Nucleophilic addition of enaminones to the S-S dimer of 2-aminobenzenethiol

Hassan Sheibani*, Mohammad Reza Islami, Fatemeh Hosseini Nassab, and Avid Hassanpour

Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
E-mail: hsheibani@mail.uk.ac.ir

Abstract
Nucleophilic addition of β-amino α,β-unsaturated ketones and esters to the S-S dimer of 2-aminobenzenethiol which acts as an electrophile, followed by cyclization, lead to 4H-1,4-benzothiazine derivatives.

Keywords: Nucleophilic addition, enaminones, 2-aminobenzenethiol, 4H-1,4-benzothiazine, disulfides

Introduction
At present the chemistry of enaminones is a developing field of organic synthesis.\(^1\)\(^2\) These compounds are versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones.\(^3\) There are many reports on functionalization of enaminone in the literature by the introduction of different substituents on the nitrogen, the α-carbon and the β-carbonylic carbon atoms. These derivatives have been extensively used for the preparation of a variety of heterocyclic systems including some natural products and analogues.\(^4\)\(^5\) Recently, β-dimethyl amino-α,β-unsaturated ketones and nitriles have been transformed into pyridine, isoquinoline,\(^6\) pyrazole, isoxazole, pyrimidine\(^7\) and pyranone derivatives.\(^8\) As part of our current studies on the development of new routes to the synthesis of heterocyclic compounds, by using 1,3-bielectrophiles and binucleophiles such as 1,3- dicarbonyl compounds and enaminones,\(^9\)\(^11\) we now turn our attention to the reactivity of enaminones by nucleophilic addition of β-amino α,β-unsaturated ketones and esters on the S-S dimer of 2-aminobenzenethiol.
Results and Discussion

Many useful and interesting reactions of disulfides are known.12,13 Disulfides, especially diaryl disulfides, are very commonly used as electrophiles in the sulfenylation of enolates anions.14,15 Sulfenamides and sulfenylimines have been prepared from nucleophilic addition of amines16 and ketimines17 to the S-S of disulfide compounds respectively. Enaminones have two electron-deficient centers at C-1 and C-3, while the C-2 and amino functions are electron rich. Thus they can react with both electrophiles and nucleophiles. In order to study the reactivity of the enaminones with electrophiles, we have chosen dimer of 2-aminobenzenethiol, which acts as electrophile (sulfur atoms) and nucleophile (amino group) (Scheme 1).

\[
\text{Scheme 1}
\]

The reaction of β-amino α,β-unsaturated ketones 1a-g with compound 2 afforded the 2-acyl-3-methyl-4H-1,4-benzothiazinederivatives 3a, b in boiling ethanol as solvent in a good to excellent yields. These processes are highly regioselective, and compounds 3a-c results from the initial attack of the enaminone nucleophilic C atom to the electrophilic S-S dimer of 2-aminobenzenethiol, in keeping with there are reports in the literature which enaminones act as N-nucleophile.18 Under similar reaction conditions given for β-amino α,β-unsaturated ketones 1a-g, ethyl-3-methyl-4H-1,4-benzothiazine-2-carboxylate was isolated from the reaction of corresponding β-amino α,β-unsaturated esters 1h-k with dimer of 2-aminobenzenethiol.

The formation of these compounds was unexpected and it can be considered to proceed by a nucleophilic attack of the C$_a$ of the β-amino α,β-unsaturated esters on the sulfur of dimer of 2-aminobenzenethiol, followed by Michael addition of the 2-amino nitrogen (NH$_2$) on the C=C double bond.

A possible pathway accounting for the formation of the compounds 3a-c is depicted in Scheme 2. On the basis of the well established chemistry of enaminones and diaryl disulfides1,19,20 it is reasonable to assume that compounds 3a-c result from nucleophilic addition of enaminones on the S-S dimer of 2-aminobenzenethiol which acts as an electrophile, followed by cleavage of disulfide bond to form of an α-(2-amino phenyl sulfonyl)enaminone intermediate.
and 2-amino-benzenethiol anion which the thiolate anion is easily oxidized by oxygen (air) to yield the dimer of 2-aminobenzenethiol. Thus only 0.5 equivalents of dimer 2 is needed. Successively, formation of the 2-acyl-3-methyl-4H-1,4-benzothiazines could occur by intermolecular Michael addition of α-(2-amino phenyl sulfonyl)enaminone intermediate, followed by the loss of the aryl or alkyl amino group (Scheme 2).

Scheme 2

1,4-Benzothiazines are usually prepared by the reaction of 2-aminobenzenethiol with α-haloketones or α-haloesters and oxidative cyclocondensation of 2-aminobenzenethiol with 1,3-dicarbonyl compounds. 4H-1,4-benzothiazines 3a-c are known and their melting points and spectral data are in good agreement with those reported in the literature.

It should be stressed that all starting enaminones are readily available. The dimer of 2-aminobenzenethiol is easily obtained in a one pot reaction by oxidizing the alkaline solution of the 2-aminobenzenethiol with hydrogen peroxide.

Although enaminones have three nucleophilic sites of the reaction (nitrogen, Cα and oxygen) and two electrophilic sites (Cβ and carbon of carbonyl), the reaction of β-amino α,β-unsaturated ketones and esters on the S-S dimer of 2-aminobenzenethiol have been produced only one product. These processes are highly regioselective, and the yields of formation of compounds 3a-c depend on the size of the R1, R2 and R3 (Table 1).
Table 1. Reaction conditions of enaminones 1a-k with disulfide 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>Solvent</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>(\text{CH}_3^-)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>Ethanol</td>
<td>3a</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>1b</td>
<td>(\text{CH}_3^-)</td>
<td>4-MeC(^6 \text{H}_4^-)</td>
<td>(\text{H})</td>
<td>Ethanol</td>
<td>3a</td>
<td>20</td>
<td>84</td>
</tr>
<tr>
<td>1c</td>
<td>(\text{CH}_3^-)</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>(\text{H})</td>
<td>Toluene</td>
<td>3a</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>1d</td>
<td>(\text{CH}_3^-)</td>
<td>1-naphtyl</td>
<td>(\text{H})</td>
<td>Toluene</td>
<td>3a</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>1e</td>
<td>(\text{CH}_3^-)</td>
<td>(-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2^-)</td>
<td></td>
<td>Toluene</td>
<td>3a</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>1f</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>(\text{H})</td>
<td>Toluene</td>
<td>3b</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>1g</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>((\text{CH}_3)_2\text{CHCH}_2^-)</td>
<td>(\text{H})</td>
<td>Toluene</td>
<td>3b</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>1h</td>
<td>(\text{CH}_3\text{CH}_2\text{O}^-)</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>(\text{H})</td>
<td>Toluene</td>
<td>3c</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>1i</td>
<td>(\text{CH}_3\text{CH}_2\text{O}^-)</td>
<td>(\text{H}_2\text{NCH}_2\text{CH}_2^-)</td>
<td>(\text{H})</td>
<td>Ethanol</td>
<td>3c</td>
<td>12</td>
<td>97</td>
</tr>
<tr>
<td>1j</td>
<td>(\text{CH}_3\text{CH}_2\text{O}^-)</td>
<td>(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2^-)</td>
<td>(\text{H})</td>
<td>Ethanol</td>
<td>3c</td>
<td>15</td>
<td>91</td>
</tr>
<tr>
<td>1K</td>
<td>(\text{CH}_3\text{CH}_2\text{O}^-)</td>
<td>((\text{CH}_3)_2\text{CHCH}_2^-)</td>
<td>(\text{H})</td>
<td>Ethanol</td>
<td>3c</td>
<td>15</td>
<td>80</td>
</tr>
</tbody>
</table>

Experimental Section

General Procedures. Melting points were measured on a calibrated Gallenkamp melting point apparatus. IR spectra were measured on a Mattson 1000 FT-IR spectrometer. \(^1\)H and \(^{13}\)C NMR spectra were measured with a BRUKER DRX-500 AVANCE spectrometer at 500 and 125.77 MHz, respectively. Mass spectra were recorded on a MS-QP2000A Shimadzu mass spectrometer operating at an ionization potential of 70 eV.

1-(3-Methyl-4\(^H \)-1,4-benzothiazin-2-yl)-1-ethenone (3a). Typical procedure
A solution of disulfide 2 (0.24 g, 1 mmol) and enaminone 1a (0.19 g, 2 mmol) in ethanol or toluene (50 ml) was refluxed with stirring for the hours reported in table 1 (the progress of the reaction being monitored by TLC and was used hexane/ethyl acetate as eluent). The colored product 3a was precipitated from the reaction mixture by cooling, and the solid was filtered and recrystallized from ethanol. The product 3a was obtained as red crystals, mp 175-176°C. IR (KBr) (\(\nu_{\text{max}} \) cm\(^{-1}\)): 3280, 1617, 1592. \(^1\)H NMR (500 MHz, DMSO-\(d_6 \)): 8.85 (1H, s, NH), 6.91-6.63 (4H, m, Ar), 2.22 (3H, s, CH\(_3\)), 2.18 (3H, s, CH\(_3\)). \(^{13}\)C NMR (DMSO-\(d_6 \)): 190.68 (C=O), 153.41 (C3), 139.36 (C), 127.44, 126.36, 124.99 (3CH), 120.49 (C), 115.43 (CH), 98.15(C\(_2\)), 30.24, 21.41 (2CH\(_3\)). MS m/z (relative intensity) 205 (M\(^+\), 90), 162 (100), 130 (55), 118 (40), 109 (35), 77(18), 65 (20), 43 (32). Anal. Caled. for C\(_{11}\)H\(_{11}\)NOS: C, 64.36; H, 5.40; N, 6.82 %. Found : C, 64..39; H. 5.33; N; 6.81 %.

(3-Methyl-4\(^H \)-1,4-benzothiazin-2-yl)(phenyl)methanone (3b). Red crystals, mp 183-184°C. IR (KBr): 3255, 1590 cm\(^{-1}\). \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 9.09 (1H, s, NH), 7.50-6.68 (9H, m, Ar), 1.73 (3H, s, CH\(_3\)). \(^{13}\)C NMR (DMSO-\(d_6 \)): 188.97 (C=O), 154.13 (C3), 140.86, 138.69, 131.02,
128.41, 127.86, 127.06, 126.07, 124.73, 120.31, 115.07, 97.33 (C₂), 21.03 (CH₃). MS m/z (relative intensity) 267 (M⁺, 25), 162 (18), 105 (100), 77 (60), 51 (15). Anal. Calcd. For C₁₀H₁₃NOS: C, 71.88; H, 4.90; N, 5.24%. Found: C, 71.70; H, 4.92; N, 4.96%.

Ethyl 3-methyl-4H-1,4-benzothiazine-2-carboxylate (3c). Yellow crystals, mp 142-143°C. IR(KBr): 3329, 1641, 1592 cm⁻¹. ¹H NMR (DMSO-d₆): δ 8.63 (1H, s, NH), 6.90-6.57 (4H, m, Ar), 4.03 (2H, q, 3JHH 6.75 Hz, CH₂), 2.18 (3H, s, CH₃), 1.17 (3H, t, 3JHH 6.78 Hz, CH₃). ¹³C NMR (DMSO-d₆): 163.04(C=O), 152.9 (C₃), 139.20 (C), 127.01, 125.71, 124.15 (3CH), 119.58 (C), 114.72 (CH), 86.00 (C₂), 59.61 (CH₂), 19.73 (CH₃), 14.21 (CH₃). MS m/z (relative intensity) 235 (M⁺, 100), 207 (20), 162 (98), 130 (25), 118 (24), 109 (23), 77 (14), 65 (15), 45 (15). Anal. Calcd. for C₁₂H₁₃NO₂S: C, 61.25; H, 5.57; N, 5.95%. Found: C, 60.95; H, 5.46; N, 5.92%

Acknowledgements

The authors express appreciation to the Shahid Bahonar University of Kerman Faculty Research Committee for its support of this investigation.

References and Footnotes