 12.2 (br, OH), 7.81 (d, J = 8.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 6.8 Hz, 1H) 3.89 (s, 2H), 2.46 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃) enol (major) δ188.6, 181.2, 158.7, 147.1, 137.2, 129.2, 126.9, 120.9, 100.5, 96.8, 22.5, 15.6; keto (minor) δ188.6, 181.2, 158.7, 147.1 137.2, 129.2, 126.9, 120.9, 100.5, 54.9, 30.9, 15.3; MS (ESI) (M + Na)⁺ = 281.1.

1,3,6-Trimethylpyrano[2,3-c]pyrazole-4(1H)-one (1) and 3,6-Dimethyl-1-phenylpyrano[2,3-c]pyrazole-4(1H)-one (2). Concentrated sulfuric acid (0.30 ml) was added dropwise to a solution of 4a (0.60 g, 3.06 mmol) or 4b (1.33g, 5.15 mmol) in glacial acetic acid (15 ml) and the mixture was heated at reflux for 1 hour and cooled to room temperature.

In the case of the N-methyl compound, the resulting solution was neutralized with saturated aqueous sodium carbonate and extracted with dichloromethane (40 mL). The extract was dried (sodium sulfate) and concentrated to give crude 1 (0.49g), which was recrystallized from ethyl acetate.

In the case of the N-phenyl compound, the resulting solution was poured into cold water (50 mL). The precipitate was collected by filtration and washed with aqueous sodium carbonate (5%), water, and dried to furnish crude 2 (1.22 g) which was recrystallized from acetonitrile.

1 was obtained as white crystalline solid; mp 154-155°C, yield 0.40g (2.27 mmol, 74%); ¹H NMR (CDCl₃) δ5.94 (s, 1H), 3.80 (s, 3H), 2.51 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃) δ176.2, 161.6, 154.8, 145.7, 112.4, 105.5, 34.1, 19.8, 14.2; UV(CH₃CN) 250 nm(ε = 9,608 L mol⁻¹ cm⁻¹)
and 206.0 (ε = 14,764 L mol⁻¹ cm⁻¹); MS (ESI): (M + H)⁺ = 179.1; Anal. Calcd. for C₉H₁₀N₂O₂: C 60.66; H 5.66; N 15.72. Found: C 60.52; H 5.94; N 15.43.

2 was obtained as colorless crystals: mp 148-149°C (lit.²² 150°C); yield 0.99g (4.12 mmol, 80%); ¹H NMR (CDCl₃) δ7.77 (d, J = 8.6 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 6.04 (s, 1H) 2.62 (s, 3H), 2.40 (s, 3H); ¹³C NMR (CDCl₃) δ175.7, 161.6, 153.5, 146.8, 137.1, 129.4, 127.3, 120.9, 112.6, 106.8, 19.6, 14.0; UV(CH₃CN) 242.5 (ε = 24,646 L mol⁻¹ cm⁻¹) [Lit²² (EtOH) 244 nm (ε = 23.0 x 10³)]; MS (ESI): (M + Na)⁺ = 263.2.

Ethyl 5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carboxylate (9). Diethyl 2-acetylmalonate (11). Sodium hydride (60% dispersion, 30 mmol, 1.20 g) and tetrahydrofuran (25 mL) were added to a round bottom flask which had been flame-dried and flushed with argon. The mixture was cooled to 0°C. Dieethyl malonate was added to the stirred mixture and after 15 minutes at 0°C, acetyl chloride (562 mmol, 40 mL) was added dropwise. The resulting solution was stirred for 1 hour at 0°C and 12 hours at room temperature. The resulting solution was concentrated under vacuum, cooled to 0°C, and quenched with water (25 mL), and the aqueous mixture extracted with dichloromethane (2 x 20 mL). The combined extract was dried (Na₂SO₄), concentrated, and the residual oil purified by bulb-to-bulb distillation (90°C, 0.25 mm) to give 11 as a colorless liquid; yield 3.03 g (150.0 mmole, 60%); ¹H NMR (CDCl₃) δ13.7 (s, OH), 4.41 (s, 1H) 4.20-4.29 (m, 4H), 2.17-2.32 (m, 3H), 1.25 – 1.32 (m, 6H); ¹³C NMR (CDCl₃) major (enol) δ181.5, 171.9, 166.8, 101.5, 61.6, 62.2, 21.5, 14.8, 14.7; minor (keto) δ197.5, 165.2, 66.6, 63.3, 29.8, 14.6; MS (ESI): (M + Na)⁺ = 225.0.

Ethyl 5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carboxylate (9). Methylhydrazine (0.044 g, 1.0 mmol) was added to a solution of 11 (0.21 g, 1.0 mmol) and concentrated hydrochloric acid (0.20 mL) in ethanol (10 mL). After the mixture was heated at reflux for 2 hours and cooled to room temperature, the resulting solution was treated with water (10 mL) and extracted with dichloromethane (20 mL). The extract was dried (Na₂SO₄) and evaporated to give 9 (0.17g) which was recrystallized from acetonitrile to give 9 as colorless crystals: mp 124-125°C (Lit²⁷ 142-143°C); yield 0.114 g (0.62 mmol, 62%); ¹H NMR (CDCl₃) δ9.24 (br, OH), 4.28 (q, J=7.1 Hz, 2H), 3.58 (s, 3H) 2.29 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), ¹³C NMR (CDCl₃) δ167.2, 157.7, 147.6, 92.7, 60.7, 33.3, 14.8, 14.6; MS (ESI): (M + H)⁺ = 185.3.

Ethyl 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carboxylate (13). Phenylhydrazine (0.11 g, 1.08 mmol) was added to a solution of 11 (0.21 g, 1.0 mmol) and concentrated hydrochloric acid (0.20 mL) in ethanol (10 mL). After the mixture was heated at reflux for 2 hours and cooled to room temperature, the resulting solution was treated with water (10 mL) and extracted with dichloromethane (20 mL). The extract was dried (Na₂SO₄) and evaporated to give 13 (0.221 g) which was recrystallized from aqueous methanol to give 13 as a white crystalline product: mp 114-115°C (Lit²⁸ 114-115 °C); yield 0.150 g (0.610 mmol, 61%); ¹H NMR (CDCl₃) δ 10.1 (br, OH), 7.75 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 8.3 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 4.30 (q, J = 7.3 Hz, 2H), 2.36 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H), ¹³C NMR (CDCl₃) δ167.7, 157.8, 148.9, 137.9, 129.5, 127.1, 121.5, 94.1, 61.0, 14.8; MS(ESI): (M + H)⁺ = 247.4.
Irradiation procedures

Analytical scale. A solution of the pyranopyrazole 1 or 2 (3.0 mL, 2.0 x 10^{-2} M) in either acetonitrile or ethanol was placed in a quartz tube (7.0 mm i.d. x 10.0 cm long), sealed with a rubber septum, purged with argon for 10 minutes and irradiated in a Rayonet reactor equipped with 14 low pressure mercury lamps. Aliquots (5.0 microliters) were removed periodically for analysis by HPLC.

Preparative scale. A solution of the pyranopyrazole 1 or 2 (20.0 mL, 2.0 x 10^{-2} M) in either acetonitrile or ethanol was placed in a quartz tube (1.0 cm i.d. x 22.0 cm long), sealed with a rubber septum, purged with argon for 20 minutes and irradiated in a Rayonet reactor equipped with 14 low pressure mercury lamps. Aliquots (5.0 microliters) were removed periodically for analysis by HPLC.

Irradiation of 1 in acetonitrile. Preparative-layer chromatography of the residue after evaporation of the solvent showed a band at Rf = 0.40 due to unconsumed reactant and a second band at Rf = 0.25 which provided dimer 5 as a white crystalline solid, mp 229-230°C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.78 (s, 6H), 2.28 (s, 6H), 3.41 (s, 6H), 3.22 (s, 2H);
\(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.2, 28.3, 33.6, 60.6, 86.3, 101.0, 147.4, 157.5, 180.0; IR (powder) 3983, 2944, 1658, 1563, 1491, 1106, 755, 682 cm\(^{-1}\); MS, M/Z (%) 356 (58), 218 (100), 139 (84), 80 (55). Anal. Calcd. for C\(_{18}\)H\(_{20}\)N\(_4\)O\(_4\): C, 60.67; H, 5.66; N, 15.72. Found: C, 60.60; H, 5.56; N, 15.52.

Irradiation of 1 in ethanol. Preparative layer chromatography of the residue after evaporation of the solvent showed a band at Rf = 0.40 due to unconsumed reactant, a band at Rf = 0.25 due to dimer 5, and a band at Rf = 0.30 which provided ethyl ester 9 as a white crystalline solid, mp 124-125°C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 9.24 (br. s, D\(_2\)O exchangeable, 1H), 4.28 (q, J = 7.0 Hz, 2H), 3.58 (s, 3H), 2.29 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H; \(^{13}\)C NMR (CDCl\(_3\)) 167.2, 157.7, 147.6, 92.7, 60.7, 33.3, 14.8, 14.6; MS(ESI); (M + H)\(^+\) =185.3.

Irradiation of 2 in acetonitrile. Preparative layer chromatography of the residue after evaporation of the solvent showed a band at Rf = 0.45 due to unconsumed reactant 2 and a second band at Rf = 0.5 which provided dimer 10 as a white crystalline solid, mp 180-181°C; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.82 (s, 3H), 2.28 (s, 3H), 3.23 (s, 1H), 7.47 (d, 2H, J=7.6 Hz), 7.39 (t, 2H, J=7.3 Hz), 7.26 (t, 1H, J=7.6 Hz); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 180.0, 156.7, 148.6, 137.0, 127.5, 121.3, 101.7, 87.8, 60.3, 28.3, 14.1; IR (powder) 3071, 2996, 2971, 1672, 1524, 1487 cm\(^{-1}\); MS, M+H/Z (%) 481 (67), 281, (15), 241 (28), 219 (29), 201 (30), 157(45), 139 (33), 124 (21), 82 (100). Anal. Calcd. for C\(_{28}\)H\(_{24}\)N\(_4\)O\(_4\): C, 69.99; H, 5.03; N 11.66. Found : C,69.75; H, 4.75; N, 11.41.
Irradiation of 2 in ethanol. Preparative-layer chromatography of the residue after evaporation of the solvent showed a band at Rf = 0.45 due to unconsumed reactant 2, a band at Rf = 0.5 due to dimer 10, and a band at 0.80 that provided ethyl ester 13 as a white crystalline compound, mp 114-115°C; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 10.1 (br. s, 1H, D\(_2\)O exchangable), 7.75 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 8.3 Hz, 2H), 7.25 (t, J = 6.0 Hz, 1H), 4.30 (q, J = 7.3 Hz, 2H), 2.36 (s, 3H), 1.33 (t, J = 7.3 Hz, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 167.7, 157.8, 148.9, 137.9, 129.2, 127.1, 121.5, 94.1, 61.0, 14.79, 14.78; IR (powder) 3063, 3039, 2985, 2930, 1693, 1530, 1499 cm\(^{-1}\); MS: M+H/Z (%) 247 (100), 219 (46), 207 (12), 201 (70), 185 (14), 158 (13), 139 (16).

Determination of X-ray crystal structures. Single crystal X-ray diffraction data were collected on a Bruker SMART/CCD diffractometer with graphite monochromated Mo-K\(_\alpha\) radiation and equipped with an LT-II low temperature device. Diffraeted data were corrected for absorption using the SADABS program. SHELXS-86 and SHELXL-93 software were used to solve and refine structures. Refinement was based on F\(^2\). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were fixed in calculated positions and refined isotropically with thermal parameters based upon the corresponding attached carbon atoms [U(H) = 1.2 Ueq (C)]. Crystallographic data for 5c. C\(_{18}\)H\(_{20}\)N\(_4\)O\(_4\), colorless plate, 153(2) K, \(M = 356.38\), monoclinic, space group C2/c, \(a = 13.915(2)\) Å, \(b = 9.0941(15)\) Å, \(c = 13.137(2)\) Å, \(\beta = 96.129(3)\) °, \(V = 1653.0(5)\) Å\(^3\), \(Z = 4\), \(D_c = 1.43\) g/cm\(^3\), Mo-K\(_\alpha\), \(\mu = 0.104\) mm\(^{-1}\), 1370 data with \(I > 2\sigma(I)\), \(R = 0.046\), \(R_w = 0.096\). Data were collected on a Bruker SMART CCD and structural determination was carried out using Bruker SHELXTL software. CCDC reference number 693018.

Acknowledgements

Vuthichai Ervithayasuporn acknowledges financial support from The Development and Promotion of Science and Technology Talent Project, Bangkok, Thailand.

References

23. Although compounds 4a, 4b and 2 (see also reference 24) have been described in the literature, 1 has not been previously reported.
24. Kahn, M. A.; Pagotto, M. C.; Ellis, G. P. Heterocycles 1977, 6, 983.
25. The weaker n,π* absorption transitions were not observed and are presumably buried under the more intense π,π* absorptions.