Study of tert-amino effect: the role of substituents in isomerization of 5-amino-4-vinyl-3(2H)-pyridazinones

Beáta Dajka-Halász,a Ágota A. Földi,a Krisztina Ludányi,b,c and Péter Mátyus*a*

aDepartment of Organic Chemistry, bDepartment of Pharmaceutics, Semmelweis University, Budapest, Hőgyes u. 7, 1092-Hungary
cChemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
E-mail: peter.matyus@szerves.sote.hu

This paper is kindly dedicated to Prof. Csaba Szántay on the occasion of his 80th birthday

Abstract
The thermal isomerization reaction of ortho-vinyl tert-anilines and their heterocyclic analogues via tert-amino effect affords tetrahydropyrido-fused heterocyclic ring systems with a new C-C bond formation between the vinyl and tert-amino groups. A novel series of 5-amino-4-vinyl-3(2H)-pyridazinone derivatives were prepared to study the role of substituents of the pyridazinone ring and the vinyl group in their isomerization reaction to tetrahydropyrido[2,3-d]pyridazines. In particular, 6-phenyl and 5-trioxopyrimidinediylmethylene substituents were found to significantly increase the rate of isomerization. Compounds possessing benzyl and methyl groups as amino substituents isomerized with the involvement of the benzyl group. On the basis of experiments with deuterated compounds, an intramolecular pathway was confirmed for the isomerization.

Keywords: tert-amino effect, pyridazine, steric buttressing, rearrangement, regioselective isomerization

Introduction
Type 2 tert-amino effect, originally the thermal isomerization of ortho-vinyl-tert-anilines with ring closure to quinolines,1 has been employed for the syntheses of angularly annelated tetrahydropyrido-fused polycyclic ring systems, including derivatives of quinolines and their aza- and diaza-analogues, with biological interest.2 For instance, oxazinoquinolines have recently been claimed to possess remarkable antibacterial properties due to their gyrase inhibitory activity.3 We described the synthesis of annelated analogues of CNS-active pyridazinooxazepines and -thiazepines4 via type 2 tert-amino effect.2 Several angularly-fused
pyrido[2,3-β]pyridazine ring systems were obtained from 5-azacycloalkyl-4-vinylpyridazinones prepared from 5-iodo-2-methyl-3(2H)-pyridazinone\(^5\) in several steps. No examples have however been reported for isomerization of 5-amino-4-vinylpyridazinones substituted in the 6-position or possessing a dialkylamino group. In this paper, syntheses of such new pyridazinones, and their thermal isomerization to otherwise hardly accessible polycyclic compounds will be reported.

Results and Discussion

Following our synthetic strategy applied earlier for 5-morpholino- and 5-pyrrolidono-4-dicyanovinyl-3(2\(H\))-pyridazinones, 6-aryl-5-chloro-2-methyl-3(2\(H\))-pyridazinones 4, 5 and 5-iodo-2-methyl-3(2\(H\))-pyridazinone (6) as starting compounds were needed for preparation of the corresponding 5-amino-4-vinylpyridazinones in order to study their cyclization tendency. As 6-aryl substituent phenyl and, as an ortho-substituted analogue, 2,4-dichlorophenyl were selected. Compounds 5\(^6\) and 6\(^5\) were prepared according to reported procedures, whereas 5-chloro-6-(2,4-dichlorophenyl)-2-methylpyridazin-3(2\(H\))one (4) was obtained in an analogous way described for compound 5. As illustrated on Scheme 1, mucochloric acid (1) was converted to 2 by a Friedel-Crafts reaction. Then compound 2 was treated with hydrazine hydrate to obtain \(N\)-unsubstituted pyridazinone 3, in this transformation too, hydrogen chloride elimination also occurred, similarly to the reaction of dichlorophenylfuranone with hydrazine hydrate\(^5\). Subsequent alkylation of 3 led to \(N\)-methylated pyridazinone 4.

![Scheme 1](image)

Each 5-halopyridazinone compound (4-6) underwent smoothly nucleophilic substitution with secondary amines to give 5-aminopyridazinone derivatives 7. Vilsmeier-Haack formylation and subsequent Knoevenagel condensation with malononitrile (in the presence of piperidine catalyst) or 1,3-dimethylbarbituric acid (DMB) were applied to introduce the formyl group into 8, and form the vinyl substituent in compounds 9, 10, respectively (Scheme 2, Table 1).
Scheme 2

Table 1. 5-Pyridazinylamines 7, their 4-aldehyde 8, 4-vinyl- and 4-pyrimidinediylmethylene derivatives 9, 10 and tetrahydropyrido[2,3-d]pyridazines 11, 12

<table>
<thead>
<tr>
<th>R<sup>1</sup></th>
<th>amino group</th>
<th>7 Yield (%)</th>
<th>8 Yield (%)</th>
<th>9 Yield (%)</th>
<th>10 Yield (%)</th>
<th>11 Yield (%)</th>
<th>Time (h)</th>
<th>12 Yield (%)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ph dimethylamino</td>
<td>57</td>
<td>80</td>
<td>73</td>
<td>84</td>
<td>47<sup>c</sup></td>
<td>72</td>
<td>62<sup>c</sup></td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>2,4-Cl<sub>2</sub>Ph dimethylamino</td>
<td>71</td>
<td>79</td>
<td>70</td>
<td>61</td>
<td>35<sup>d</sup></td>
<td>6</td>
<td>50<sup>c</sup></td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>Ph pyrrolidino</td>
<td>53</td>
<td>40</td>
<td>77</td>
<td>86</td>
<td>67<sup>e</sup></td>
<td>9</td>
<td>40<sup>e</sup></td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>Ph piperidino</td>
<td>63</td>
<td>37</td>
<td>78</td>
<td>-b</td>
<td>47<sup>c</sup></td>
<td>3</td>
<td>82<sup>g</sup></td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>Ph morpholino</td>
<td>65</td>
<td>45</td>
<td>65</td>
<td>-b</td>
<td>46<sup>c</sup></td>
<td>9</td>
<td>88<sup>g</sup></td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>Ph benzyl(methyl)-amino</td>
<td>63</td>
<td>48</td>
<td>-a</td>
<td>-b</td>
<td>-a</td>
<td>57<sup>h</sup></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Ph dimethylamino-<i>d</i></td>
<td>68</td>
<td>69</td>
<td>63</td>
<td>81</td>
<td>41<sup>d</sup></td>
<td>6</td>
<td>50<sup>e</sup></td>
<td>8</td>
</tr>
<tr>
<td>h</td>
<td>H tetrahydroisoquinolino</td>
<td>83</td>
<td>51</td>
<td>-a</td>
<td>-b</td>
<td>-a</td>
<td>62<sup>h</sup></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>H dimethylamino</td>
<td>69</td>
<td>79</td>
<td>48</td>
<td>89</td>
<td>-e</td>
<td>40<sup>d</sup></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

^a Not carried out. ^b Not isolated. ^cDMF/100 °C. ^dDMF/reflux. ^enot formed. ^fD₂O/100 °C/µW. ^gEtOH/RT. ^hEtOH/reflux. ⁱ-n-BuOH/reflux.
The thermal isomerization reaction via tert-amino effect was generally carried out in dry N,N-dimethylformamide (DMF). The dicyanovinyl compounds 9a, c-e and pyrimidinediylmethylene derivatives 10a-c isomerized at 100 °C to give 11a, c-e and 12a-c, respectively, whereas isomerization of dicyanovinyl compound 9b to 11b could only be achieved at reflux temperature. Generally, and in accordance with our previous findings, thermal isomerization of pyrimidinediylmethylene derivatives 10 was significantly faster than that of the respective dicyano derivatives 9. The presence of pyrimidinetrione ring in compounds 10 may facilitate the isomerization reaction by steric and electronic effects: i) making a favorable geometric arrangement for hydrogen migration (cf. reference 2), and ii) efficiently delocalizing the developing negative charge in the transition state.

The 6-aryl substituent itself exerted an accelerating effect on the isomerization too. Furthermore, two sets of experiments indicated a particularly strong rate-enhancing effect of its combination with a 4-pyrimidinediyl substituent. The first comparison was made by the reactions of aldehydes 8d and 8e with DMB. These reactions in ethanol at ambient temperature, representing the typical conditions applied for the Knoevenagel condensation with DMB, afforded as isolable products the spiro-substituted derivatives of pyridazino[4,5-c]quinolizine 12d and pyridazino[4',5':5,6]pyrido[2,1-c][1,4]oxazine 12e ring systems, indicating that their formations were too fast to allow to isolate condensation products of type 10 in pure forms. In the second set of experiments isomerizations of 10a and 10i were compared. The former compound, due to the combined effect of 6-phenyl and 4-pyrimidinediyl substituents, reacted to tricyclic compound 12a much faster than 10i did to 12i.

The important role of 6-phenyl substituent in the isomerization was also apparent from the reactions of compounds 9a and 9i. While compound 9a, possessing a 6-phenyl substituent, could be smoothly isomerized to 11a in DMF at 100 °C, its analogue 9i with no 6-phenyl substituent, did not isomerize even upon prolonged heating (72 h) in DMF, instead, a complex mixture was obtained. No cyclization was achieved by application of AlCl₃ catalyst in refluxing xylene (after a 8-h reaction time, the starting material was completely unchanged, a further boiling resulted in decomposition); and decomposition could only detected in neat at 200 °C. One possible explanation for the rate-accelerating role of the bulky phenyl substituent may be related to its steric buttressing effect. The 6-phenyl group may reduce the conformational freedom of the neighboring tert-amino group, thereby favorably influencing both the hydrogen migration and ring closure.

It is noteworthy that isomerization of hexadeuterodimethylamino derivatives 9g and 10g in DMF gave 11g and 12g trideuterated in 1-N-methyl group, and di- and monodeuterated in 2- and 4-positions, respectively, indicating that no deuterium was lost, whereas isomerization of 10a in D₂O by microwave heating afforded 12a with no deuterium incorporation. These findings definitely prove the intramolecular nature of the rearrangement.¹,² The observation that the dimethylaminopyridazinone 9a isomerized significantly slower than the azacycloalkyl analogues 9c-e can be understood, supposing a two-step mechanism, by the stability difference in the respective iminium intermediates (and thereby the transition states of
their formations) obtained via hydride (or sigmatropic hydrogen) migration from the alpha-carbon of amino group to the methylene carbon of the pyrimidinediylmethylene substituent. For a similar reason, it could be expected that replacement of one of the methyl groups with a benzyl group should accelerate the isomerization with full control of the regiochemistry; in fact, the regioselective type 2 tert-amino effect had already been observed in a few cases.

Reaction of aldehydes 8f and 8h with DMB gave a mixture of condensation and isomerization products 10f + 12f and 10h + 12h, indicating enhancement of isomerization. To make complete the ring closure reaction and to isolate the spirocyclic products 12f, 12h in pure forms, the reaction mixtures were shortly refluxed in ethanol (Schemes 3, 4). Interestingly, the isomerization of 10f exclusively gave 12f, while its regioisomer, compound 13 was not detected at all (Scheme 3).

Similarly, isomerization of the isoquinolinyl derivative 10h led to the formation triazachrysene ring system 12h with no detectable amount of its regioisomer 14 (Scheme 4).
Scheme 4

Constitution of 12f and 12h could be unambiguously proven by nmr data.

The regiochemistry is determined by the migration aptitudes of hydrogens. In both cases, isomerization took place with the involvement of one of the benzylic hydrogens leading to the more stabilized iminium double bond in the dipolar intermediates 10fA vs. 10fB, and 10hA vs. 10hB, and in the respective transition states.

In summary, isomerization of novel series of 4-vinyl-5-aminopyridazinones via type 2 tert-amino effect led to the formation of new pyridopyridazines in moderate to high yields, indicating some new features and wide synthetic scope of the reaction. In particular, a phenyl substituent located ortho to the tert-amino group and a cyclic electron-withdrawing vinyl substituent may significantly accelerate the reaction.

While the intramolecular nature of the rearrangement reactions was confirmed by deuteration experiments, and some new information could be provided on the scope of type 2 tert-amino effect. Although, we feel that a step-wise mechanism may operate in the formation of tetrahydropyridine ring, a concerted mechanism for the ring formation could not be fully excluded. This question and to find new extensions of the reaction will challenge our further work.
Experimental Section

General Procedures. All melting points were determined on a Kofler apparatus, and are uncorrected. The IR spectra were recorded on a Perkin-Elmer 1600 FTIR instrument in potassium bromide pellets. The 1H NMR spectra were recorded at ambient temperature in the solvent indicated, using the 2H signal of the solvent as the lock and tetramethylsilane as the internal standard. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. Bruker AM at 200 MHz and Varian Mercury Plus spectrometer at 400 MHz were used. 13C NMR spectra were recorded on the same spectrometers at 50 and 100 MHz, respectively. The assignments of 13C NMR spectra were supported by DEPT-135 spectra. All new compounds gave satisfactory elementary analytical data (C, H, N); these analyses were performed on a Carlo Erba Elemental Analyzer Model 1012 apparatus. Mass spectrometric experiments were performed on a reverse geometry VG-ZAB-2SEQ instrument (in case of compounds 9a, 9c, 9e, 9g, 9i, 10a, 10b, 10g, 11a, 11g, 12a and 12g). Fast atom bombardment (FAB) ionization with 30kV Cs$^+$ ions was used, samples were dissolved in CHCl$_3$ and put on the probe using DHB matrix. Accelerating voltage was 8 kV. Microwave irradiation experiments were carried out on a monomode CEM-Discover MW reactor in the standard configuration as delivered, including proprietary software. The experiments were executed in a MW process vial (10mL) with control of the temperature by infrared detection. After completion of the reaction, the vial was cooled to 50 °C via air jet cooling. For flash column chromatography Kieselgel 60 (Aldrich, 0.040-0.063 mm silica gel) was used; for TLC analysis Silica gel 60 F254 (Merck) plates were applied. Solvent mixtures used for chromatography are always given in a vol/vol ratio. The reagents were obtained from commercial sources and used as received. Solvents were dried and distilled prior to use. Compounds 56 and 65 were prepared according to the literature procedures cited.

3,4-Dichloro-5-(2,4-dichlorophenyl)furane-2(5H)-one (2). A three-neck, round-bottom flask was equipped with a reflux condenser, a thermometer and a stopper. The flask was charged with AlCl$_3$ (25.0 g, 0.19 mol) and 1,3-dichlorobenzene (100 mL, 0.87 mol). Mucochloric acid (1) (20.0 g, 0.12 mol) was added to the suspension and the reaction mixture was stirred and warmed at 50 °C for 10h. The orange suspension was poured onto a mixture of ice (150 g) and concentrated HCl (45 mL). After separation, the aqueous phase was extracted with toluene (2x50 mL). The toluene phases were combined with the first organic phase (1,3-dichlorobenzene), washed with water (30 mL), dried, filtered. The solvent was evaporated, and the crude product (11.0 g) thus obtained was crystallized from methanol, affording 8.9 g (25 %) white crystals: mp 136-138 °C, R$_f$=0.92 (chloroform: methanol 95:5). 1H NMR (200 MHz, DMSO-d$_6$): δ 7.80 and 7.56 (2s, 3H, H phenyl), 6.67 (s, 1H, H-5). 13C NMR (50 MHz, DMSO-d$_6$): δ 164.9 (C-2), 151.0 (C-4), 136.1 (C-1’ phenyl), 134.5 and 131.7 (C-2’ and C-4’ phenyl), 130.0, 128.4 and 128.2 (C-3’ phenyl, C-5’ and C-6’ phenyl), 121.0 (C-3), 79.8 (C-5). IR (potassium bromide): ν_{max} 3092, 2960, 1778, 1626, 1588, 1498, 1472, 1382, 1292, 1228, 1106, 1032, 916, 850, 820 cm$^{-1}$; Anal. calculated for C$_{10}$H$_4$Cl$_4$O$_2$ (297.95): C 40.31; H 1.35. Found: C 40.31; H 1.22.
5-Chloro-6-(2,4-dichlorophenyl)pyridazin-3(2H)-one (3). A three-neck, round-bottom flask was equipped with a reflux condenser, a thermometer and a dropping funnel. The flask was charged with 3,4-dichloro-5-(2,4-dichlorophenyl)furan-2(5H)-one (2) (0.027 mol), and glacial acetic acid (20 mL). The funnel was charged with 99 % hydrazine monohydrate (3.4 mL, 0.07 mol). The reaction mixture was warmed to 60 °C, and the hydrazine monohydrate was added dropwise in 15 min. Subsequently, the resulting mixture was heated under reflux for 2h. After cooling, the solid precipitate was filtered off and washed with water (5x10 mL). The crude product was crystallized from methanol, affording 2.5 g pale yellow crystals: mp 267-269 °C, Rf=0.40 (toluene: methanol 4:1). ¹H NMR (200 MHz, DMSO-d₆): δ 13.6 (s, 1H, NH), 7.81-7.58 (2s, 3H, Hphenyl), 7.38 (s, 1H, H-4). ¹³C NMR (50 MHz, DMSO-d₆): δ 159.7 (C-3), 142.4 (C-6), 139.9 (C-5), 135.2 (C-1' phenyl), 134.0 and 132.0 (C-2' and C-4' phenyl), 132.8, 128.9, 128.4 and 127.7 (C-4, C-3’ phenyl, C-5’ and C-6’ phenyl). IR (potassium bromide): vₘₐₓ 3382, 3268, 3070, 2986, 2910, 2846, 2798, 1680, 1638, 1592, 1480, 1348, 1086, 1052, 1012, 892, 870, 836, 814, 540, 490, 454 cm⁻¹. Anal. calculated for C₁₀H₅Cl₃N₂O (275.52): C 43.59; H 1.83; N 10.17. Found: C 43.59; H 1.77; N 10.43.

5-Chloro-6-(2,4-dichlorophenyl)-2-methylpyridazin-3(2H)-one (4). A two-neck, round-bottom flask was equipped with a drying tube and a dropping funnel. The flask was charged with 5-chloro-6-(2,4-dichlorophenyl)pyridazin-3(2H)-one (3) (0.036 mol), methanol (40 mL), and sodium hydroxide solution (1.6 g, 0.04 mol, NaOH in 40 mL water). The funnel was charged with 97 % dimethyl sulphate (3.8 mL, 0.04 mol). The reaction mixture was cooled to 10 °C, and the dimethyl sulphate was added dropwise in 20 min. The resulting mixture was stirred at room temperature for 8h. The suspension was evaporated to half volume and extracted with toluene (4x100 mL). The combined organic layer was washed first with 2M sodium hydroxide (100 mL) and then with water (2x100 mL). The organic phase was dried, filtered and the solvent was evaporated in vacuo. The crude product was purified by column chromatography with a mixture of toluene:acetone (9:1) as the eluent, affording 6.1 g (58 %) beige crystals: mp 156-162 °C, Rf=0.42 (toluene: acetone 9:1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (1H, d, H-3’ phenyl, J=2.0), 7.38 (1H, dd, H-5’ phenyl, J₁=8.0, J₂=2.0), 7.29 (1H, d, H-6’ phenyl, J=8.0), 7.11 (1H, s, H-4), 3.82 (3H, s, N(2)CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 159.2 (C-3), 142.9 (C-6), 140.3 (C-5), 136.5 (C-1’ phenyl), 134.9 and 131.6 (C-2’ and C-4’ phenyl), 131.8 (C-4, and C-6’ phenyl), 129.6 (C-3’ phenyl), 127.4 (C-5’ phenyl), 40.1 (N(2)CH₃). IR (potassium bromide): vₘₐₓ 3062, 2924, 1650, 1480, 1266, 1102, 1008, 966, 910, 834, 818, 772, 488 cm⁻¹. Anal. calculated for C₁₁H₇Cl₃N₂O (289.55): C 45.63; H 2.44; N 9.67. Found: C 46.01; H 2.33; N 9.49.

2-Methyl-5-(dimethylamino)-6-phenylpyridazin-3(2H)-one (7a). A mixture of compound 5 (4.0 g, 0.018 mol) and 45 mL solution of dimethyl amine (25 wt. % in ethanol) was stirred at 100 °C in pressure vessel for 5h. The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and the mixture was extracted with chloroform (5x30 mL), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by short column chromatography with ethyl acetate and crystallized from cyclohexane, affording 3.1 g (74 %)
pale brown crystals: mp 105-107 °C, Rf=0.20 (ethyl acetate). 1H NMR (200 MHz, CDCl$_3$) δ 7.60-7.56 (2H, m, H-3' and H-5' phenyl), 7.47-7.39 (3H, m, H-2', H-4' and H-6' phenyl), 6.17 (1H, s, H-4), 3.76 (3H, s, N(2)CH$_3$), 2.59 (6H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 161.4 (C-3), 153.3 (C-5), 141.5 (C-6), 136.8 (C-1’ phenyl), 128.5, 128.4, 127.6 (C-2’ –6’ phenyl), 106.6 (C-4), 41.7 (N(5)CH$_3$) 39 (N(2)CH$_3$). IR (potassium bromide): ν max 3444, 2994, 2948, 2860, 2796, 1578, 1498, 1470, 1464, 1408, 1346, 1302, 1286, 1270, 1198, 1128, 1054, 986, 920, 836, 784, 744, 712 cm$^{-1}$. Anal. calculated for C$_{13}$H$_{15}$N$_3$O (229.28): C 68.10; H 6.59; N 18.33. Found: C 68.17; H 6.59; N 18.66.

6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methylpyridazin-3(2H)-one (7b). A mixture of 4 (1 g, 0.0035 mol) and 15 mL solution of dimethyl amine (25 wt. % in ethanol) was stirred at 100 °C in pressure vessel for 4h. The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and it was extracted with chloroform (3x40 mL), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography with a mixture of chloroform: ethyl acetate (9:1) as the eluent, affording 0.70 g (71 %) beige crystals: mp 175-178 °C, Rf=0.16 (chloroform: ethyl acetate 9:1). 1H NMR (200 MHz, CDCl$_3$) δ 7.46-7.45 (1H, m, H-3' phenyl), 7.31-7.30 (2H, m, H-5' and H-6' phenyl), 6.02 (1H, s, H-4), 3.69 (3H, s, N(2)CH$_3$), 2.57 (6H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 161.4 (C-3), 152.6 (C-5), 138.1, 135.3, 134.9, 134.3 (C-6 pyridazine, C-1’ phenyl, C-2' and C-4' phenyl), 131.8, 129.8, 127.5 (C-3’, C-4’ and C-6’ phenyl), 105.0 (C-4), 41.2 ((N(5)CH$_3$) 39.2 (N(2)CH$_3$). IR (potassium bromide): ν max 3444, 3048, 3014, 2942, 2870, 2798, 1636, 1578, 1548, 1492, 1474, 1446, 1412, 1382, 1350, 1248, 1196, 1158, 1138, 1100, 1078, 1060, 1044, 988, 866, 824, 774, 700, 458 cm$^{-1}$. Anal. calculated for C$_{13}$H$_{13}$Cl$_2$N$_3$O (298.17): C 52.37; H 4.39; N 14.09, Cl 23.78. Found: C 52.00; H 4.36; N 13.92, Cl 23.89.

2-Methyl-6-phenyl-5-pyrrolidinopyridazin-3(2H)-one (7c). A mixture of 5 (1.0 g, 0.045 mol) and pyrrolidine (0.76 mL, 0.09 mol) was refluxed in 8 mL of ethanol for 20h. The reaction mixture was evaporated to dryness in vacuo. Then water (15 mL) was added to the residue, and the crystals were filtered off, washed with water (3x10 mL) and crystallized from cyclohexane, affording 0.6 g (53 %) beige crystals: mp 142-143 °C, Rf=0.16 (chloroform: ethyl acetate 9:1). 1H NMR (200 MHz, CDCl$_3$) δ 7.42-7.34 (5H, m, H phenyl), 5.89 (1H, s, H-4), 3.71 (3H, s, N(2)CH$_3$), 2.91-2.85 (4H, m, N-CH$_2$ pyrrolidine), 1.78-1.71 (4H, m, CH$_2$-CH$_2$ pyrrolidine). 13C NMR (50 MHz, CDCl$_3$) δ 161.5 (C-3), 149.0 (C-5), 140.3 (C-6), 137.6 (C-1’ phenyl), 128.3, 128.29 (C-2’-6’ phenyl), 101.1 (C-4), 50.7 (C-2,5 pyrrolidine) 39 (N(5)CH$_3$), 25.4 (C-3,4 pyrrolidine). IR (potassium bromide): ν max 3422, 2960, 2892, 2832, 1636, 1568, 1494, 1430, 1356, 1296, 1234, 1176, 1136, 1076, 988, 820, 774, 742, 706, 578 cm$^{-1}$. Anal. calculated for C$_{15}$H$_{17}$N$_3$O (255.31): C 70.56; H 6.71; N 16.46. Found: C 70.40; H 6.69; N 16.60.

2-Methyl-6-phenyl-5-piperidinopyridazin-3(2H)-one (7d). Compound 5 (2 g, 0.009 mol) and piperidine (2.24 mL, 0.011 mol) was refluxed in 8 mL of anhydrous DMF (monitored by TLC). After completion of the reaction, it was evaporated to dryness in vacuo. Then water (15 mL) was added to the residue, and the crystals were filtered off, washed with water (3x10 mL). The crude
product was purified by column chromatography, using dichloromethane and ethyl acetate (1:1) as the eluent, affording 1.54 g (63 %) beige crystals: mp 123-124 °C (lit. 9 mp 121-122 °C), Rf=0.32 (ethyl acetate: dichloromethane (1:1, v/v)). 1H NMR (200 MHz, CDCl$_3$) δ 7.85-7.60 (2H, m, H-3’ and H-5’ phenyl), 7.55-7.30 (3H, m, H-2’, H-4’, H-6’ phenyl), 6.23 (1H, s, H-4), 3.76 (3H, s, N(2)CH$_3$), 2.95-2.65 (4H, m, N-CH$_2$ piperidine), 1.65-1.35 (6H, m, CH$_2$-CH$_2$-CH$_2$ piperidine). 13C NMR (50 MHz, CDCl$_3$) δ 161.7 (C-3), 154.3 (C-5), 142.7 (C-6), 136.5 (C-1’ phenyl), 128.7, 128.5, 127.6 (C-2’-6’ phenyl), 109.5 (C-4), 50.8 (C-2,6 piperidine) 39.4 (N(2)CH$_3$), 25.1 (C-3,5 piperidine), 23.6 (C-4 piperidine). IR (potassium bromide): ν$_{max}$ 3422, 2934, 2848, 1648, 1582, 1568, 1412, 1382, 1278, 1226, 1130, 1110, 1016, 740, 700 cm$^{-1}$. Anal. calculated for C$_{16}$H$_{19}$N$_3$O (269.35): C 71.35; H 7.11; N 15.60. Found: C 71.43; H 7.16; N 15.72.

2-Methyl-5-morpholino-6-phenylpyridazin-3(2H)-one (7e). A mixture of 5 (1.95 g, 0.0088 mol) and morpholine (3.8 mL, 0.044 mol) was refluxed in 20 mL of n-butanol for 23h (monitored by TLC). The reaction mixture was evaporated to dryness in vacuo. Then water (20 mL) was added to the residue, and the crystals were filtered off, washed with water (3x10 mL) and crystallized from methanol, affording 1.56 g (65 %) pale brown crystals: mp 142-144 °C, Rf=0.24 (ethyl acetate). 1H NMR (200 MHz, CDCl$_3$) δ 7.71-7.67 (2H, m, H-3’ and H-5’ phenyl), 7.47-7.40 (3H, m, H-2’, H-4’ and H-6’ phenyl), 6.25 (1H, s, H-4), 3.78 (3H, s, N(2)CH$_3$), 3.62 (4H, t, O-CH$_2$ morpholine, J=4.8), 2.84 (4H, t, N-CH$_2$ morpholine, J=4.8). 13C NMR (50 MHz, CDCl$_3$) δ 161.5 (C-3), 153.3 (C-5), 142.2 (C-6), 136 (C-1’ phenyl), 129, 128.7, 127.8 (C aromatic), 110.0 (C-4), 66.0 (C-2,6 morpholine), 49.8 (C-3,5 morpholine), 39.4 (N(2)CH$_3$). IR (potassium bromide): ν$_{max}$ 3446, 3060, 2974, 2950, 2904, 2860, 2826, 1652, 1582, 1496, 1446, 1412, 1372, 1338, 1320, 1304, 1274, 1226, 1212, 1112, 1030, 990, 902, 882, 742, 704, 622, 582, 534 cm$^{-1}$. Anal. calculated for C$_{15}$H$_{17}$N$_3$O$_2$ (271.31): C 66.40; H 6.32; N 15.49. Found: C 66.38; H 6.38; N 15.55.

5-[Benzyl(methyl)amino]-2-methyl-6-phenylpyridazin-3(2H)-one (7f). A mixture of 5 (2.0 g, 0.009 mol), N-benzyl-N-methylamine (1.42 mL, 0.01 mol) and potassium carbonate (1.5 g, 0.01 mol) was stirred in anhydrous DMF (6 mL) at 150 °C for 12h. After cooling, water (50 mL) was added to the reaction mixture, and it was extracted with chloroform (3x40 mL). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the oily crude product was purified by repeated column chromatography using toluene and acetone (7:3) as the eluent, affording 0.90 g (33 %) beige crystals: mp 94-96 °C, Rf=0.36 (toluene: acetone 7:3). 1H NMR (200 MHz, CDCl$_3$) δ 7.70-6.95 (10H, m, Haromatic), 6.17 (1H, s, H-4), 3.98 (2H, s, N-CH$_2$-Ph), 3.78 (3H, s, N(2)CH$_3$), 2.53 (3H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 161.5 (C-3), 153.3 (C-5), 142.2 (C-6), 136 (C-1’ phenyl), 128.7, 127.8 (C-2’-6’ phenyl), 110.0 (C-4), 66.0 (C-2,6 morpholine), 49.8 (C-3,5 morpholine), 39.4 (N(2)CH$_3$). IR (potassium bromide): ν$_{max}$ 3459, 3059, 2947, 2934, 2848, 1648, 1582, 1568, 1412, 1372, 1364, 1275, 1226, 1112, 1030, 990, 902, 882, 742, 704, 622, 582, 534 cm$^{-1}$. Anal. calculated for C$_{19}$H$_{19}$N$_3$O (305.38): C 74.73; H 6.27; N 13.76. Found: C 74.71; H 6.33; N 13.66.

5-(Dimethylamino-6)-2-methyl-6-phenylpyridazin-3(2H)-one (7g). A mixture of 5 (0.5 g, 0.0022 mol), dimethyl-6-amine hydrochloride (0.004 mol) and triethyl amine (0.007 mol) in
isopropyl alcohol (10 mL) was stirred at 100 °C in pressure vessel for 12h. The reaction mixture was then evaporated to dryness in vacuo. Water (10 mL) was added to the residue, and it was extracted with chloroform (3x10 mL). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography, using ethyl acetate as the eluent, affording 0.36 g (68 %) beige crystals: mp 104-105 °C, Rf=0.17 (ethyl acetate). 1H NMR (200 MHz, CDCl$_3$) δ 7.58-7.56 (2H, m, H-3’ and H-5’ phenyl), 7.48-7.37 (3H, m, H-2’, H-4’ and H-6’ phenyl), 6.13 (1H, s, H-4), 3.76 (3H, s, N(2)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 161.5 (C-3), 153.4 (C-5), 141.6 (C-6), 136.9 (C-1’ phenyl), 128.6, 128.5, 127.8 (C-2’-6’ phenyl), 106.6 (C-4), 41.4 and 40.9 (N(5)CD$_3$). IR (potassium bromide): ν_{max} 2946, 1640, 1574, 1422, 1290, 1260, 1000, 782, 712 cm$^{-1}$. Anal. calculated for C$_{13}$H$_9$D$_6$N$_3$O (235.32): C 66.35; H+D 6.42; N 17.86. Found: C 66.25; H+D 6.37; N 17.90.

5-(3,4-Dihydroisoquinolin-2(1H)-yl)-2-methylpyridazin-3(2H)-one (7h). A mixture of 6 (2 g, 0.0085 mol), tetrahydroisoquinoline (1.3 mL, 0.01 mol) and potassium carbonate (1.4 g, 0.01 mol) was stirred in anhydrous DMF (6 mL) at 110 °C for 9h. After cooling, water (40 mL) was added to the mixture, and the crude product was filtered off, washed with water (3x50 mL) and recrystallized from ethanol, affording 1.7 g (83 %) beige crystals: mp 175-176 °C, Rf=0.28 (toluene: acetone (7:3, v/v)). 1H NMR (200 MHz, CDCl$_3$) δ 7.73 (1H, d, H-6, J=2.8 Hz), 7.26-7.13 (4H, m, H aromatic), 5.92 (1H, d, H-4, J=2.8), 4.44 (2H, s, H$_2$-1 isoquinoline), 3.70 (3H, s, N(2)CH$_3$), 3.59 (2H, t, H$_2$-3 isoquinoline, J=5.9), 2.98 (2H, t, H$_2$-4 isoquinoline, J=5.9). 13C NMR (50 MHz, CDCl$_3$) δ 161.8 (C-3), 149.2 (C-5), 134.3 and 132.3 (C-4a and C-8a isoquinoline), 128.1, 128.0, 127.2, 126.7, 126.4 (C-6 pyridazine, C-5, -6, -7, -8 isoquinoline), 99.7 (C-4), 47.9 (C-1 isoquinoline) 43.8 (C-3 isoquinoline), 39 (N(2)CH$_3$), 28.5 (C-4 isoquinoline). IR (potassium bromide): ν_{max} 3446, 3068, 3030, 2934, 2908, 2878, 2836, 1652, 1624, 1586, 1516, 1500, 1446, 1408, 1390, 1374, 1358, 1332, 1312, 1296, 1258, 1230, 1182, 1152, 1112, 1046, 1020, 986, 812, 750, 612 cm$^{-1}$. Anal. calculated for C$_{14}$H$_{15}$N$_3$O (241.29): C 69.69; H 6.27; N 17.41. Found: C 69.69; H 6.29; N 17.66.

5-(Dimethylamino)-2-methylpyridazin-3(2H)-one (7i). A mixture of 6 (2 g, 0.0085 mol) and 20 mL solution of dimethyl amine (25 wt. % in ethanol) was stirred at 40 °C for 7h. The reaction mixture was evaporated to dryness in vacuo. Then water (50 mL) was added to the residue, and it was extracted with chloroform (3x50 mL), and the combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was crystallized from ethanol, affording 1.1 g (88 %) beige crystals: mp 120-122 °C (lit.10 119-120 °C), Rf=0.15 (toluene: acetone 7:3). 1H NMR (200 MHz, CDCl$_3$) δ 7.57 (1H, d, H-6, J=2.8), 5.73 (1H, d, H-4, J=2.6), 3.69 (3H, s, N(2)CH$_3$), 3.01 (6H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 161.6 (C-3), 149.6 (C-5), 127.5 (C-6), 98.4 (C-4), 39.2 (N(5)CH$_3$), 38.9 (N(2)CH$_3$). IR (potassium bromide): ν_{max} 2930, 1626, 1596, 1572, 1528, 1440, 1412, 1336, 1290, 1269, 1069, 987, 826 cm$^{-1}$. Anal. calculated for C$_7$H$_{11}$N$_3$O (153.18): C 54.89; H 7.24; N 27.43. Found: C 54.99; H 7.29; N 27.49.
General procedure for preparation of aldehydes (8) by Vilsmeier-Haack reaction. Typical example
A solution of 7a (0.0044 mol) in anhydrous DMF (8 mL) was cooled by ice-water bath. A solution of POCl₃ (1.3 mL) in anhydrous DMF (3.1 mL) was added dropwise to the mixture 0-6 °C. The reaction mixture was allowed to warm to room temperature, and was heated at 60 °C for 6 hours (monitored by TLC). After evaporation of the solvent (under 60 °C in vacuo), ice (30 g) was added to the brown oily residue and the mixture was allowed to warm to room temperature. Then it was made alkaline with aqueous 40 % sodium hydroxide (pH=8) and the resulting solution was extracted with chloroform (5x30 mL). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo to give the crude product (in this case 8a) which was purified by column chromatography and/or (re)crystallization.

5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde (8a). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 80 %, mp 147-148 °C, Rf=0.49 (ethyl acetate: dichloromethane 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.32 (1H, s, CHO), 7.48-7.36 (5H, m, H phenyl), 3.74 (3H, s, N(2)CH₃), 2.76 (6H, s, N(5)CH₃). ¹³C NMR (50 MHz, CDCl₃) δ 188.7 (C-formyl), 162.7 (C-3), 151 (C-5), 142.7, 137.2 (C-6 pyridazine, C-1’ phenyl), 128.9, 128.0 (C-2’,-6’ phenyl), 110.8 (C-4), 45.4 (N(5)CH₃), 39.0 (N(2)CH₃). IR (potassium bromide): νmax 3422, 3050, 3024, 2992, 2954, 2922, 2856, 2776, 1664, 1634, 1550, 1510, 1492, 1472, 1442, 1388, 1318, 1294, 1132, 1108, 1088, 1010, 786, 776, 582 cm⁻¹. Anal. calculated for C₁₄H₁₅N₃O₂ (257.29): C 65.35; H 5.88; N 16.33. Found: C 65.08; H 5.93; N 16.12.

6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazine-4-carbaldehyde (8b). The product was recrystallized from isopropyl alcohol, affording yellow crystals: yield 79 %, mp 152-153 °C, Rf=0.4 (ethyl acetate: dichloromethane 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.28 (1H, s, CHO), 7.55-7.48 (1H, m, H-3’ phenyl), 7.36-7.34 (2H, m, H-5’ and H-6’ phenyl), 3.70 (3H, s, N(2)CH₃), 2.74 (6H, s, N(5)CH₃). ¹³C NMR (50 MHz, CDCl₃) δ 188.3 (C-formyl), 162.7 (C-3), 151 (C-5), 139.2, 135.9, 134.4 (C-6 pyridazine, C-1’, C-2’ and C-4’ phenyl), 131.8, 129.7, 127.9 (C-3’, C-5’ and C-6’ phenyl), 109.9 (C-4), 44.8 (N(5)CH₃), 39.2 (N(2)CH₃). IR (potassium bromide): νmax 3070, 3300, 3272, 2958, 2924, 1700, 1674, 1624, 1588, 1560, 1500, 1484, 1458, 1404, 1384, 1334, 1310, 1282, 1142, 1098, 1058, 700, 608, 508, 460 cm⁻¹. Anal. calculated for C₁₄H₁₃Cl₂N₃O₂ (326.18): C 51.55; H 4.02; N 12.88. Found: C 51.42; H 3.95; N 12.99.

2-Methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazine-4-carbaldehyde (8c). The product was crystallized from isopropyl alcohol, affording yellow crystals: yield 40 %, mp 185-186 °C, Rf=0.50 (ethyl acetate: dichloromethane 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.20 (1H, s, CHO), 7.39 (5H, m, H phenyl), 3.67 (3H, s, N(2)CH₃), 3.17-3.11 (4H, m, N-CH₂ pyrrolidine), 1.82-1.76 (4H, m, CH₂-CH₂ pyrrolidine). ¹³C NMR (50 MHz, CDCl₃) δ 187.6 (C-formyl), 162.7 (C-3), 148.2 (C-5), 139.7, 137.5 (C-6 pyridazine, C-1’ phenyl), 128.8, 127.7 (C-2’,-6’ phenyl),
105.8 (C-4), 56 (C-2,5 pyrrolidine), 38.3 (N(2)CH₃), 25 (C-3,4 pyrrolidine). IR (potassium bromide): νmax 3422, 3082, 3054, 3030, 2980, 2870, 2842, 1644, 1616, 1544, 1510, 1456, 1390, 1342, 1318, 1296, 1278, 1156, 1074, 1010, 772, 716, 694, 590 cm⁻¹. Anal. calculated for C₁₆H₁₇N₃O₂ (283.32): C 67.83; H 6.05; N 14.83. Found: C 67.72; H 6.07; N 15.01.

2-Methyl-3-oxo-6-phenyl-5-piperidino-2,3-dihydropyridazine-4-carbaldehyde (8d). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (2:8) as the eluent, affording yellow crystals: yield 37 %, mp 151-153 °C, Rf=0.73 (ethyl acetate: dichloromethane 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.32 (1H, s, CHO), 7.30-7.60 (5H, m, H phenyl), 3.71 (3H, s, N(2)CH₃), 2.93 (4H, m, H₂-2, H₂-6 piperidine), 1.51 (2H, m, H₂-4 piperidine), 1.36 (4H, m, H₂-3, H₂-5 piperidine). ¹³C NMR (50 MHz, CDCl₃) δ 189.9 (C-formyl), 162.6 (C-3), 152.0 (C-5), 144.6 (C-6), 136.7 (C-1‘ phenyl), 128.9, 128.8, 128.6 (C-2’,-6’ phenyl), 114.1 (C-4), 53.5 (C-2,6, piperidine), 39.1 (N(2)CH₃), 25.2 (C-3,5 piperidine), 23.2 (C-4 piperidine). IR (potassium bromide): νmax 2934, 2852, 1678, 1636, 1600, 1542, 1488, 1398, 1328, 1294, 1278, 1254, 1226, 1122, 1014, 776, 714, 578 cm⁻¹. Anal. calculated for C₁₇H₁₉N₃O₂ (297.36): C 68.67; H 6.44; N 14.13. Found: C 68.38; H 6.44; N 14.13.

2-Methyl-5-morpholino-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde (8e). The crude product was purified by column chromatography with a mixture of ethyl acetate and chloroform (1:1) as the eluent, affording yellow crystals: yield 45 %, mp 195-197 °C, Rf=0.52 (ethyl acetate: chloroform 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.37 (1H, s, CHO), 7.53-7.41 (5H, m, H phenyl), 3.76 (3H, s, N(2)CH₃), 3.59 (4H, t, O-CH₂ morpholine, J=4.8), 2.99 (4H, m, N-CH₂ morpholine, J=4.8). ¹³C NMR (50 MHz, CDCl₃) δ 189.7 (C-formyl), 162.4 (C-3), 150.6 (C-5), 143.9 (C-6), 136.6 (C-1’ phenyl), 129.2, 128.9, 128.5 (C-2’,-6’ phenyl), 114.3 (C-4), 66.2 (C-2,6 morpholine), 52.7 (C-3,5 morpholine), 39.3 (N(2)CH₃). IR (potassium bromide): νmax 3444, 3056, 3022, 2952, 2920, 2876, 2850, 1664, 1631, 1598, 1540, 1484, 1430, 1394, 1362, 1332, 1322, 1290, 1256, 1192, 1110, 1070, 1034, 1012, 956, 918, 904, 836, 772, 732, 710, 700, 686, 612, 582, 546, 500 cm⁻¹. Anal. calculated for C₁₆H₁₇N₃O₃ (299.32): C 64.20; H 5.72; N 14.04. Found: C 64.26; H 5.71; N 14.02.

5-[N-Benzyl-N-methylamino]-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde (8f). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 48 %, mp 127-128 °C, Rf=0.67 (ethyl acetate: dichloromethane 1:1). ¹H NMR (200 MHz, CDCl₃) δ 10.38 (1H, s, CHO), 7.34-7.09 (10H, m, H aromatic), 4.07 (2H, s, N(5)CH₂), 3.78 (3H, s, N(2)CH₃), 2.57 (3H, s, N(5)CH₃). ¹³C NMR (50 MHz, CDCl₃) δ 189.8 (C-formyl), 163.3 (C-3), 151.8 (C-5), 144.2, 137.7, 136.8 (C-6, C-1’ phenyl and C-1” benzyl), 129.6, 129.5, 129.3, 129.1, 128.9, 128.8 (C aromatic), 113.4 (C-4), 62.3 (N(2)CH₃), 43.6 (N(5)CH₃), 39.9 (N-CH₂-Ph). IR (potassium bromide): νmax 3568, 3410, 3056, 3022, 2952, 2926, 2852, 1670, 1634, 1538, 1510, 1492, 1432, 1406, 1392, 1316, 1294, 1268, 1244, 1180, 1156, 832, 780, 762, 710, 690, 582, 544, 506, 466 cm⁻¹. Anal. calculated for C₂₀H₁₉N₃O₂ (333.39): C 72.05; H 5.74; N 12.60. Found: C 71.87; H 5.59; N 12.43.
5-(Dimethylamino-\textit{d}_{6})-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carbaldehyde (8g). The crude product was purified by column chromatography with a mixture of ethyl acetate and dichloromethane (1:1) as the eluent, affording yellow crystals: yield 69 %, mp 146-148 °C, R_f=0.48 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 10.32 (1H, s, CHO), 7.50-7.36 (5H, m, H phenyl), 3.74 (3H, s, N(2)CH\(_3\)). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 188.7 (C-formyl), 162.7 (C-3), 151.0 (C-5), 142.6, 137.2 (C-6 pyridazine, C-1’ phenyl), 128.9, 128.8 and 128.0 (C-2',-6’ phenyl), 110.6 (C-4), 44.6 (N(5)CD\(_3\)), 39.0 (N(2)CH\(_3\)). IR (potassium bromide): \(\nu\)\text{max} 3050, 2954, 2856, 2774, 2246, 2216, 2128, 2062, 1666, 1634, 1578, 1540, 1488, 1438, 1398, 1318, 1294, 1264, 1198, 1122, 1072, 1058, 1046, 1014, 994, 940, 902, 876, 834, 810, 786, 774, 732, 716, 700, 666, 636, 578, 542 cm\(^{-1}\). Anal. calculated for C\(_{14}\)H\(_9\)D\(_6\)N\(_3\)O\(_2\) (263.15): C 63.86; H+D 5.73; N 15.96. Found: C 63.39; H+D 5.68; N 15.94.

5-(3,4-Dihydroisoquinolin-2(1\textit{H})-yl)-2-methyl-3-oxo-2,3-dihydropyridazin-4-carbaldehyde (8h). The product was crystallized from isopropyl alcohol, affording pale yellow crystals: yield 51 %, mp 181-183 °C, R_f=0.52 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 10.33 (1H, s, CHO), 7.87 (1H, s, H-6), 7.28-7.21 (3H, m, H aromatic), 7.07-7.03 (1H, m, H\text{aromatic}), 4.48 (2H, s, H 2-1 isoquinoline), 3.77 (2H, t, H 2-3 isoquinoline, \(J\)=5.8), 3.69 (3H, s, N(2)CH\(_3\)), 3.09 (2H, t, H 2-4 isoquinoline, \(J\)=5.8). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 188.7 (C-formyl), 162.8 (C-3), 148.2 (C-5), 133.8 and 132.7 (C-4a and C-8a isoquinoline), 128.9, 128.1, 127.3, 126.9, 126.1 (C-6 pyridazine, C-5, -6, -7, -8 isoquinoline), 107.3 (C-4), 54.3 (C-1 isoquinoline) 48.3 (C-3 isoquinoline), 39 (N(2)CH\(_3\)). IR (potassium bromide): \(\nu\)\text{max} 3424, 3068, 3038, 2946, 2844, 1652, 1634, 1562, 1496, 1460, 1436, 1410, 1382, 1370, 1300, 1258, 1200, 1176, 1104, 1018, 922, 890, 868, 836, 756, 690, 646, 540 cm\(^{-1}\). Anal. calculated for C\(_{15}\)H\(_{15}\)N\(_3\)O\(_2\) (269.30): C 66.90; H 5.61; N 15.60. Found: C 66.63; H 5.44; N 15.61.

5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazine-4-carbaldehyde (8i). According to the general procedure for preparation of aldehydes from \(7i\). The product was crystallized from acetone, affording pale yellow crystals: yield 77 %, mp 141-143 °C (lit.\(^{11}\) mp 141-142 °C), R_f=0.33 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 10.28 (1H, s, CHO), 7.74 (1H, s, H-6), 3.69 (3H, s, N(2)CH\(_3\)), 3.13 (6H, s, N(5)CH\(_3\)). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 188.7 (C-formyl), 162.7 (C-3), 149.2 (C-5), 128.9 (C-6), 106.5 (C-4), 43.7 (N(5)CH\(_3\)), 38.9 (N(2)CH\(_3\)). IR (potassium bromide): \(\nu\)\text{max} 3446, 2928, 2867, 1629, 1584, 1535, 1477, 1371, 1302, 1252, 1162, 1127, 1060, 852 cm\(^{-1}\). Anal. calculated for C\(_8\)H\(_{11}\)N\(_3\)O\(_2\) (181.21): C 53.03; H 6.12; N 23.26. Found: C 53.06; H 6.15; N 23.26.

General procedure for the synthesis of malononitriles (9a-h). Typical example
To a solution of aldehyde (0.005 mol) \(8\) in ethanol (10 ml), malononitrile (0.005) and 1-2 drops of piperidine were added. The mixture was stirred at room temperature until the starting material had been consumed (monitored by TLC). The precipitated product was then filtered off, washed with ethanol, diethyl ether and hexane. The crude product was purified by flash column chromatography with a mixture of dichloromethane and ethyl acetate (1:1) as the eluent.
{[\text{5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyrazin-4-yl]methylene}]

\text{malononitrile (9a).} Deep orange crystals: yield 73 \%, mp 180-182 °C, R_f=0.6 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl$_3$) δ 8.3 (1H, s, CH=–C), 7.48-7.44 (5H, m, H phenyl), 3.72 (3H, s, N(2)CH$_3$), 2.93 (6H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 159.4 (C–3), 156.7 (=CH), 152.8 (C–5), 140.7 (C–6), 136.5 (C–1‘ phenyl), 129.3, 129.2, 127.8 (C–2‘,-6’ phenyl), 114.8, 113.3 (CN), 105.7 (C–4), 78.9 (C(CN)$_2$), 46.1 (N(5)CH$_3$), 39.2 (N(2)CH$_3$). IR (potassium bromide): ν_{max} 3412, 3050, 2937, 2212, 1636, 1564, 1513, 1447, 1398, 1273, 1166, 1008, 943, 770 cm$^{-1}$. Anal. calculated for C$_{17}$H$_{15}$N$_5$Ox$_0$.2H$_2$O (308.94): C 66.09; H 5.02; N 22.64. Found: C 65.98; H 5.02; N 22.24. MS: [M+H]$^+$: 306.

{[\text{6-(2,4-Dichlorophenyl)-5-(dimethylamino)-2-methyl-3-oxo-2,3-dihydropyrazin-4-yl]methylene}]

\text{malononitrile (9b).} Deep orange crystals: yield 70 \%, mp 200-202 °C, R_f=0.73 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl$_3$) δ 8.1 (1H, s, CH=–C), 7.60-7.30 (3H, m, H aromatic), 3.74 (3H, s, N(2)CH$_3$), 2.80 (6H, s, N(5)CH$_3$). 13C NMR (50 MHz, CDCl$_3$) δ 158.9 (C–3), 156.2 (=CH), 152.8 (C–5), 138.7, 136.3, 134.4 (C–6 pyridazine, C–1’ phenyl, C–2’ and C–4’ phenyl), 131.9, 129.8, 128.0 (C–3’ phenyl, C–5’ and C–6’ phenyl), 114.0, 109.2 (CN), 112.3 (C–4), 84.0 (C(CN)$_2$), 44.4 (N(5)CH$_3$), 39.7 (N(2)CH$_3$). IR (potassium bromide): ν_{max} 3586, 3566, 3422, 3274, 3088, 3010, 2926, 2866, 2796, 2258, 2224, 1640, 1550, 1506, 1484, 1456, 1440, 1402, 1384, 1334, 1314, 1282, 1264, 1244, 1214, 1156, 1090, 1060, 1014, 996, 938, 924, 870, 838, 796, 782, 732, 698, 570, 470 cm$^{-1}$. Anal. calculated for C$_{17}$H$_{13}$Cl$_2$N$_5$O (374.23): C 54.56; H 3.50; N 18.71. Found: C 54.33; H 3.35; N 18.35.

{[\text{2-Methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazin-4-yl]methylene}]

\text{malononitrile (9c).} Yellow crystals: 77 \%, mp 185-186 °C, R_f=0.66 ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl$_3$) δ 8.50 (1H, s, CH=–C), 7.56-7.41 (5H, m, H phenyl), 3.69 (3H, s, N(2)CH$_3$), 3.03 (4H, m, N-CH$_2$ pyrrolidine), 1.93 (4H, m, CH$_2$-CH$_2$ pyrrolidine). 13C NMR (50 MHz, CDCl$_3$) δ 159.8 (C–3), 156.5 (=CH), 148.9 (C–5), 139.7 (C–6), 136.3 (C–1’ phenyl), 129.3, 129, 127.7 (C–2’,-6’ phenyl), 114.8, 113.3 (CN), 103.1 (C–4), 74.9 (C(CN)$_2$), 55.8 (C–2,5 pyrrolidine), 38.7 (N(2)CH$_3$), 25 (C–3,4 pyrrolidine). IR (potassium bromide): ν_{max} 3412, 2976, 2216, 1637, 1556, 1480, 1441, 1276, 1142, 1012, 927, 768, 705, 594 cm$^{-1}$. Anal. calculated for C$_{19}$H$_{17}$N$_5$O (331.37): C 68.87; H 5.17; N 21.13. Found: C 68.34; H 5.17; N 20.99. HRMS calculated for C$_{19}$H$_{17}$N$_5$O: 331.1511. Found: 331.1499.

{[\text{2-Methyl-3-oxo-6-phenyl-5-piperidino-2,3-dihydropyridazin-4-yl]methylene}]

\text{malononitrile (9d).} Deep orange crystals: 78 \%, mp 170-172 °C, R_f=0.93 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl$_3$) δ 8.00 (1H, s, CH=–C), 7.56-7.41 (5H, m, H phenyl), 3.69 (3H, s, N(2)CH$_3$), 3.03 (4H, m, N-CH$_2$ piperidine), 1.93 (4H, m, CH$_2$-CH$_2$ piperidine). 13C NMR (50 MHz, CDCl$_3$) δ 159.8 (C–3), 156.5 (=CH), 148.9 (C–5), 139.7 (C–6), 136.3 (C–1’ phenyl), 129.3, 129, 127.7 (C–2’,-6’ phenyl), 114.8, 113.3 (CN), 103.1 (C–4), 74.9 (C(CN)$_2$), 55.8 (C–2,5 pyrrolidine), 38.7 (N(2)CH$_3$), 25 (C–3,4 pyrrolidine). IR (potassium bromide): ν_{max} 3444, 2936, 2856, 2220, 1740, 1698, 1650, 1560, 1542, 1508, 1476, 1442, 1398, 1368, 1322, 1214, 1102, 1020, 708 cm$^{-1}$. Anal. calculated for C$_{20}$H$_{19}$N$_5$O (345.40): C 69.55; H 5.54; N 20.28. Found: C 69.42; H 5.56; N 20.32.

[(2-Methyl-5-morpholino-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methylene]malononitrile (9e). Orange crystals: 64 %, mp 184-187 °C, Rf=0.8 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl3) δ 7.68 (1H, s, CH=C), 7.52-7.38 (5H, m, Hphenyl), 3.61 (4H, t, O-CH2 morpholine, J=4.6), 3.05 (4H, m, N-CH2 morpholine, J=4.6). 13C NMR (50 MHz, CDCl3) δ 157.7 (C-3), 153.5 (=CH), 152.8 (C-5), 142.8 (C-6), 135.8 (C-1' phenyl), 129.5, 129.2, 128.3 (C-2',-6' phenyl), 114.2, 113.8, 128.3 (C-4, CN), 88.5 (C(CN)2), 66.8 (C-2,6 morpholine), 52.4 (C-3,5 morpholine), 40.2 (N(2)CH3). IR (potassium bromide): νmax 3412, 2963, 2906, 2852, 2220, 1646, 1567, 1545, 1481, 1436, 1322, 1256, 1111, 1031, 782, 710 cm–1. Anal. calculated for C19H17N5O2 (347.38): C 65.69; H 4.93; N 20.16. Found: C 65.02; H 4.94; N 19.72. HRMS calculated for C19H17N5O2: 348.1461. Found: 348.1447.

{[5-(Dimethylamino-d6)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene}malononitrile (9g). Deep orange crystals: 63 %, mp 181-183 °C, Rf=0.56 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl3) δ 8.33 (1H, s, CH=C), 7.65-7.35 (5H, m, Hphenyl), 3.73 (3H, s, N(2)CH3). 13C NMR (50 MHz, CDCl3) δ 159.5 (C-3), 156.8 (=CH), 152.8 (C-5), 140.6 (C-6), 136.5 (C-1' phenyl), 129.3, 129.2, 127.9 (C-2',-6' phenyl), 114.5, 113.2 (CN), 105.4 (C-4), 78.7 (C(CN)2), 39.2 (N(2)CH3). IR (potassium bromide): νmax 3428, 3250, 3024, 2936, 2256, 2208, 1636, 1552, 1496, 1442, 1332, 1272, 1142, 1098, 1026, 992, 960, 768, 722, 696, 594, 542 cm–1. Anal. calculated for C17H9D6N5O (311.38): C 65.58; H+D 4.85; N 22.49. Found: C 65.16; H+D 4.79; N 22.56. MS: [M+H]+: 312. Based on the comparison of spectra of 9g to those of 9a, it was confirmed that no deuterium was lost (>98% deuterium).

{[5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl]methylene}malononitrile (9i). Orange crystals: 48 %, mp 180-182 °C, Rf=0.47 (ethyl acetate: dichloromethane 1:1). 1H NMR (200 MHz, CDCl3) δ 8.31 (1H, s, CH=C), 3.69 (3H, s, N(2)CH3), 3.12 (6H, s, N(5)CH3). 13C NMR (50 MHz, CDCl3) δ 159.5 (C-3), 157.1 (=CH), 150.6 (C-5), 128.5 (C-6), 114, 111.9 (CN), 104.2 (C-4), 81.6 (C(CN)2), 42.6 (N(5)CH3), 39.3 (N(2)CH3). IR (potassium bromide): νmax 3429, 3086, 2948, 2221, 1623, 1585, 1535, 1476, 1405, 1369, 1303, 1260, 1167, 1111, 1020, 959, 757, 679 cm–1. Anal. calculated for C11H11N5O (229.24): C 57.63; H 4.84; N 30.55. Found: C 57.31; H 4.86; N 30.00. HRMS calculated for C11H11N5O: 230.1042. Found: 230.1033.

General procedure for the synthesis of 10a-c, 10h, 10i. Knoevenagel condensation of aldehydes with DMB. Typical example

To a solution of formyl derivative 8 (0.001 mol) in ethanol (5 mL) 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (1,3-dimethylbarbituric acid, DMB) (0.001 mol) was added. The mixture was stirred at ambient temperature until the starting material had been consumed (monitored by TLC). The precipitated products were then filtered off, which was then washed with ethanol, diethyl ether and hexane to give analytically pure crystals at all times.

5- {[5-(Dimethylamino)-2-methyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl]methylene}-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10a). Yellow crystals: 84 %, mp 188-189 °C,
R_f=0.21 (toluene: acetone 7:3). \(^1\)H NMR (200 MHz, CDCl \(_3\)) \(\delta\) 8.94 (1H, s, CH=C), 7.82-7.77 (2H, m, H-3’ and H-5’ phenyl), 7.52-7.42 (3H, m, H-2’ phenyl, H-4’ and H-6’ phenyl), 3.74 (3H, s, N(2)CH\(_3\) pyridazine), 3.42 and 3.35 (3H, s, N(1)CH\(_3\) and 3H, s, N(3)CH\(_3\) pyrimidine), 2.78 (6H, s, N(5)CH\(_3\) pyridazine). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 162.8, 161.3, 159.5 (C-3 pyridazine, C-6 and C-4 pyrimidine), 155.7 and 151.7 (C-5 pyridazine and C-2 pyrimidine), 151.5 (=CH), 140 (C-6 pyridazine), 137.1 (C-1’ phenyl), 129 and 127.6 (C-2’-6’ phenyl), 112.4 and 107.6 (C-5 pyrimidine and C-4 pyridazine), 46 (N(5)CH\(_3\)), 39.1 (N(2)CH\(_3\) pyridazine), 28.6 and 28.1 (N(1)CH\(_3\) and N(3)CH\(_3\) pyrimidine). IR (potassium bromide): \(\nu\) max 3446, 3062, 2940, 1712, 1650, 1570, 1496, 1462, 1400, 1378, 1324, 1296, 1282, 1176, 1120, 1084, 1058, 1016, 974, 960, 780, 760, 712, 576 cm\(^{-1}\). Anal. calculated for C\(_{20}\)H\(_{21}\)N\(_5\)O\(_4\) (395.42): C 60.75; H 5.35; N 17.71. Found: C 60.59; H 5.33; N 17.65. MS: [M+H\(^+\)]: 396.

5-[(6-(2,4-Dichlorophenyl)-5-dimethylamino-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)methylene]-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10b). Orange crystals: 61 %, mp 134-135 °C, R_f=0.27 (petroleum ether(bp 40-70 °C): ethyl acetate 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 8.69 (0.5H, broad s, CH=C), 8.00 (0.5H, broad s, CH=C), 7.53-7.30 (3H, broad m, H-3’ phenyl, H-5’ and H-6’ phenyl), 3.75 (3H, s, N(2)CH\(_3\) pyridazine), 3.41 and 3.35 (3H, s, N(1)CH\(_3\) and 3H, broad s, N(3)CH\(_3\) pyrimidine), 2.66 (6H, broad s, N-CH\(_3\)). Due to the atropisomerism, at room temperature in the \(^{13}\)C NMR spectrum broadened signals are present. On heating the sample in NMR tube, transformation to 12b occurred. IR (potassium bromide): \(\nu\) max 3446, 2926, 1676, 1620, 1578, 1455, 1379, 1305, 1094, 1055, 753 cm\(^{-1}\). Anal. calculated for: C\(_{20}\)H\(_{19}\)Cl\(_2\)N\(_5\)O\(_4\) (464.30): C 51.74; H 4.12; N 15.08. Found: C 51.13; H 4.02; N 14.81. HRMS calculated for C\(_{20}\)H\(_{19}\)Cl\(_2\)N\(_5\)O\(_4\): 464.0892. Found: 464.0871.

1,3-Dimethyl-5-[(2-methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazin-4-yl)methylene]pyrimidine-2,4,6(1H,3H,5H)-trione (10c). Orange crystals: 86 %, mp 161-163 °C, R_f=0.38 (ethyl acetate). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 9.27 (1H, s, CH=C), 7.94 (2H, d, H-3’ and H-5’ phenyl), 7.53-7.43 (3H, m, H-2’ phenyl, H-4’ and H-6’ phenyl), 3.73 (3H, s, N(2)CH\(_3\) pyridazine), 3.43 and 3.33 (3H, s, N(1)CH\(_3\) and 3H, s, N(3)CH\(_3\) pyrimidine), 2.82 (4H, m, NCH\(_2\) pyrrolidine), 1.83 (4H, m, CH\(_2\)-CH\(_2\), pyrrolidine). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 162.8, 161.3, 159.5 (C-3 pyridazine, C-6 and C-4 pyrimidine), 153 and 151.9 (C-5 pyridazine and C-2 pyrimidine), 151.7 (=CH), 139.4 (C-6 pyridazine), 137 (C-1’ phenyl), 128.9 and 127.7 (C-2’-6’ phenyl), 109.2 and 104.4 (C-5 pyrimidine and C-4 pyridazine), 55.3 (C-2, -5 pyrrolidine), 38.9 (N(2)CH\(_3\) pyridazine), 28.6 and 28 (N(1)CH\(_3\) and N(3)CH\(_3\) pyridazine), 24.8 (C-3,-4 pyrrolidine). IR (potassium bromide): \(\nu\) max 3362, 2946, 1716, 1647, 1558, 1484, 1380, 1350, 1300, 1277, 1250, 1146, 1050, 955, 703 cm\(^{-1}\). Anal. calculated for C\(_{22}\)H\(_{23}\)N\(_5\)O\(_4\) (421.45): C 62.70; H 5.50; N 16.62. Found: C 62.60; H 5.61; N 16.37.

5-[(5-(Dimethylamino-6)-2-methyl-3-oxo-6-phenyl-5-pyrrolidino-2,3-dihydropyridazin-4-yl)methylene]-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10g). Yellow crystals: 81 %, mp 188-190 °C, R_f=0.24 (toluene: acetone 7:3). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 8.97 (1H, s, CH=C), 7.83-7.70 (2H, m, H-3’ and H-5’ phenyl), 7.60-7.35 (3H, m, H-2’ phenyl, H-4’ and H-6’ phenyl), 3.73 (3H, s, N(2)CH\(_3\) pyridazine), 3.41 and 3.35 (3H, s, N(1)CH\(_3\) and 3H, s, N(3)CH\(_3\) pyrimidine). \(^{13}\)C NMR (50
MHz, CDCl3) δ 162.5, 160.4, 160.2 (C-3 pyridazine, C-6 and C-4 pyrimidine), 155.8 and 151.8 (C-5 pyridazine and C-2 pyrimidine), 151.6 (=CH), 140.0 (C-6 pyridazine), 137.2 (C-1’ phenyl), 129.0 and 127.7 (C-2’-6’ phenyl), 112.4 and 107.5 (C-5 pyrimidine, C-4 pyridazine), 39.2 (N(2)CH3 pyridazine), 28.6 and 28.1 (N(1)CH3 and N(3)CH3 pyrimidine). IR (potassium bromide): v̇max 3442, 1712, 1658, 1558, 1522, 1478, 1414, 1378, 1324, 1294, 1249, 1229, 1154, 1090, 1054, 782, 714, 480 cm⁻¹. Anal. calculated for C20H15D6N5O4 (401.45): C 59.84; H+D 5.27; N 17.44. Found: C 59.36; H+D 5.19; N 17.01. MS: [M+H]^+: 402. Based on the comparison of spectra of 10g to those of 10a, it was confirmed that no deuterium was lost (>98% deuterium).

5-[(5-(Dimethylamino)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)methylene]-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (10i). Orange crystals: 89 %, mp 207-209 °C, Rf=0.24 (ethyl acetate: chloroform 9:1). 1H NMR (200 MHz, CDCl3) δ 8.9 (1H, s, CH=C), 7.81 (1H, s, H-6), 3.69 (3H, s, N(2)CH3), 3.41 and 3.28 (3H, s, N(1)CH3 and 3H, s, N(3)CH3 pyrimidine), 2.92 (6H, s, N(5)CH3). 13C NMR (50 MHz, CDCl3) δ 162.2, 160.7, 159.5 (C-3 pyridazine, C-4 and C-6 pyrimidine), 152.3, 151.6 (C-5 pyridazine, C-2 pyrimidine and =CH), 128.3 (C-6 pyridazine), 115.5 and 106.4 (C-5 pyrimidine and C-4 pyridazine), 43.1 (N(5)CH3 pyridazine), 39.4 (N(2)CH3 pyridazine), 28.8 and 28.2 (N(1)CH3 and N(3)CH3 pyrimidine). IR (potassium bromide): v̇max 3440, 2954, 1716, 1655, 1589, 1506, 1410, 1275, 1257, 1167, 1084, 943, 754 cm⁻¹. Anal. calculated for C14H17N5O4 (319.32): C 52.66; H 5.37; N 21.93. Found: C 52.64; H 5.41; N 21.68.

General procedure for the isomerization of vinyl compounds 9: preparation of compounds 11

Compound 9 (0.005 mol) in anhydrous DMF (10 ml) was heated at 100 °C (in case of compound 9b and 9g at 155 °C) until the starting material had been consumed (monitored by TLC). After evaporation of the solvent in vacuo, water (5 mL) was added to the oily residue, and the mixture was extracted with chloroform (3x5 mL). The combined organic phases were dried over anhydrous magnesium sulphate. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography or crystallization. In case of compounds 11a, 11b and 11d, the precipitated crystals were filtered off and washed with water (3x2 mL). The crude product was purified by column chromatography or crystallization.

1,6-Dimethyl-5-oxo-8-phenyl-1,4,5,6-tetrahydropyrido[2,3-d]pyridazine-3,3(2H)-dicarbonitrile (11a). The crude product was purified by column chromatography with a mixture of petroleum ether (bp 40-70 °C) and ethyl acetate (1:1) as the eluent, affording beige crystals: yield 47 %, mp 190-192 °C, Rf=0.38 (petroleum ether (bp 40-70 °C): ethyl acetate 1:1). 1H NMR (200 MHz, CDCl3) δ 7.5-7.43 (5H, m, H phenyl), 3.80 (3H, s, N(6)CH3), 3.75 (2H, s, H2-2), 3.40 (2H, s, H2-4), 2.67 (3H, s, N(1)CH3). 13C NMR (50 MHz, CDCl3) δ 159.2 (C-5), 145.3 and 140.3 (C-8 and C-8a), 136.0 (C-1’ phenyl), 129.2 (C-4’ phenyl), 129.0, 127.9 (C-2’ phenyl, C-3’, C-5’ and C-6’ phenyl), 113.8 and 111.4 (C-4a and CN), 56.1 (C-2), 43.9 (N(1)CH3), 39.8 (N(6)CH3), 32.1 (C-4), 26.2 (C-3). IR (potassium bromide): v̇max 2966, 1626, 1441, 1401, 1278, 1075, 776,
703 cm\(^{-1}\). Anal. calculated for C\(_{17}\)H\(_{15}\)N\(_5\)O (305.33): C 66.87; H 4.95; N 22.94. Found: C 67.03; H 5.11; N 23.02. MS: [M+H]\(^+\): 306.

8-(2,4-Dichlorophenyl)-1,6-dimethyl-5-oxo-1,4,5,6-tetrahydropyrido[2,3-d]pyridazine-3,3(2H)-dicarbonitrile (11b). The product was crystallized from isopropyl alcohol, affording beige crystals: yield 35 %, mp 221-222 °C, R\(_f\)=0.75 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.51 (1H, broad s, H-3' phenyl), 7.40 (2H, broad s, H-5' and H-6' phenyl), 3.78 (3H, s, N(6)CH\(_3\)), 3.73 (1H, d, Ha-2, \(J=16.0\)), 3.70 (1H, d, Hb-2, \(J=16.0\)), 3.50 (1H, d, Ha-4, \(J=17.0\)), 3.25 (1H, d, Hb-4, \(J=17.0\)), 2.67 (3H, s, N(1)CH\(_3\)). 13C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 159.1 (C-5), 145.1, 136.9, 136.1 134.3 and 133.9 (C-1' phenyl, C-2' and C-4' phenyl, C-8 and C-8a), 131.9, 129.8, 127.9 (C-3' phenyl, C-5' and C-6' phenyl), 113.6 and 110.1 (C-4a and CN), 56.3 (C-2), 42.7 and 39.8 (N(1)CH\(_3\) and N(6)CH\(_3\)), 31.9 (C-4), 26.9 (C-3). IR (potassium bromide): \(\nu_{\text{max}}\) 3748, 3674, 3650, 3614, 3588, 3566, 3422, 2926, 1700, 1682, 1634, 1578, 1558, 1542, 1508, 1490, 1474, 1458, 1448, 1412, 1378, 1102, 1024, 460 cm\(^{-1}\). Anal. calculated for C\(_{17}\)H\(_{13}\)Cl\(_2\)N\(_5\)O (374.23): C 54.56; H 3.50; N 18.71. Found: C 54.38; H 3.41; N 18.66.

3-Methyl-4-oxo-1-phenyl-3,5,6a,7,8,9-hexahydropyridazino[4,5-e]indolizine-6,6(4H)-dicarbonitrile (11c). The crude product was purified by column chromatography with a mixture of petroleum ether (bp 40-70 °C) and ethyl acetate (1:2) as the eluent, affording yellow crystals: yield 67 %, mp 224-228 °C, R\(_f\)=0.44 (petroleum ether (bp 40-70 °C): ethyl acetate 1:2). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.45 (5H, m, H phenyl), 3.85 (1H, d, 5-Ha, \(J=18.0\)), 3.81 (3H, s, N(3)CH\(_3\)), 3.10 (1H, d, 5-Hb, \(J=18.0\)), 2.87 (2H, m, H2-9), 2.60-1.60 (4H, m, H2-7 and H2-8). 13C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 159.2 (C-4), 143.2 and 139.5 (C-1 and C-10a), 136.4 (C-1' phenyl), 129.1, 128.7 and 128.6 (C-2'-6' phenyl), 114.4 and 113.3 (CN), 107.6 (C-4a), 63.1 (C-6a), 52.5 (C-9), 39.7 (N(3)CH\(_3\)), 31.8 (C-6), 32.8, 28.8 and 23.2 (C-5, C-7, and C-8). IR (potassium bromide): \(\nu_{\text{max}}\) 3676, 3652, 3630, 3568, 3564, 3522, 2920, 2900, 2946, 2920, 2898, 2864, 2248, 1547, 1496, 1434, 1372, 1352, 1318, 1274, 1246, 1192, 1158, 1094, 1072, 1016, 996, 986, 970, 786, 708, 568 cm\(^{-1}\). Anal. calculated for C\(_{19}\)H\(_{17}\)N\(_5\)O (331.37): C 68.87; H 5.17; N 21.13. Found: C 68.38; H 5.41; N 18.66.

3-Methyl-4-oxo-1-phenyl-3,5,6a,7,8,9,10-hexahydro-4H-pyridazino[4,5-c]quinolizine-6,6(6aH)-dicarbonitrile (11d). The product was crystallized from isopropyl alcohol, affording white crystals: yield 46 %, mp 188-190 °C, R\(_f\)=0.58 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.65-7.50 (2H, m, H-3' and H-5' phenyl), 7.49-7.40 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), 3.77 (3H, s, N(3)CH\(_3\)), 3.71 (1H, d, Ha-5 \(J=18.0\)), 3.45 (1H, m, Ha-10), 3.24 (1H, m, H-6a), 3.13 (1H, d, Hb-5, \(J=18.0\)), 2.41 (1H, m, Hb-10), 2.32 (1H, m, Ha-7), 1.98 (1H, m, Ha-9), 1.85 (1H, m, Hb-7), 1.49 (1H, m, Hb-9), 1.22-1.33 (2H, m, H2-8). 13C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.9 (C-4), 145.8 and 140.6 (C-1 and C-11a), 137.3 (C-1' phenyl), 129.8 (C-4' phenyl), 129.7 (C-2' and C-6 phenyl), 127.8 (C-3' and C-5' phenyl), 114.5 and 113.4 (CN), 111.4 (C-4a) 62.7 (C-6a), 52.3 (C-10), 40.2 (N(3)CH\(_3\)), 36.6 (C-6), 32.4, 29.2, 24.4 and 23.9 (C-5, C-7, C-8 and C-9). IR (potassium bromide): \(\nu_{\text{max}}\) 3784, 3698, 3658, 3634, 3574, 3428, 3056, 3022, 2932, 2852, 2822, 2728, 2612, 1972, 1902, 1856, 1630, 1592, 1550, 1498, 1442, 1414,
1370, 1332, 1310, 1284, 1260, 1236, 1210, 1168, 1138, 1098, 1048, 1020, 990, 968, 918, 776, 706, 574, 546 cm\(^{-1}\). Anal. calculated for C\(_{20}\)H\(_{19}\)N\(_5\)O (345.40): C 69.55; H 5.54; N 20.28. Found: C 69.76; H 5.49; N 20.38.

3-Methyl-4-oxo-1-phenyl-3,5,6a,7,9,10-hexahydropyridazino[4’,5’:5,6]pyrido[2,1-c][1,4]oxazine-6,6(4\(H\))-dicarbonitrile (11e). The crude product was purified by column chromatography with a mixture of dichloromethane and ethyl acetate (1:1) as the eluent, affording white crystals: yield 46 \%, mp 239-241 °C, R\(_f\)=0.54 (ethyl acetate: dichloromethane 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.67-7.52 (2H, m, H-3’ and H-5’ phenyl), 7.48-7.42 (3H, m, H-2’ phenyl, H-4’ and H-6’ phenyl), 4.29 (1H, dd, Ha-7, \(J_1=11.7, J_2=3.0\)), 3.96 (1H, dd, Hb-7, \(J_1=11.6, J_2=8.2\)), 3.79 (3H, s, N(3)CH\(_3\)), 3.75 (1H, d, Ha-5, \(J=18\)), 3.55-3.25 (4H, m, H\(_2\)-9, Ha-8 and Hb-10), 3.18 (1H, d, Hb-5, \(J=18\)), 2.68 (1H, m, Ha-10). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 159.1 (C-4), 144.6 and 139.7 (C-1 and C-11a), 135.9 (C-1’ phenyl), 129.5 (C-4’ phenyl), 129.2, 127.3 (C-2’, C-3’, C-5’ and C-6’ phenyl), 113, 112.6 and 112.4 (C-4a and CN), 67.2, 66.0 (C-7, C-9), 59.2 (C-6a), 48.8 (C-5), 39.7 (N(3)CH\(_3\)), 32.5 (C-10), 30.9 (C-6). IR (potassium bromide): \(\nu_{\text{max}}\) 3424, 2946, 2922, 2868, 1638, 1580, 1496, 1432, 1410, 1356, 1292, 1226, 1182, 1124, 1052, 1026, 992, 778, 708 cm\(^{-1}\). Anal. calculated for C\(_{19}\)H\(_{17}\)N\(_5\)O\(_2\) (347.37): C 65.70; H 4.93; N 20.16. Found: C 65.40; H 5.00; N 19.98.

1,6-Dimethyl-1\(d_3\)-5-oxo-8-phenyl-1,4,5,6-tetrahydro-4-\(d\)pyrido[2,3-\(d\)]pyridazine-3,3(2\(H\))-2,2\(d_2\)-dicarbonitrile (11g). The crude product was purified by column chromatography with a mixture of petroleum ether (bp 40-70 °C) and ethyl acetate (1:1) as the eluent, affording beige crystals: yield 51 \%, mp 190-192 °C, R\(_f\)=0.53 (petroleum ether (bp 40-70 °C): ethyl acetate 1:1). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta\) 7.52-7.43 (5H, m, Hphenyl), 3.80 (3H, s, N(6)CH\(_3\)), 3.38 (1H, s, H-4). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta\) 159.2 (C-5), 145.3 and 140.3 (C-8 and C-8a), 136.0 (C-1’ phenyl), 129.2 (C-4’ phenyl), 129.0, 127.9 (C-2’ phenyl, C-3’ phenyl, C-5’ and C-6’ phenyl), 113.8 and 111.4 (C-4a and CN), 39.8 (N(6)CH\(_3\)), 31.7 [t (1:1:1) due to the \(J_1\)C(D), C-4], 25.9 (C-3). IR (potassium bromide): \(\nu_{\text{max}}\) 2926, 1630, 1510, 1444, 1414, 1352, 1284, 1268, 1244, 1216, 1026, 754, 708, 456 cm\(^{-1}\). Anal. calculated for C\(_{17}\)H\(_{17}\)D\(_6\)N\(_5\)O (311.38): C 65.58; H+D 4.85; N 22.49. Found: C 65.18; H+D 4.75; N 22.52. MS: [M+H]\(^+\): 312. Based on the comparison of spectra of 11g to those of 11a, it was confirmed that no deuterium was lost (>98% deuterium).

General procedures for the preparation of compounds 12

Method A. Thermal isomerization of compounds 10. Compound 10 (0.001 mol) in anhydrous DMF (5 mL) was heated at 100 °C (in case of compound 10i at 155 °C) until the starting material had been consumed (monitored by TLC). After evaporation of the solvent in \textit{vacuo}, water (10 mL) was added to the residue. Then it was filtered off and washed with water (3x2 mL). The product was purified by flash column chromatography or crystallization.

Method B. One-pot procedure from aldehydes 8. To a solution of aldehyde 8 (0.001 mol) in ethanol (5 mL), DMB (0.001 mol) was added. The mixture was stirred at room temperature until the starting material had been consumed (monitored by TLC). The precipitated product was then filtered off and washed with ethanol, diethyl ether and hexane to give analytically pure crystals.
in case of compound 12d, 12e. Starting from 8f or 8h aldehydes afforded a mixture of vinyl compounds and the tetrahydropyrido-fused compounds (10f and 12f, or 10h and 12h) (detected by TLC, 1H NMR). To make complete the reaction, the product was heated in ethanol (5 mL) for 1h. After cooling, crystals precipitated were filtered off and washed with ethanol to give analytically pure compound 12h. Compound 12f was purified by flash column chromatography, using dichloromethane-ethyl acetate (1:1) as the eluent.

1,1',3',6-Tetramethyl-8-phenyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidin]-2',4',5,6'(1H,1'H,3'H)-tetrone (12a). Following the procedure of Method A, the product was crystallized from ethanol, affording beige crystals: yield 62 %. Compound 12a was also prepared by using microwave-heating. Compound 10a (50 mg) and 2 mL D2O was irradiated in a closed vessel with pressure control at 100 °C for 10 minutes (ramp time: 2 min; hold time: 10 min) at 200 W maximum power. The precipitated product was then filtered off and washed with hexane to give analytically pure 35 mg (70 %) beige crystals.

Mp 209-211 °C, Rf=0.32 (petroleum ether (bp 40-70 °C): ethyl acetate (1:2). 1H NMR (200 MHz, CDCl3) δ 7.55-7.53 (2H, m, H-3' and H-5' phenyl), 7.45-7.39 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), 3.81 (3H, s, N(6)CH3), 3.48 (2H, s, H2-2), 3.31 (6H, s, N(3')CH3 and N(1')CH3 pyrimidine) 3.22 (2H, s, H2-4), 2.40 (3H, s, N(1)CH3) 13C NMR (50 MHz, CDCl3) δ 169 (C-4'and C-6' pyrimidine), 160.1 (C-5), 151 (C-2' pyrimidine), 145 and 140.5 (C-8 and C-8a), 136.8 (C-1' phenyl), 128.7 (C-4' phenyl), 128.8, 128 (C-2', C-3', C-5' and C-6' phenyl), 116.3 (C-4a), 58.1 (C-2), 46.2 (C-3), 43.6 (N(1)CH3), 39.8 (N(6)CH3), 29 (N(1)CH3 and N(3')CH3 pyrimidine), 28.3 (C-4). IR (potassium bromide): ν max 3462, 2936, 1746, 1678, 1614, 1544, 1510, 1446, 1420, 1404, 1382, 1340, 1280, 1200, 1160, 1126, 1064, 778, 756, 708, 544, 474 cm−1. Anal. calculated for C20H21N5O4 (395.42): C 60.75; H 5.35; N 17.71. Found: C 61.15; H 5.51; N 17.79. MS: [M+H]+: 396.

8-(2,4-Dichlorophenyl)-1,1',3',6-tetramethyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidin]-2',4',5,6'(1H,1'H,3'H)-tetrone (12b). Following the procedure of Method A, then the product was crystallized from ethanol, affording beige crystals: yield 50 %, mp 251-252 °C, Rf=0.37 (toluene: acetone 1:2). 1H NMR (400 MHz, CDCl3) δ 7.55-7.27 (3H, m, H-3', H-5', H-6' phenyl), 3.79 (3H, s, N(6)CH3), 3.48 (1H, d, Ha-2, J=13.2), 3.39 (1H, d, Hb-2, J=13.2), 3.34 and 3.28 (6H, s, N(3')CH3 and N(1')CH3 pyrimidine) 3.22 (1H, d, Ha-4, J=18.4), 3.25 (1H, d, Hb-4, J=18.4), 2.41 (3H, s, N(1)CH3) 13C NMR (100 MHz, CDCl3) δ 169 (C-4'and C-6' pyrimidine), 160.1 (C-5), 151 (C-2' pyrimidine), 145 (C-8a), 137.2, 135.4, 134.7, 134.4 (C-8, and C-1' phenyl, C-2' and C-4' phenyl), 132.1, 129.7 and 127.6 (C-3'phenyl, C-5' and C-6' phenyl), 115.5 (C-4a), 58.1 (C-2), 46.4 (C-3), 42.6 (N(1)CH3), 39.7 (N(6)CH3), 29.2 and 28.8 (N(1)CH3 and N(3')CH3 pyrimidine), 28.3 (C-4). IR (potassium bromide): v max 3568, 3526, 3526, 3420, 3058, 2990, 2956, 2920, 1744, 1670, 1632, 1592, 1546, 1508, 1454, 1406, 1372, 1342, 1324, 1284, 1204, 1138, 1088, 1058, 1034, 826, 800, 750, 480, 452 cm−1. Anal. calculated for C20H19Cl2N5O4 (464.30): C 51.74; H 4.12; N 15.08. Found: C 51.77; H 4.06; N 15.03.

1',3',3'-Trimethyl-1-phenyl-3,5,6a,7,8,9-hexahydro-2'H,4H-spiro[indolizino[4,5-e]indolizine-6,5'-pyrimidin]-2',4',6'(1'H,3'H)-tetrone (12c). Following the procedure of
Method A, then the product was purified by flash column chromatography, using ethyl acetate as the eluent, affording white crystals: yield 40 %, mp 207-209 °C, Rf=0.59 (ethyl acetate).

1H NMR (200 MHz, CDCl$_3$) δ 7.48-7.38 (5H, m, H phenyl), 3.88 (1H, m, H a-6), 3.76 (3H, s, N(3)CH$_3$), 3.37 and 3.20 (3H, s, N(3')CH$_3$ and 3H, s, N(1')CH$_3$ pyrimidine), 3.26 (1H, d, Ha-5, J=18.4), 3.13 (1H, d, Hb-5, J=18.4), 2.82-2.74 (2H, m, H2-9), 2.19-1.42 (4H, m, H2-7 and H2-8).

13C NMR (50 MHz, CDCl$_3$) δ 170.4, 168 (C-4' and C-6' pyrimidine), 160 (C-4), 151 (C-2' pyrimidine), 143.4 (C-10a), 139.8 (C-1), 137.4 (C-1' phenyl), 128.7, 128.6 (C-2'-6' phenyl), 112.2 (C-4a), 64.2 (C-6a), 52.5 (C-9), 46.9 (N(3)CH$_3$), 31.6, 27.6 and 23.7 (C-5, C-7 and C-8), 29.1 and 28.5 (N(1')CH$_3$ and N(3')CH$_3$ pyrimidine).

IR (potassium bromide): ν_{max} 3408, 3084, 1686, 1616, 1514, 1448, 1418, 1382, 1356, 1280, 1210, 1180, 1156, 1128, 1086, 1062, 750, 704, 538, 472 cm$^{-1}$. Anal. calculated for C$_{22}$H$_{23}$N$_5$O$_4$ (421.45): C 62.70; H 5.50; N 16.62. Found: C 62.75; H 5.48; N 16.51.

$1',3,3'$-Trimethyl-1-phenyl-3,5,7,8,9,10-hexahydro-2H,4H-spiro[pyridazino[4,5-c][quinoxaline-6,5'-pyrimidine]-2',4,4',6'(1'H,3'H)-tetrone (12d). Following the procedure of Method B, the product was obtained as beige crystals: 82 %, mp 253-254 °C, Rf=0.52 (ethyl acetate : dichloromethane 1:1).

1H NMR (400 MHz, CDCl$_3$) δ 7.73-7.69 (2H, m, H-3' and H-5' phenyl), 7.50-7.30 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), 3.74 (3H, s, N(3)CH$_3$), 3.65-3.50 (1H, m, H-10), 3.50-3.39 (1H, m, H-6a), 3.39 and 3.29 (3H, s, N(1')CH$_3$ and 3H, s, N(3')CH$_3$ pyrimidine), 3.28 (1H, d, Ha-5 J=17.6), 3.02 (1H, d, Hb-5, J=17.6), 2.52-2.45 (1H, m, H-10), 1.80-1.70 (1H, m, H-7), 1.50-1.35 (2H, m, H-2'), 1.25-1.05 (2H, m, H-2').

13C NMR (100 MHz, CDCl$_3$) δ 170.5 and 167.2 (C-4' and C-6' pyrimidine) 160.3 (C-4), 150.9 (C-2' pyrimidine), 146.2 and 140.4 (C-1 and C-11a), 137.9 (C-1' phenyl), 128.9 (C-2' and C-6' phenyl), 128.8 (C-4' phenyl), 127.5 (C-3' and C-5' phenyl), 112.3 (C-4a), 62.0 (C-6a), 52.2 (C-6), 51.6 (C-10), 39.6 (N(3)CH$_3$), 32.3 (C-7), 26.8, 24.0 and 23.9 (C-5, C-8 and C-9). IR (potassium bromide): ν_{max} 3408, 2940, 2850, 1746, 1678, 1600, 1428, 1366, 1314, 1282, 1264, 1238, 1210, 1166, 1132, 1066, 968, 754, 702, 476 cm$^{-1}$. Anal. calculated for C$_{23}$H$_{25}$N$_5$O$_4$ (435.48): C 63.44; H 5.79; N 16.08. Found: C 63.23; H 5.79; N 15.92.

$1',3,3'$-Trimethyl-1-phenyl-3,5,6a,7,9,10-hexahydro-2H,4H-spiro[pyrido[2,1-c][1,4]oxazine-6,5'-pyrimidine]-2',4,4',6'(1'H,3'H)-tetrone (12e). Following the procedure of Method B, the product was obtained as orange crystals: 88 %, mp 253-254 °C, Rf=0.52 (ethyl acetate : dichloromethane 1:1).

1H NMR (200 MHz, CDCl$_3$) δ 7.77-7.69 (2H, m, H-3' and H-5' phenyl), 7.47-7.38 (3H, m, H-2' phenyl, H-4' and H-6' phenyl), 3.79 (3H, s, N(3)CH$_3$), 3.75 (1H, dd, Ha-7, J$_1$=11.2, J$_2$=2.6), 3.66 (1H, dd, Ha-6, J$_1$=6.2, J$_2$=2.8), 3.60 (1H, dd, Hb-7, J$_1$=11.2, J$_2$=6.3), 3.39 and 3.27 (3H, s, N(3')CH$_3$ and 3H, s, N(1')CH$_3$ pyrimidine) 3.36 (2H, m, H-2'), 3.3 (1H, d, Ha-5, J=18.2), 3.25 (1H, m, H-10), 3.18 (1H, d, Hb-5, J=18.2), 2.7-2.67 (1H, m, H-10). 13C NMR (50 MHz, CDCl$_3$) δ 169.5, 168.1 (C-4' and C-6' pyrimidine), 160.1 (C-4), 150.5 (C-2' pyrimidine), 145.1 and 140.2 (C-1 and C-11a), 136.8 (C-1' phenyl), 129, 128.9, 127.5 (C-2'-6' phenyl), 116 (C-4a), 66.1, 65.9 (C-7, C-9), 60.6 (C-6a), 48.9 (C-6), 47.4 (C-10), 39.7 (N(3)CH$_3$), 32 (C-5), 29.3 and 28.9 (N(1')CH$_3$ and N(3')CH$_3$).
pyrimidine). IR (potassium bromide): \(\nu_{\text{max}} \) 3410, 3052, 2998, 2966, 2886, 1744, 1684, 1630, 1596, 1444, 1414, 1384, 1346, 1294, 1282, 1264, 1230, 1190, 1120, 1044, 1018, 946, 780, 758, 704, 554, 542, 486, 470 cm\(^{-1}\). Anal. calculated for C\(_{22}\)H\(_{23}\)N\(_5\)O\(_5\) (437.45): C 60.40; H 5.30; N 16.01. Found: C 60.52; H 5.32; N 16.17.

1,1',3',6-Tetramethyl-2,8-diphenyl-4,6-dihydro-2\(H\),2'\(H\)-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidine]-2',4',6'[(1\(H\),1'\(H\),3'\(H\))-tetrone (12f). Following the procedure of Method B, the product was obtained as yellow crystals: 57 %, mp 260-262 °C, \(R_f = 0.34 \) (ethyl acetate: dichloromethane (1:1, v/v)). \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta \) 7.53-7.50 (2H, m, H-2' and H-6'), 7.45-7.28 (6H, m, H-3', H-4', H-5', H-3''', H-4''' and H-5''''), 4.65 (1H, s, H-2), 3.69 (3H, s, N(6)CH\(_3\)), 3.09 (2H, s, H-4), 2.99 and 2.97 (6H, s, N(3')CH\(_3\) and N(1')CH\(_3\) pyrimidine), 2.21 (3H, s, N(1)CH\(_3\)). \(^{13}\)C NMR (125 MHz, DMSO-\(d_6\)) \(\delta \) 169.5 and 167.5 (C-4' and C-6' pyrimidine), 159 (C-5), 150.3 (C-2' pyrimidine), 145.8 (C-8a), 139.3 (C-8), 137.4 (C-1' phenyl), 135.9 (C-1''' phenyl), 128.7 (C-4'''' phenyl), 128.6 (C-3''' and C-5''' phenyl), 128.4 (C-3''' and C-5''' phenyl) 127.3 (C-2'' and C-6'' phenyl) 127.0 (C-2''' and C-6''' phenyl), 116.0 (C-4a), 68.8 (C-2), 52.2 (C-3), 42.6 (N(1)CH\(_3\)), 38.9 (N(6)CH\(_3\)), 28.3 and 28.2 (N(1')CH\(_3\) and N(3')CH\(_3\) pyrimidine), 25.3 (C-4). \(H'' \) and \(C'' \) are 8-phenyl and \(H''' \) and \(C''' \) are 2-phenyl atoms. IR (potassium bromide): \(\nu_{\text{max}} \) 3420, 3060, 3030, 2948, 1748, 1684, 1620, 1544, 1446, 1424, 1402, 1384, 1340, 1282, 1178, 1158, 1138, 1116, 1082, 1064, 1004, 790, 754, 702, 610, 554, 532, 470 cm\(^{-1}\). Anal. calculated for C\(_{26}\)H\(_{25}\)N\(_5\)O\(_4\) (471.52): C 66.23; H 5.34; N 14.85. Found: C 66.19; H 5.32; N 14.98.

1,1',3',6-Tetramethyl-1\(d_3\)-8-phenyl-4,6-dihydro-4\(d\)-2\(H\),2\(H\)-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidine]-2,2\(d_2\)-2',4',5,6'(1\(H\),1'\(H\),3'\(H\))-tetrone (12g). Following the procedure of Method A, then the product was crystallized from ethanol, affording beige crystals: yield 50 %. Compound 12g was also prepared in \(n \)-butanol. Compound 10g (20 mg) was refluxed in \(n \)-butanol for 24 h (monitored by TLC). Evaporation of the solvent in \textit{vacuo} gave analytically pure beige crystalline product: 10 mg (50 %), mp 210-212 °C, \(R_f = 0.41 \) (petroleum ether (bp 40-70 °C): ethyl acetate 1:10). \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta \) 7.65-7.35 (5H, m, H phenyl), 3.81 (3H, s, N(6)CH\(_3\)), 3.31 (6H, s, N(3')CH\(_3\) and N(1')CH\(_3\) pyrimidine) 3.20 (1H, s, H-4). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)) \(\delta \) 169.1 (C-4' and C-6' pyrimidine), 160.1 (C-5), 145.0 and 140.5 (C-8 and C-8a), 136.9 (C-1' phenyl), 128.7 (C-4' phenyl), 128.8, 128.1 (C-2', C-3', C-5' and C-6' phenyl), 116.2 (C-4a), 45.9 (C-3), 43.1 and 42.7 (N(1)CD\(_3\)), 39.7 (N(6)CH\(_3\)), 29.0 (N(1')CH\(_3\) and N(3')CH\(_3\) pyrimidine), 27.9 [\(t(1:1:1) \) due to the \(^1\)J(C,D), C-4]. IR (potassium bromide): \(\nu_{\text{max}} \) 3650, 3616, 3588, 3566, 3546, 3526,3420, 3058, 2954, 1748, 1676, 1624, 1542, 1510, 1446, 1410, 1376, 1286, 1212, 1110, 1062, 1024, 752, 704, 538, 468 cm\(^{-1}\). Anal. calculated for C\(_{26}\)H\(_{25}\)N\(_5\)O\(_4\)D\(_6\) (415.45): C 59.84; H+D 5.27; N 17.45. Found: C 59.35; H+D 5.17; N 16.93. MS: [M+H]\(^+\): 402. Based on the comparison of spectra of 12g to those of 12a, it was confirmed that no deuterium was lost (>98% deuterium).

1',2,3'-Trimethyl-2,7,11b,13-tetrahydro-1\(H\),2'\(H\),6\(H\)-spiro[2,3,4b-triazachrysene-12,5'-pyrimidine]-1,2',4',6'(1\(H\),3'\(H\))-tetrone (12h). Following the procedure of Method B, the product was obtained as pale yellow crystals: 62 %, mp 260-262 °C, \(R_f = 0.33 \) (ethyl acetate:
chloroform 9:1). 1H NMR (200 MHz, CDCl$_3$) δ 7.68 (1H, s, H-4), 7.35-7.16 (3H, m, H-8, H-9 and H-10), 6.96-6.93 (1H, m, H-11), 4.55 (1H, s, H-11b), 4.02-4.00 (1H, m, Ha-6), 3.78 (3H, s, N(2)CH$_3$), 3.57 (1H, d, Ha-13, J=18.9), 3.52-3.41 (1H, m, Hb-6), 3.14 and 3.01 (3H, s, N(3')CH$_3$ and 3H, s, N(1')CH$_3$), 2.98 (1H, d, Hb-13, J=18.9), 2.87-2.65 (2H, m, H$_2$-7). 13C NMR (50 MHz, CDCl$_3$) δ 169.1 and 167.7 (C-4' and C-6' pyrimidine), 160.4 (C-1), 150 (C-2' pyrimidine), 144.2 (C-4a), 135.7 and 129.1 (C-7a and C-11a), 129.3, 128.5, 127.7, 127.5 and 126.5 (C-4, C-8, C-9, C-10, C-11), 112.1 (C-13a), 64.9 (C-11b), 53.5 (C-12), 44.5 (C-6), 39.5 (N(2)CH$_3$), 29.0 and 28.9 (C-7 and C-13), 28.8 and 28.4 (N(3')CH$_3$ and N(1')CH$_3$). IR (potassium bromide): ν_{max} 3429, 2927, 2861, 1679, 1630, 1447, 1380, 1047, 944, 856, 751 cm$^{-1}$. Anal. calculated for C$_{21}$H$_{21}$N$_5$O$_4$·0.2H$_2$O (411.02): C 61.37; H 5.25; N 17.04. Found: C 61.32; H 5.14; N 17.02.

1,1',3',6-Tetramethyl-4,6-dihydro-2H,2'H-spiro[pyrido[2,3-d]pyridazine-3,5'-pyrimidine]-2',4',5,6'(1H,1'H,3'H)-tetrone (12i). Following the procedure of Method A, the product was crystallized from isopropyl alcohol, affording beige crystals: 40 %, mp 214-215 $^\circ$C, R_f=0.30 (petroleum ether (bp 40-70 $^\circ$C): ethyl acetate (1:10, v/v)). 1H NMR (200 MHz, CDCl$_3$) δ 7.58 (1H, s, H-8), 3.66 (3H, s, N(6)CH$_3$), 3.51 (2H, s, H$_2$-2), 3.25 (6H, s, N(3')CH$_3$ and N(1')CH$_3$ pyrimidine) 3.11 (3H, s, N(1)CH$_3$), 2.99 (2H, s, H$_2$-4). 13C NMR (50 MHz, CDCl$_3$) δ 168.9 (C-4' and C-6' pyrimidine), 160 (C-5), 150.7 (C-2' pyrimidine), 143.3 (C-8a), 126.3 (C-8), 106.3 (C-4a), 53.5 (C-2), 45.7 (C-3), 39.4 and 38.6 (N(1)CH$_3$ and N(6)CH$_3$), 29.6 (C-4), 28.9 (N(1')CH$_3$ and N(3')CH$_3$ pyrimidine). IR (potassium bromide): ν_{max} 3434, 2928, 1676, 1622, 1452, 1375, 1075, 750 cm$^{-1}$. Anal. calculated for C$_{14}$H$_{17}$N$_5$O$_4$ (319.32): C 52.66; H 5.37; N 21.93. Found: C 52.30; H 5.40; N 21.56.

Acknowledgements

This work was supported by grants from the Hungarian Scientific Research Fund (OTKA; T047328) and Ministry of Health (ETT-508/2006).

References and Notes

2. (a) Ojea, V.; Muinelo, I.; Figueroa, M. C.; Ruiz, M.; Quintela, J. M. *Synlett*, **1995**, *622.*; for a recent review see (b) Mátyus, P.; Éliás, O.; Tapolcsányi, P.; Bálint-Polonka, Á.; Halász-Dajka, B. *Synthesis*, **2006**, *1*.

