Synthesis, and antimicrobial activity of 2,10-dichloro–6- substituted aminobenzyl–12\(H\)–dibenzo \([d, g]\)[1,3,2]dioxaphosphocin– 6–oxides

B. Siva Kumar\(^a\), A. Uma Ravi Sankar\(^a\), C. Suresh Reddy\(^a\)*, S.K. Nayak,\(^b\) and C. Naga Raju\(^a\)

\(^a\) Department of Chemistry, Sri Venkateswara University, Tirupati – 517502, India
\(^b\) Bio-Organic Chemistry Division, BARC, Mumbai – 400085
E-mail: csureshsvu@yahoo.com

Abstract
Novel 2,10-dichloro-6-substituted aminobenzyl-12\(H\)-dibenzo[\(d,g\)][1,3,2] dioxaphosphocin-6-oxides (5a-n) have been synthesized in excellent yields from three component one-pot reaction of aldehydes, anilines and 2,10-dichloro-12\(H\)-dibenzo \([d,g]\)[1,3,2] dioxaphosphorobromodite(3)/corresponding cyclic hydrogen phosphite(4) in dry toluene. The title compounds were characterized by elemental analysis, IR, \(^1\)H, \(^13\)C, and \(^31\)P NMR spectroscopy, and mass spectral studies and exhibited moderate antimicrobial activity.

Keywords: 5,5’- Dichloro-2,2’- dihydroxy biphenylmethane, 2,10-dichloro-12\(H\)-dibenzo[\(d,g\)] [1,3,2] dioxaphosphorobromodite, dioxaphosphocin, antimicrobial activity

Introduction
A new class of \(\alpha\)-aminophosphonates structurally resembling \(\alpha\)-amino acids\(^1\) has attracted much interest as enzyme inhibitors,\(^2\) antibiotics, pharmacological agents,\(^3\) and herbicides.\(^4\) A large number of \(\alpha\)-aminophosphonates have been synthesized by using acyclic hydrogen phosphites over the past few years under different reaction conditions.\(^5\)\(\text{\textendash}10\) However the preparation of \(\alpha\)-aminophosphonates from cyclic hydrogen phosphites is rare. In view of this, preparation of \(\alpha\)-aminophosphonates in a one-pot three component reaction containing a cyclic hydrogen phosphite, an aldehyde and amine has been accomplished and the products have been characterized by elemental analysis, IR, \(^1\)H, \(^13\)C and \(^31\)P NMR spectroscopy and mass spectral studies. Their antimicrobial activity has also been evaluated.
Results and Discussion

The synthesis (Scheme 1) involves cyclisation of 5,5'-dichloro-2,2'-dihydroxybiphenyl-methane(1) with phosphorus tribromide(2) at 0°C under inert and dry conditions in toluene to afford the corresponding phosphorobromodite (3). Hydrolysis of 3 gave the corresponding cyclic hydrogen phosphite (4)\(^{11}\). The reaction of both phosphorobromodite (3)/ cyclic hydrogenphosphite (4) with various aldehydes and amines in dry toluene at 50-60°C afforded the title compounds in good yields. They were purified by column chromatography on 60-120 mesh silica gel using ethyl acetate-hexane (1:2) as an eluent. Out of the two routes carried out for the preparation of the title compounds (5a-n), that involving cyclic hydrogen phosphite (4) is found to be better than that of the phosphorobromodite (3). Further the intermediate (3) is highly hygroscopic and difficult to handle when compared to the cyclic hydrogen phosphite (4) which could obtained as a stable product in high yield.
The IR spectra of (5a-n) showed absorption bands12-14 at 3305-3396, 1226-1267 and 763-745 cm-1 for NH, P=O and P-C respectively. Their 1H NMR spectra showed complex multiplets at \(\delta \) 6.54 – 8.52 for aromatic protons. The bridged methylene protons (12H) signals appeared as a doublet in the region 3.62-3.74 ppm (\(J = 13.2-14.8 \) Hz) and another doublet of doublet in the region 4.24-4.45 ppm (\(J = 3.7-4.5 \) Hz) indicating their non-equivalence.15,16 The coupling constant \(J = 13.2-14.8 \) Hz is rationalized as geminal coupling (2\(J_{\text{H-H}} \)) between bridged methylene protons. The small coupling (\(J = 3.7-4.5 \) Hz) is attributed to the long range coupling of one of the methylene protons (5\(J_{\text{H-P}} \)) with phosphorus. The dioxaphosphocin ring system in all these compounds (5a-n) appeared to exist in a boat-like conformation (Figure 2) which facilitates the coupling between the phosphorus and one of the methylene protons16. The N-H proton resonated as a singlet at 5.24-6.28 ppm.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2}
\caption{Figure 2}
\end{figure}

Their 13C chemical shifts were interpreted based on comparison with those of basic structural units present in them. The oxygen-bearing C(4a) and C(7a) gave signals in the down field region
at 149.0-151.4 ppm. The doublet at $\delta_{121.0-123.0}$ was assigned to the C-11a & C-12a. The chemical shift in the region 130.1-132.3 ppm was assigned to chlorine-bearing C-2 & C-10. The α-carbon of the side chain directly attached to phosphorus exhibited a doublet at $\delta_{58.2-59.6}$ ($^{2}J_{C-P} = 131.4 -138.2$ Hz) due to its coupling with phosphorus. The bridged C-12 gave a singlet at 33.2–36.6 ppm. 31P NMR chemical shifts appeared as singlets in the region 30.2 - 45.4 ppm.

All the compounds exhibited molecular ion peaks at their respective molecular weights in their mass spectra. The mass spectrum of 5b is rationalized in Scheme 2.

Scheme 2

Antimicrobial activity
Compounds 5a-n were screened for their antibacterial activity against *Staphylococcus aureus* (gram +ve) and *Escherichia coli* (gram-ve) by the disc-fusion method in nutrient agar medium at various concentrations (250,500 mg/disc) in dimethyl formamide (DMF). These solutions were
added to each filter disc and DMF was used as control. The plates were incubated at 35°C and examined for zone of inhibition around each disc after 24 h. The results were compared with the activity of the standard antibiotic Penicillin (250mg/disc). Their antifungal activities were evaluated against *Aspergillus niger* and *Fusarium oxysporium* at different concentrations (250,500 mg/disc) and Griseofulvin was used as the reference compound. Fungal cultures were grown on potato dextrose broth at 25°C and spore suspension was adjusted to 10^5 spore/mL. Most of the compounds showed moderate activity against bacteria and low activity on fungi.

Table 1. Antibacterial activity of 5a-n

<table>
<thead>
<tr>
<th>Compd</th>
<th>Zone of inhibition(mm)</th>
<th>Staphylococcus aureus</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>250^a^mg/disk</td>
<td>500^a^mg/disk</td>
</tr>
<tr>
<td>5a</td>
<td></td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>5d</td>
<td></td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5e</td>
<td></td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>5f</td>
<td></td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5g</td>
<td></td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>5h</td>
<td></td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5i</td>
<td></td>
<td>6</td>
<td>09</td>
</tr>
<tr>
<td>5j</td>
<td></td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5k</td>
<td></td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5l</td>
<td></td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>5m</td>
<td></td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5n</td>
<td></td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Penicillin^b</td>
<td></td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

^a Concentration in ppm, ^b standard reference.

Table 2. Antifungal activity of 5a-n

<table>
<thead>
<tr>
<th>Compd</th>
<th>Zone of inhibition(mm)</th>
<th>Curvularia lunata</th>
<th>Aspergillus niger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>250^a^mg/disk</td>
<td>500^a^mg/disk</td>
</tr>
<tr>
<td>5a</td>
<td></td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>14</td>
<td>08</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>5d</td>
<td></td>
<td>13</td>
<td>09</td>
</tr>
<tr>
<td>5e</td>
<td></td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>5f</td>
<td></td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>
Griseofulvinb & 23 & 26 \\
\hline
a Concentration in ppm, b Standard reference.

Experimental Section

General Procedures. Melting points were determined in open capillary tubes on a Mel-Temp apparatus and were uncorrected. IR spectra (ν_{max} in cm$^{-1}$) were recorded in KBr pellets on Perkin Elmer 1000 unit. The 1H, 13C & 31P NMR spectra were recorded on Varian Gemini 300 and Varian AM X 400 MHz NMR spectrometers operating at 300 or 400 MHz for 1H, 75.46 or 100.57 MHz for 13C and 121.7 MHz for 31P. All compounds were dissolved in DMSO-d$_6$ and chemical shifts were referenced to TMS (1H & 13C) and 85% H$_3$PO$_4$ (31P). Microanalytical data were obtained from Central Drug Research Institute, Lucknow, India.

Synthesis of 2,10-dichloro-12H-dibenzo [d,g] [1,3,2]dioxaphosphorobromodite (3)/ corresponding cyclic hydrogen phosphite (4). A solution of slight excess of phosphorus tribromide (1.35 g, 0.005 mole) in dry toluene (25 mL) was added dropwise to a well stirred solution of 5,5'-dichloro 2,2'-dihydroxy biphenyl methane (1.35 g, 0.005 mole) and triethylamine (1.01 g, 0.001 mole) in dry toluene (20 mL) at 0°C. After addition, the temperature of the reaction mixture was slowly raised and kept at 50-60°C for 2 hours. The reaction was monitored by TLC analysis. After cooling to room temperature, it was filtered to remove triethylamine hydrobromide. The filtrate was rotaevaporated. The residue (3), after washing with petroleum ether, was used for the next step without further purification.

To a cold solution of 3 in dry toluene, was added water (50 mL) dropwise with effective stirring. The first few drops of water were added very slowly at 5-10°C. After an additional one hour at room temperature the organic layer was separated, diluted with toluene and washed successively with 5% HCl solution (15 mL), 5% NaHCO$_3$ solution (30 mL) and water. The dried toluene layer was removed in vacuo. The oily compound obtained solidified when refrigerated overnight. It was recrystallised from petroleum ether (60-80°C). m.p.147-149°C. Yield 82%.
2,10-Dichloro-6-(4-chlorophenyl) amino-4-methoxybenzyl-12H-dibenzo[d,g] [1,3,2]dioxaphosphocin-6-oxide(5b). General procedure
To a concentrated solution of phosphorobromodite 3, 4-methoxybenzaldehyde (0.73 g, 0.005 mole) and 4-chloroaniline (0.64 g, 0.005 mole) were added and the solution was refluxed for one hour. The progress of the reaction was monitored by TLC analysis. After cooling to room temperature the solvent was removed in vacuo and the residue was washed with petroleum ether and column chromatographed on 60-120 mesh silica gel using ethyl acetate: hexane (1:2) as an eluent. Yield 2.39 g. Alternatively the same compound 5b was synthesized by refluxing hydrogen phosphite (4) (1.58 g, 0.005 mole), 4-methoxybenzaldehyde (0.73 g, 0.005 mole) and 4-chloroaniline (0.64 g, 0.005 mole) in dry toluene for 30 minutes. Yield 2.39 (85%), m.p. 159 – 162°C; IR (KBr): 3337 (CN-H), 1252 (P=O), 756 (P-C) cm⁻¹; ¹H NMR (DMSO-d₆) δ 6.55-7.96 (m, 14 H), 5.61 (s, 1H, N-H), 5.12 (d, J=23.2Hz, 1H, P-CH), 4.36 (dd, J = 13.2, 3.9 Hz, 1H, CH₂), 3.59 (d, J = 13.5 Hz, 1H, CH₂), 3.42 (s, 3H, OCH₃); ¹³C NMR (DMSO-d₆); δ 129.52(s, 2C, C-1 & 11), 132.01 (s, 2C, C-2 & 10), 128.38 (s, 2C, C-3 & 9), 124.63 (s, 2C, C – 4 & 8), 149.92 (d, J= 7.1 Hz, 2C, C-4a & 7a), 132.58 (s, 2C, C -11a & 12a), 33.05 (s, 1C, C -12), 126.63 (s, 1C, C- 1'), 129.59 (s, 2C, C- 2' & 6''), 114.49 (s, 2C, C – 3' & 5''), 155.70 (s, 1C, C-4'), 149.29 (s,1C, C-1''), 118.24 (s, 2C, C-2'' & 6''), 130.65 (s, 2C, C – 3'' & 5''), 125.42 (s, 1C, C- 4''), 55.08 (d, J = 131.4 Hz,1C,P-CH), 54.3 (s,1C,OCH₃). 31P NMR (DMSO-d₆): δ 35.25 Mass data 561(50.3), 530 (28.6), 526(29.4), 494 (49.6), 440 (19.6), 328 (41.2), 314 (32.1), 268 (100), 250 (28.4). Anal. Calcd for C₂₇H₂₁NO₄Cl₃P: C, 57.83; H, 3.77; N, 2.50: Found: C, 57.94; H, 3.84; N, 2.56 %.

2,10-Dichloro-6-(4-fluorophenyl)amino-4-methoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin-6-oxide (5a). Yield 2.26 (83%), m.p. 182 – 185°C; IR (KBr): 3309 (CN-H), 1234 (P=O), 749 (P-C) cm⁻¹; ¹H NMR (DMSO-d₆) δ 6.80-7.81 (m, 14 H), 5.52 (brs, 1H, N-H), 5.18 (d, J= 23.4 Hz, 1H, C₂H₃) 3.38 (s,3H, OCH₃); ¹³C NMR (DMSO-d₆); δ 129.49(s, 2C, C-1 & 11), 131.84 (s, 2C, C-2 & 10), 128.37 (s, 2C, C-3 & 9), 124.61 (s, 2C, C – 4 & 8), 149.04 (d, J= 6.9 Hz, 2C, C-4a & 7a), 133.58 (d, J= 4.3 Hz, 2C, C -11a & 12a), 33.08 (s, 1C, C-1'), 126.84 (s, 1C, C-1''), 129.72 (s, 2C, C-2' & 6''), 114.2 (s, 2C, C – 3' & 5''), 154.01 (s, 1C, C-4''), 54.37(s,1C,OCH₃). 3¹P NMR: δ 37.19 Anal. Calcd for C₂₇H₂₁NO₄Cl₂F:P; C, 60.01; H, 4.50; N, 2.50: Found: C, 60.63; H, 4.55; N, 2.57 %.

2,10-Dichloro-6-(4-methylphenyl)amino-4-methoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5c). Yield 2.33 (86%), m.p. 174 – 176°C; IR (KBr) : ν 3342 (CN-H), 1234 (P=O), 761 (P-C) cm⁻¹; ¹H NMR: δ 8.12 - 6.72 (m, 14 H), 5.72 (s, 1H, N-H), 5.06 (d, J= 24.1 Hz, 1H, P-CH), 4.28 (dd, J = 13.2,3.8 Hz, 1H, CH₂), 3.67 (d, J = 13.7 Hz, 1H, CH₂), 3.36 (s, 3H, OCH₃), 1.92 (s, 3H, CH₃); ¹³C NMR; δ 129.52 (s, 2C, C-1 & 11), 132.01 (s, 2C, C-2 & 10), 123.51 (s, 2C, C-3 & 9), 124.67 (s, 2C, C – 4 & 8), 148.11 (d, J= 7.3 Hz 2C, C-4a & 7a), 133.61 (d, J= 4.2 Hz 2C, C -11a & 12a), 33.18 (s, 1C, C -12), 127.68 (s, 1C, C –1'), 129.78(2C, C- 2' & 6''), 114.12 (s, 2C, C – 3' & 5''), 154.87 (s, 1C, C-4''), 149.01 (s,1C, C-1''), 118.52 (s, 2C,
C-2" & 6"), 130.56 (s, 2C, C - 3" & 5"), 128.09 (s, 1C, C - 4"), 55.58 (d, J = 137.5 Hz, 1C, P-CH), 54.31 (s, 1C, OCH3), 20.80 (s,1C, C - 4" (CH3)); 31P NMR: δ 38.29 Anal. Calcd for C28H24NO4Cl2P: C, 62.24; H, 4.47; N, 2.59; Found: C, 62.29; H, 4.47; N, 2.68%

2,10-Dichloro-6-(4-methoxyphenyl)amino-4-methoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5d). Yield 2.32 (83%), m.p. 203-206°C; IR (KBr) : 3355 (CN-H), 1248 (P=O), 756 (P-C) cm⁻¹; 1H NMR: δ 7.82-6.54 (m, 14 H), 5.79 (s, 1H, N-H), 4.98 (d, J = 23.8 Hz, 1H, P-CH), 4.37 (dd, J = 13.2,3.4 Hz, 1H, CH 2), 3.69 (d, J = 13.8 Hz, 1H, CH2), 3.42, 3.33 (s, 6H, (OCH3)2); 13C NMR; δ 129.34(s, 2C, C-1 & 11), 131.97 (s, 2C, C-2 & 10), 128.81 (s, 2C, C-3 & 9), 124.13 (s, 2C, C – 4 & 8), 148.32 (d, J= 7.1 Hz, 2C, C-4a & 7a), 133.92 (d, J= 4.3 Hz, 2C, C -11a & 12a), 33.24 (s, 1C, C -12), 127.57 (s, 1C, C- 1’), 129.67 (s, 2C, C- 2’ & 6’), 113.97 (s, 2C, C – 3’ & 5’), 156.78 (s, 1C, C-4’), 145.09 (s,1C, C-1’’), 117.92 (s, 2C, C-2" & 6''), 116.58 (s, 2C, C - 3" & 5"), 150.12 (s, 1C, C- 4''), 55.11 (d, J = 136.3 Hz, 1C, PCH), 54.9(s, 2C, (OCH3)2); 31P NMR: δ 35.25 Anal. Calcd for C28H24NO5Cl2P: C, 60.45; H, 4.35; N, 2.52; Found: C, 60.53; H, 4.44; N, 2.58%

2,10-Dichloro-6-(4-fluorophenyl)amino-3-nitrobenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5e). Yield 2.19 (78%), m.p. 191-194°C; IR (KBr) : 3349 (CN-H), 1259 (P=O), 758 (P-C) cm⁻¹; 1H NMR: δ 8.04 - 6.58 (m, 14 H), 5.56 (s, 1H, N-H), 4.98 (d, J= 24.4 Hz, 1H, P-CH), 4.32 (dd, J = 13.3,3.3 Hz, 1H, CH 2), 3.69 (d, J = 13.7 Hz, 1H, CH2); 13C NMR: δ 129.81 (s, 2C, C-1 & 11), 132.07 (s, 2C, C-2 & 10), 128.42 (s, 2C, C-3 & 9), 124.21 (s, 2C, C – 4 & 8), 150.64 (d, J= 7.1 Hz, 2C, C-4a & 7a), 133.68 (d, J= 4.0 Hz, 2C, C -11a & 12a), 33.21 (s, 1C, C -12), 135.12 (s, 1C, C- 1’), 124.92(s, 2C, C- 2’),148.2(s,1C,C-3’), 124.3(s,1C,C- 4’), 130.12(s,1C,C-5’),132.1(s,1C,C-6’),150.34 (s,1C, C-1"), 118.32 (s, 2C, C-2" & 6"), 116.56 (s, 2C, C - 3" & 5"), 150.02 (s, 1C, C- 4"), 55.01(d, J = 135.7 Hz, 1C, P-CH); 31P NMR: δ 28.18 Anal. Calcd for C26H18N2O5FCl2P: C, 56.36; H, 3.85; N, 4.87; Found: C, 56.42; H, 3.94; N, 4.94%

2,10-Dichloro-6-(4-chlorophenyl)amino-3-nitrobenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5f). Yield 2.51 (87%), m.p. 174-177°C; IR (KBr) : 3327 (CN-H), 1262 (P=O), 761 (P-C) cm⁻¹; 1H NMR: δ 8.12 - 6.49 (m, 14 H), 5.61 (s, 1H, N-H), 5.01 (d, J= 23.6 Hz, 1H, P-CH), 4.31 (dd, J = 13.2,3.4 Hz, 1H, CH 2), 3.68 (d, J = 13.7 Hz, 1H, CH2), 1.96
(s,3H, CH₃); ¹³C NMR: δ 129.39 (s, 2C, C-1 & 11), 132.01 (s, 2C, C-2 & 10), 128.42 (s, 2C, C-3 & 9), 124.34 (s, 2C, C- 4 & 8), 148.91 (d, J= 7.2 Hz, 2C, C-4a & 7a), 132.49 (d, J= 4.4 Hz, 2C, C-1a & 12a), 33.34 (s, 1C, C -12), 136.01 (d, J= 7.3 Hz, 2C, C-4a & 7a), 133.49 (d, J= 4.4 Hz, 2C, C-11a & 12a), 124.13 (s,1C,C- 2'), 148.14 (s,2C, C - 3'' & 5''), 128.89(s,1C,C- 4''), 55.02(d, J = 134.8 Hz, 1C, P-CH),23.03(s,1C,4'-CH₃); 3¹PNMR: δ 42.3

Anal. Calcd for C₂₇H₂₁N₂O₅Cl₂P: C, 58.39; H, 3.81; N, 5.04; Found: C, 58.46; H, 3.85; N, 5.09%

2,10-Dichloro-6-(4-methoxyphenyl)amino-3-nitrobenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5h). Yield 2.52 (88%), m.p.159-162°C; IR (KBr) : 3318 (CN-H), 1242 (P=O), 759 (P-C) cm⁻¹; ¹H NMR: δ 8.04 - 6.72 (m, 14 H), 5.21 (s, 1H, N-H), 5.17 (d, J= 23.7 Hz, 1H, P-CH), 4.29 (dd, J = 13.1,3.3 Hz, 1H, P-CH), 4.29 (dd, J = 13.1,3.3 Hz, 1H, CH₂), 3.61 (d, J= 13.8 Hz, 1H, CH₂), 3.41 (s, 3H, OCH₃); 13C NMR: δ 130.04 (s, 2C, C-1 & 11), 132.04 (s, 2C, C-2 & 10), 128.11 (s, 2C, C-3 & 9), 124.41 (s, 2C, C – 4 & 8), 150.42 (d, J= 7.3 Hz, 2C, C-4a & 7a), 133.62 (d, J= 3.9 Hz, 2C, C -11a & 12a), 33.39 (s, 1C, C -12), 135.32 (s, 1C, C- 1'), 124.53 (s,1C,C- 2'), 148.21(s,1C, C-3'), 125.78 (s,1C,C-4'), 129.57 (s,1C,C-5'), 132.62(s,1C,C-6'), 146.12 (s,1C, C-1''), 117.61 (s, 2C, C-2'' & 6''), 115.78 (s, 2C, C – 3'' & 5''), 149.93 (s, 1C, C- 4''), 55.14(d, J = 135.8 Hz, 1C, P-CH), 54.90 (s, 1C, OCH₃); 3¹PNMR: δ 33.12. Mass data: 571(13.4), 525(7.9), 489(31.6), 436(33.4), 328 (16.8), 315(19.3), 314(100), 268(14.5). Anal. Calcd for C₂₇H₂₁N₂O₆Cl₂P: C, 56.76; H, 3.70; N, 4.99%; Found: C, 56.81; H, 3.75; N, 4.96%

2,10-Dichloro-6-(4-chlorophenyl)amino-4-N,N-dimethylaminobenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5i). Yield 2.33 (81%), m.p. 147-149°C; IR (KBr) : 3391 (CN-H), 1258 (P=O), 759 (P-C) cm⁻¹; ¹H NMR: δ 7.89 - 6.62 (m, 14 H), 5.82 (s, 1H, N-H), 5.34 (d, J= 23.9 Hz, 1H, P-CH), 4.42 (dd, J = 12.9,3.4 Hz, 1H, CH₂), 3.69 (d, J= 13.6 Hz,1H,CH₂), 2.72 (s, 6H, (CH₃)₂); ¹³C NMR: δ 129.59 (s, 2C, C-1 & 11), 131.84 (s, 2C, C-2 & 10), 128.22 (s, 2C, C-3 & 9), 124.41 (s, 2C, C – 4 & 8), 150.92 (d, J= 7.1 Hz, 2C, C-4a & 7a), 132.92 (d, J= 4.1 Hz, 2C, C -11a & 12a), 33.18 (s, 1C, C -12), 125.88 (s, 1C, C- 1'), 127.62(s, 2C, C- 2' & 6'), 115.11 (s, 2C, C – 3' & 5'), 146.92 (s, 1C, C-4'), 149.21 (s,1C, C-1''), 118.02 (s, 2C, C-2'' & 6''), 131.12 (s, 2C, C - 3'' &5''), 129.02 (s, 1C, OCH₃); ³¹PNMR: δ 41.04. Anal. Calcd for C₂₈H₂₄N₂O₃Cl₃P: C, 58.61; H, 4.22; N, 4.88; Found: C, 58.68; H, 4.27; N, 4.96%
CH), 39.23 (s, 2C, N(CH3)), 20.91 (s, 1C, CH3); 31P NMR: δ 36.02 Anal. Calcd for C29H27N2O3Cl2P: C, 62.94; H, 4.92; N, 5.06; Found: C, 63.01; H, 4.99; N, 5.16%

2,10-Dichloro-6-(4-methoxyphenyl)amino-4-N,N-dimethylaminobenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5k). Yield 2.54 (89%), m.p.181-183°C; IR (KBr) : 3336 (CN-H), 1239 (P=O), 757 (P-C) cm -1; 1H NMR: δ 7.92 - 6.59 (m, 14 H), 5.63 (brs, 1H, N-H), 5.29 (d, J= 24.1 Hz, 1H, P-CH), 4.41 (dd, J = 13.2,3.4 Hz, 1H, CH2); 13C NMR: δ 130.13 (s, 2C, C-1 & 11), 131.48 (s, 2C, C-2 & 10), 128.30 (s, 2C, C-3 & 9), 124.63 (s, 2C, C – 4 & 8), 150.11 (d, J= 7.0 Hz, 2C, C-4a & 7a), 132.98 (d, J= 4.1 Hz, 2C, C -11a & 12a), 33.18 (s, 1C, C -12), 124.91 (s, 1C, C- 1'), 127.65(s, 2C, C- 2' & 6'), 115.13 (s, 2C, C – 3' & 5'), 147.19 (s, 1C, C-4'), 145.09 (d, J = 133.3 Hz, 1C, P-CH), 56.12 (s,1C,OCH3), 39.18 (s,2C,N(CH3)2), 20.91 (s,1C,CH3); 31P NMR: δ 34.82 Anal. Calcd for C29H27N2O4Cl2P: C, 61.17; H, 4.78; N, 4.92; Found: C, 61.22; H, 4.86; N, 4.97%

2,10-Dichloro-6-(4-chlorophenyl)amino-3,4-dimethoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5l). Yield 2.55 (86%), m.p.175-177 °C; IR (KBr) : 3381 (CN-H), 1261 (P=O), 751 (P-C) cm -1; 1H NMR: δ 8.28 - 6.59 (m, 13 H), 5.61 (s, 1H, N-H), 5.19 (d, J= 23.8 Hz, 1H, P-CH), 4.24 (dd, J = 13.7,3.7 Hz,1H,CH2), 3.69 (d, J = 12.9 Hz,1H, CH2), 3.58 (s, 6H, (OCH3)2), 3.46 (s,3H, OCH 3); 13C NMR: δ 130.34 (s, 2C, C-1 & 11), 131.87 (s, 2C, C-2 & 10), 128.69 (s, 2C, C-3 & 9), 124.73 (s , 2C, C – 4 & 8), 149.37 (d, J= 6.9 Hz, 2C, C-4a&7a), 132.98 (d, J= 4.0 Hz, 2C, C-11a & 12a),33.29 (s,1C, C -12), 131.63 (s, 1C, C- 1'), 116.81 (s, 2C, C-2'), 145.18(s, 2C, C–3'),142.82 (s,1C,C-4'),115.3 (s,1C,C-5'),123.32 (s,1C,C-6'),148.82 (s,1C, C-1"), 117.32 (s, 2C, C-2" & 6"), 131.88 (s, 2C, C - 3" & 5"), 125.76 (s, 1C, C- 4"), 55.29 (d, J = 134.7 Hz, 1C, P-CH), 55.93 (s, 3C, (OCH 3)2); 31P NMR: δ 37.98 Anal. Calcd for C28H23NO5Cl3P: C, 56.92; H, 3.92; N, 2.37; Found: C, 56.96; H, 3.99; N, 2.47%

2,10-Dichloro-6-(4-methylphenyl)amino-3,4-dimethoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5m). Yield 2.34 (82%), m.p.204-207°C; IR (KBr) : 3372 (CN-H), 1242 (P=O), 762 (P-C) cm -1; 1H NMR: δ 8.18 - 6.78 (m, 13 H), 5.43(s, 1H, N-H), 5.21 (d, J= 23.1Hz, 1H, P-CH), 4.28 (dd, J = 13.3,3.2 Hz, 1H, CH2), 3.64 (d, J = 13.2 Hz,1H,CH2), 3.55 (s, 6H, (OCH3)2), 3.44 (s,3H, OCH3); 13C NMR: δ 130.42 (s, 2C, C-1 & 11), 132.32 (s, 2C, C -12), 130.42 (s,1C,C-4'),115.3 (s,1C,C-5'),123.32 (s,1C,C-6'),148.82 (s,1C, C-1"), 117.32 (s, 2C, C-2" & 6"), 131.88 (s, 2C, C - 3" & 5"), 125.76 (s, 1C, C- 4"), 55.29 (d, J = 134.7 Hz, 1C, P-CH), 55.93 (s, 3C, (OCH 3)2); 31P NMR: δ 37.98 Anal. Calcd for C29H26NO5Cl2P: C, 61.07; H, 4.59; N, 2.46; Found: C, 61.14; H, 4.63; N, 2.49%

2,10-Dichloro-6-(4-methoxyphenyl)amino-3,4-dimethoxybenzyl-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-oxide (5n). Yield 2.35 (80%), m.p.159-162°C; IR (KBr) : 3372 (CN-H), 1249 (P=O), 742 (P-C) cm -1; 1H NMR: δ 8.28 - 6.59 (m, 13 H), 5.61 (s, 1H, N-H), 5.19 (d, J= 24.1 Hz, 1H, P-CH), 4.24 (dd, J = 13.2,3.5 Hz, 1H, CH2), 3.69 (d, J = 12.8 Hz,1H,CH2), 3.58 (s, 6H, (OCH3)2), 3.46 (s,3H, OCH3); 13C NMR: δ 130.09 (s, 2C, C-1 & 11), 131.14 (s, 2C, C-2 &
10), 128.74 (s, 2C, C-3 & 9), 124.38 (s, 2C, C – 4 & 8), 150.37 (d, J= 7.3 Hz, 2C, C-4a & 7a),
133.68 (d, J= 4.2 Hz, 2C, C -11a & 12a), 33.29 (s, 1C , C -12), 131.81 (s, 1C, C- 1'), 114.42(s,
2C, C- 2'), 146.08 (s, 1C, C–3'),142.87 (s,1C ,C-4'),115.61 (s,1C,C-5'),122.11 (s,1C,C-6'), 146.21
(s,1C, C-1''), 117.43 (s, 2C, C-2'' & 6''), 115.97 (s,2C,C-3'' &5''), 150.89 (s, 1C, C- 4''), 55.29 (d,
J= 137.9 Hz, 1C, P-CH), 56.89 (s, 2C, (OCH 3)2),55.36 (s, 1C, (OCH 3)); 31P NMR: δ 44.32:
Anal. Calcd for C29H26NO6Cl2P: C, 59.40; H, 4.47; N, 2.39; Found: C, 59.46; H, 4.53; N, 2.47%

Acknowledgements

The authors express their thanks to Prof. C. Devendranath Reddy, Department of Chemistry, Sri
Venkateswara University, Tirupati for his academic interaction. One of the authors, Dr.CSR,
thanks DAE (BRNS), Mumbai, India for providing financial assistance.

References

Regulation 14,199, 1995.
2001, 2277.
Chem. 1998, 63, 4125.
31, 3587.