Cycloaddition of phenyl azide to unsymmetrical azabicyclic alkenes

John R. Malpass,*a Djaballah Belkacemi,b Gerald A. Griffith,a and Mark D. Robertsona

a Department of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
b Département de Chimie, Centre Universitaire Oum El Bouaghi, 040000 Algeria.
*E-mail: jrm@le.ac.uk

Dedicated with pleasure to Professor Charles Rees on the occasion of his 75th birthday
(received 07 Jun 02; accepted 04 Sep 02; published on the web 12 Sep 02)

Abstract
Addition of phenyl azide to selected derivatives of the 2-azabicyclo[2.2.1]hept-5-ene, 2-azabicyclo[2.2.1]hept-5-en-3-one and 2-azabicyclo[2.2.2]oct-5-en-3-one ring systems is described. Modest levels of regioselectivity are observed; 100% exo-facial selectivity is found in the [2.2.1] systems but exo- and endo-adducts are formed from the [2.2.2] substrate allowing isolation of all four possible stereoisomers. Photolytic removal of dinitrogen from the triazolines gives aziridines which are potential precursors to stereospecifically functionalised aziridino-cyclopentanes and aziridino-cyclohexanes.

Keywords: Phenyl azide, 1,3-dipolar cycloaddition, triazolines, aziridines, bicyclic amines, lactams

Introduction

The cycloaddition of azides to norbornenes and benzonorbornadienes has been well studied as has the effect of a bridging heteroatom in 7-oxa and 7-aza derivatives of the latter ring systems. Typical benzo-annelated examples demonstrate the characteristic addition from the exo-face giving triazolines 1a; subsequent photolysis of the triazolines yields aziridines 2a (Figure 1). Analogous addition of diazomethane gives pyrazolines 1b from which cyclopropanes 2b are accessible via photolytic deazetisation; epoxides are accessible via direct epoxidation of norbornene, as are the corresponding benzo- derivatives 2c from 1,4-iminonaphthalenes (benzonorbornadienes) and 1,4-imino-anthracenes.
We are not aware of corresponding studies with bicyclic alkenes containing unsymmetrically-placed amino-nitrogen and we have therefore examined azide addition to the strained bicyclic amine 5. Turning to higher homologues, potential substrates such as the hetero-bicyclo[2.2.2]octenes 3 unfortunately decompose rapidly by retro-Diels-Alder cycloaddition and we were therefore unable, for example, to achieve [4+2] cycloaddition of cyclic dienes to 3.7 However, the alternative cycloaddition of dienes to the lactam 4 proceeds readily and subsequent removal of the carbonyl group using hydride reduction is straightforward.7 We have therefore examined the reaction of 4 with phenyl azide in order to probe the potential facial selectivity and regioselectivity offered by this unsymmetrical substrate. We have also included the lactam 6. This readily-available substrate8 has formed the basis for recent syntheses of epoxy9 and cyclopropano10 derivatives of 7 and their conversion into stereospecifically-substituted bicyclo[3.1.0]hexanes 8 which are intermediates in the synthesis of novel nucleoside variants (Scheme 1). We are prompted to report our results by the developing activity in this area and also by a recent report of the formation of the aziridines 7c by cycloaddition of azides to 6 (in its N-Boc-protected form) using high pressure, followed by deazetisation.11

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Figure 1}
\end{figure}

Whilst we expected attack to occur exclusively from the exo- face of 5 and 6, we were mindful of a report that endo- addition has been observed in epoxidation of 6.8 We expected both faces of the double bond in 4 to be accessible to cycloaddition on the basis of our earlier work on the addition of cyclic dienes.7 There has been disagreement concerning the influence of the homoallylic nitrogen in analogues of 5 on the regioselectivity of addition to the double bond12

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{scheme1.png}
\caption{Scheme 1}
\end{figure}
and we wished to determine whether nitrogen could exert a significant influence on the regiochemistry of azide cycloadditions.

Results and Discussion

The amine 5 was treated with phenyl azide in dichloromethane solution at room temperature; the reaction was followed by IR spectroscopy and was complete within 5 days (Scheme 2).

\[
\begin{align*}
5 & \xrightarrow{\text{PhN}_3, \text{CH}_2\text{Cl}_2, 20^\circ\text{C}} [\text{ratio 40:60}] \\
& \xrightarrow{\text{hv}} 10 \quad (\text{90\%})
\end{align*}
\]

Scheme 2

A quantitative yield of triazolines 9 and 10 was obtained in a 40:60 ratio as measured by NMR integration. The *exo*- stereochemistry was assigned on the basis of the small coupling constants \(J_{1,6}\) and \(J_{4,5}\) (< 1 Hz). Early work with norbornene/phenyl azide adducts established that the proton adjacent to N=N was further downfield than that next to the N-phenyl substituent; this distinction was evident in all of the adducts obtained in the present study and formed a consistent basis for assignment of \(^1\text{H}\) NMR signals. Clearly, the bridgehead proton H1 always appears downfield of H4 but the amino-nitrogen at the 2-position exerts an additional influence in a variety of 2-alkyl-2-azabicyclo-[2.2.1]heptane and -[2.2.2]octane derivatives, causing H_{endo} to appear downfield of H_{endo} (Scheme 2) by between 0.2 and 0.5 ppm. Despite the complexity of the spectrum of the mixture of triazolines 9 and 10, two downfield doublets were resolved at \(\delta\) 4.91 (major) and 4.65 (minor) and these signals were therefore assigned to H_{endo} in 10 and H_{endo} in 9 respectively, consistent with the assignment of 10 as the major component. The cycloadducts could not be separated and the mixture of 9 and 10 was photolysed in acetone solution in a quartz vessel using a medium pressure mercury lamp. Conversion into the single aziridine 11 was complete within 4 hours and gave a yield of 90% after chromatography on silica (Scheme 2).
Scheme 3

The corresponding reaction of phenyl azide with the lactam 6 (Scheme 3) occurred more slowly but was complete on heating overnight in dichloromethane in a sealed tube at 90°C. Attempts to perform the reaction at higher temperatures in toluene led to substantial decomposition. Similar cycloadditions of azides to the N-Boc-protected lactam 6a were reported to require high pressure; the use of a secondary lactam in our study may be significant in making the reaction easier but we did not investigate this question further. The exo-selectivity in attack on 6 was maintained, as was the 40:60 ratio of cycloadducts 12:13 [the ratio of regioisomers 15:16 from 6a is based on isolated yields and is included in Scheme 3 for comparison].

The assignments for 12 and 13 were confirmed by considering the major and minor signals at δ 3.13 and 3.22 due to the bridgehead protons H4 (adjacent to the amide carbonyl group). Examination of bridgehead proton signals in the compounds produced in this work shows that the bridgehead proton (H1 or H4) on the same side as the N=N bond of the triazoline is consistently at lower field than the corresponding bridgehead proton adjacent to the triazoline N-phenyl, allowing assignment of the minor signal at δ 3.22 to H4 in isomer 12. A NOESY experiment confirmed this, showing an interaction between H4 and the aryl ring in the case of 13 but not 12. The isomeric triazolines 12 and 13 were not separated and photolysis of the mixture gave 14 as a single stereoisomer. Clearly, 14 can be converted into a 6-azabicyclo[4.1.0]hexane derivative corresponding to 8 using established hydrolysis or reduction procedures.

We wanted to explore the feasibility of addition to the 2-azabicyclo[2.2.2]oct-5-ene-3-one ring system as a potential source of the corresponding 7-azabicyclo[4.1.0]heptane homologues and we chose the readily available benzo-derivative 4.
Equimolar amounts of phenyl azide and the lactam 4 were heated in toluene solution at 85 °C for 17 hours. The product was shown by NMR and TLC analysis to consist of a mixture of four cycloadducts (Scheme 4) and the triazoline products were investigated in some detail.

Scheme 4

A small quantity of each of the triazolines 18 - 21 was separated by chromatography on silica (60% recovery, together with ca. 10% of unchanged 4). Additional mixed fractions were eluted containing [18 & 19] and [20 & 21]. Analysis of the 1H NMR spectra of all of the isolated fractions gave the percentages indicated in Scheme 4. The mixed fractions were photolysed separately; each pair of compounds gave a single aziridine showing that in one pair the aziridine was exo- to the benzo- group and in the other pair, it was endo-.14 The structural assignments shown in Scheme 4 were made on the basis of this information and a detailed analysis of the 1H NMR data (Table 1).

Table 1 1H NMR data for compounds 18 – 23

<table>
<thead>
<tr>
<th></th>
<th>18</th>
<th>19</th>
<th>22</th>
<th>20</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>J</td>
<td>δ</td>
<td>J</td>
<td>δ</td>
<td>J</td>
<td>δ</td>
</tr>
<tr>
<td>δ (Hz)</td>
<td>J (Hz)</td>
<td>δ (Hz)</td>
<td>J (Hz)</td>
<td>δ (Hz)</td>
<td>J (Hz)</td>
<td>δ (Hz)</td>
</tr>
<tr>
<td>H₁</td>
<td>4.93 d</td>
<td>5.13 d</td>
<td>4.75 d</td>
<td>4.88 d</td>
<td>5.09 d</td>
<td>4.78 d</td>
</tr>
<tr>
<td>H₄</td>
<td>4.58 d</td>
<td>4.43 d</td>
<td>4.28 d</td>
<td>4.58 d</td>
<td>4.44 d</td>
<td>4.25 d</td>
</tr>
<tr>
<td>H₅</td>
<td>5.19 dd</td>
<td>4.42 dd</td>
<td>2.82 dd</td>
<td>5.46 dd</td>
<td>4.70 dd</td>
<td>2.94 dd</td>
</tr>
<tr>
<td>H₆</td>
<td>4.34 dd</td>
<td>5.13 ddd</td>
<td>2.83 dd</td>
<td>4.82 dd</td>
<td>5.56 dd</td>
<td>3.21 dd</td>
</tr>
<tr>
<td>NMe</td>
<td>2.64 s</td>
<td>2.94 s</td>
<td>2.96 s</td>
<td>3.00 s</td>
<td>3.06 s</td>
<td>2.93 s</td>
</tr>
<tr>
<td>J₁,₆</td>
<td>2.2</td>
<td>2.5</td>
<td>3.0</td>
<td>3.6</td>
<td>4.1</td>
<td>4.6</td>
</tr>
<tr>
<td>J₄,₅</td>
<td>3.6</td>
<td>3.0</td>
<td>3.9</td>
<td>3.7</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>J₅,₆</td>
<td>11.2</td>
<td>ca. 12 *</td>
<td>6.4</td>
<td>11.1</td>
<td>11.2</td>
<td>6.8</td>
</tr>
<tr>
<td>aryl</td>
<td>6.85 - 7.45 m</td>
<td>7.05 - 7.45 m</td>
<td>6.7 - 7.35 m</td>
<td>6.75 - 7.35 m</td>
<td>6.75 - 7.35 m</td>
<td>6.75 - 7.25 m</td>
</tr>
</tbody>
</table>
* 2nd-order spectrum; estimated J value

NOESY experiments on the triazolines were of limited value. However, J values established full connectivity between the protons H\textsubscript{1}, H\textsubscript{6}, H\textsubscript{5}, and H\textsubscript{4}, and the relative chemical shifts are in accord with those for the triazolines discussed earlier. The relatively larger values for J\textsubscript{1,6} and J\textsubscript{4,5} in 20 and 21 compared with 18 and 19 fit with predictions based on calculated dihedral angles and with relative values from adducts of 4 with cyclic dienes (for which X-ray data are available).7

The dramatic upfield shift of the N-Me signal for 18 relative to the other three isomers (ca. 0.3 ppm) is consistent with the unique placement of the methyl group within the shielding zone of the triazoline N-phenyl group in this stereoisomer and provides a crucial point of reference. The relative J values measured for the aziridines 22 and 23 (Table 1) reflect similar differences in dihedral angle; homonuclear spin-decoupling experiments confirmed the assignments. These aziridines were produced efficiently (ca. 80\% yield) as single stereoisomers by photolysis of mixed samples of [18 and 19] and [20 and 21] respectively, in acetone solvent.

Summary

We have shown that cycloaddition of phenyl azide to selected bicyclic amines and secondary and tertiary lactams based on the 2-azabicyclo[2.2.1]hept-5-ene and 2-azabicyclo[2.2.2]hex-5-ene ring systems occurs at modest temperatures without the need for high pressure. Modest regioselectivity is observed in attack on the double bond with a very slight preference for the adducts having the N-phenyl group further from the amino- or amido- nitrogen.12b Only exo-products are formed in attack on the bicyclo[2.2.1]hept-5-ene examples but there is no significant facial discrimination as far as the bicyclo[2.2.2]oct-6-ene system is concerned, allowing isolation and characterisation of all four possible stereoisomers. The yields of aziridines from photolysis of the triazolines in acetone solvent in the present work were significantly higher than those reported for photolyses carried out in acetonitrile.11 The established hydrolysis and reductive cleavage of the amide bond in bicyclic lactams9,10,11 opens the way to a wider range of
nucleoside variants and, with this in mind, we are currently looking at simpler 2-
azabicyclo[2.2.2]oct-6-ene examples which should allow formation of both aziridine
stereoisomers in the higher homologues of 8 based on the 7-azabicyclo[4.1.0]heptane ring
system.

Experimental Section

General Procedures. NMR spectra were recorded on Varian EM 390 (90 MHz), Bruker ARX
250, AM 300, or DPX 300 spectrometers. Spectra were measured in CDCl₃ with
tetramethylsilane (TMS) as internal reference unless indicated otherwise. Signal characteristics
are described using standard abbreviations: s (singlet), d (doublet), dd (doublet of doublets), m
(multiplet), br (broad). Selective spin-decoupling experiments were performed on the series of
compounds 18 – 23 in order to allow measurement of J values and to confirm the assignment of
the methine protons. Selected NOESY experiments were performed as described in the
discussion section. In the ¹³C spectra, (s), (d), (t), (q), are used to indicate quaternary, methine,
methylene and methyl carbons respectively, as shown by DEPT experiments.

IR spectra were recorded on a Perkin-Elmer 298 spectrometer as solutions in CH₂Cl₂ unless
indicated otherwise. Mass spectra were measured routinely on VG Micromass 14 (EI) [an
asterisk is used to indicate the base peak in EI spectra] or Micromass Quattro LC (ES)
spectrometers. Accurate mass measurements were obtained using a Kratos Concept mass
spectrometer (FAB); they were measured to 5 decimal places but are quoted to 4. Melting point
measurements were made using a Kofler hot stage apparatus and are uncorrected. Petroleum
ether refers to the fraction b.p. 40 – 60°C.

Addition of phenyl azide to amine (5). The amine 5¹⁵ (0.33 g; 1.78 mmol) and phenyl azide¹⁶
(0.212 g; 1.78 mmol) in dichloromethane (5 mL) were stirred at room temperature and monitored
by IR spectroscopy until the azide peak at ca. 2120 cm⁻¹ had disappeared (5 days). The sample
was concentrated under vacuum and passed through a short column of silica to give a
quantitative yield of the triazolines 9 and 10 as a yellow viscous oil after evaporation of solvent.
¹H NMR (CDCl₃, 300 MHz) δ 0.95-1.10 (m, 1H, H₇a), 1.5 – 1.65 (m, 1H, H₇s), 2.25 – 4.0
(complex, 6H: H₁, H₄, H₃ₓ, H₃ⁿ, CH₂Ph, & total 1H: H₆endo(9), H₅endo(10)), 4.65 & 4.91 (2 x d, J₅,₆ =
9.5 Hz, ratio 60:40, total 1H: H₆endo(10), H₅endo(9)), 6.9 - 7.4 (complex, 10H); M.S. (EI) m/z 304
(M⁺), 276*.¹⁷ The triazolines 9 and 10 were not separated or further characterised but were
photolysed directly.

Photolysis of triazolines 9 and 10 to give exo- aziridine 11
A sample of 9 and 10 (0.29 g) was dissolved in acetone (55 mL) and irradiated for 4 h in a quartz
tube using a medium pressure mercury lamp. The solvent was evaporated and the product
chromatographed on silica using 2:1 diethyl ether:petroleum ether to give the aziridine 11 as a pale yellow viscous oil (0.23 g; 90%). 1H NMR (CDCl$_3$, 300 MHz) δ 1.31 (brd, J$_{7,7}$ = 9.9 Hz, 1H, H$_{7a}$), 1.72 (brd, J$_{7,7}$ = 9.9 Hz, 1H, H$_{7b}$), 2.44 (dd, J$_{3$endo,3$exo}$ = 9.4 Hz, J$_{3$endo,4} = 1.1 Hz, 1H, H$_{3$endo}), 2.46 (brd, J$_{5,6}$ = 5.5 Hz, 1H, H$_{6}$), 2.58 (dd, J$_{3$endo,3$exo}$ = 9.4 Hz, J$_{3$exo,4} = 3.4 Hz, 1H, H$_{3$exo}), 2.64 (brd, J$_{5,6}$ = 5.5 Hz, J$_{4,5}$ < 1 Hz, 1H, H$_{5}$), 2.72 (brs, 1H, H$_{4}$) 3.50 (bs, 1H, H$_{1}$), 3.73 (s, 2H, benzylic), 6.85 - 7.40 (m, 10H, aryl); 13C NMR (CDCl$_3$, 75 MHz) δ 26.1 (CH$_2$), 38.6, 39.8, 39.9 (CH), 55.7, 59.1 (CH$_2$), 60.6 120.8, 121.6, 126.8, 128.2, 128.4 (CH), 139.8 (C), 152.4 (CO); ν$_{\text{max}}$ (CH$_2$Cl$_2$) 3028, 2964, 2930, 2856, 1602, 1494, 1369, 1314 cm$^{-1}$; M.S. (EI) m/z 276 (M$^+$), 156, 91*, 77; HRMS (FAB) calc. for C$_{19}$H$_{21}$N$_2$ (MH$^+$) 277.1705; found: 277.1705.

Addition of phenyl azide to lactam 6
A solution of lactam 68 (0.2 g; 1.83 mmol) and phenyl azide (0.22 g; 1.85 mmol) in dichloromethane (2 mL) was heated at 90 ºC in a sealed tube for 16 h with magnetic stirring. After removal of the solvent under vacuum, the crude product was washed with cold diethyl ether to give a mixture of two triazolines 12 and 13 (0.33 g; 79%) which could not be separated. 1H NMR (CDCl$_3$, 250 MHz) δ 1.34 (brd, J$_{7,7}$ = 10.5 Hz, 1H, H$_{7a}$), 1.93 (brd, J$_{7,7}$ = 10.5 Hz, 1H, H$_{7b}$), 3.12 & 3.22 (brs, H$_4$, ratio 60:40 total 1H), 4.26 and 4.38 (2 x s, 1H, H$_{1$maj} & H$_{1$min}), 5.18 – 5.22 (2 x d, J$_{5,6}$ ≈ 9 Hz, 1H, H$_{5$maj} & H$_{5$min}), 6.9 (NH), 7.0 - 7.5 (m, 5H, aryl); 13C NMR (CDCl$_3$, 62.9 MHz): 12 (minor isomer) δ 35.5 (CH$_2$), 50.5, 58.2, 62.5, 83.1, 114.5, 119.4, 123.5, 125.3, 130.2 (CH), 139.8 (C), 178.4 (CO); ν$_{\text{max}}$ (CH$_2$Cl$_2$) 3440, 3030, 1720, 1600, 1490; M.S (FAB) m/z 229 (MH$^+$).

Photolysis of triazolines 12 and 13 to give exo- aziridine 14
A sample of 12 and 13 (0.15 g; 0.657 mmole) was irradiated in acetone (50 mL) in a quartz tube for 4.5 h using a medium pressure mercury lamp. The solvent was evaporated and the product chromatographed on silica using 2:1 diethyl ether:petroleum ether to give the aziridine 14 as a crystalline solid (0.125 g; 95%) which was recrystallised from ethyl acetate/diethyl ether to give colourless crystals, m.p. 140 – 142 ºC. 1H NMR (CDCl$_3$, 250 MHz) δ 1.53 (brd, J$_{7,7}$ = 9.6 Hz, 1H, H$_{7a}$), 1.98 (brd, J$_{7,7}$ = 9.6 Hz, 1H, H$_{7b}$), 2.65 (d, J$_{5,6}$ = 5.5 Hz, 1H, H$_{5}$), 2.83 (d, J$_{5,6}$ = 5.5 Hz, 1H, H$_{6}$), 2.92 (s, 1H, H$_{4}$), 3.88 (s, 1H, H$_{1}$), 6.8 - 7.2 (m, 6H, aryl & NH); 13C NMR (CDCl$_3$, 62.9 MHz) δ δ 33.1 (CH$_2$), 40.0, 45.9, 46.9, 55.7 (CH), 120.8, 122.9, 129.5 (CH), 151.7 (C), 181.9 (CO); ν$_{\text{max}}$ (CH$_2$Cl$_2$) 3440, 3030, 1720, 1600, 1490, 1380, 1350 cm$^{-1}$; M.S (FAB) m/z 201 (MH$^+$), 156; HRMS calc. for C$_{12}$H$_{13}$N$_2$O (MH$^+$) 201.1028; found: 201.1028.

Addition of phenyl azide to lactam 4
A solution of lactam 48 (0.31 g; 1.68 mmol) and phenyl azide (0.2 g; 1.68 mmol) in toluene (2 mL) was heated at 85 ºC for 17 h. After cooling, the toluene was removed with a pipette and the yellow solid which remained was then washed with petroleum ether (yield 0.375 g; 75%).
TLC revealed the presence of four compounds. The product was chromatographed on silica using 1:1 diethyl ether:ethyl acetate as eluant to give samples of the four triazolines as pure fractions, together with mixed fractions (total 60%) and a small quantity of unchanged 4 (ca. 10%). 19 (30 mg) Rf 0.55, m.p. 195 – 197°C; ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; M.S. (FAB) 277 (MH$^+$ - 28)17; 18 + 19 (125 mg); 18 (10 mg) Rf 0.48; ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; HRMS calc. for C$_{18}$H$_{17}$N$_4$O (MH$^+$): 305.1402, found: 305.1403; 20 (15 mg) Rf 0.24; ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; HRMS calc. for C$_{18}$H$_{17}$N$_4$O (MH$^+$): 305.1402, found: 305.1402; 20 + 21 (55 mg); 21 (70 mg) Rf 0.15; ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; M.S. (FAB) 277 (MH$^+$ - 28)17.

Analysis of the 1H NMR spectra gave the following overall yields: 18 (19%); 19 (33%); 20 (13%); 21 (32%). 1H NMR data for all four compounds are shown in Table 1.

Photolysis of triazolines 18 and 19; formation of exo-aziridine 22

A mixture of 18 and 19 (96 mg) in acetone (52 mL) was irradiated in a quartz tube for 2.5 h using a Hanovia medium pressure lamp. The solvent was removed under vacuum and chromatographed on silica using 70:30 diethyl ether:petroleum ether to give 22 as white crystals (71 mg; 81%), m.p. 184 – 186 °C. 1H NMR (CDCl$_3$, 300 MHz) see Table 1; 13C NMR (CDCl$_3$, 75 MHz) δ 33.0 (CH$_3$), 42.1, 42.4, 50.5, 59.8, 120.1, 122.6, 123.3, 125.6, 126.6, 127.7, 129.0 (CH), 138.2, 139.8, 151.4 (C), 171.2 (CO); ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; M.S. m/z 276 (M$^+$), 235, 218, 161, 77, 28*; HRMS (FAB) calc. for C$_{18}$H$_{17}$N$_2$O (MH$^+$): 277.1341; found: 277.1341.

Photolysis of triazolines 20 and 21; formation of endo-aziridine 23

A mixture of 20 and 21 (58 mg) in acetone (30 mL) was irradiated for 2.5 h and was chromatographed as described above to give 23 as a white waxy solid (42 mg; 80%). 1H NMR (CDCl$_3$, 300 MHz) see Table 1; 13C NMR (CDCl$_3$, 75 MHz) δ 32.8 (CH$_3$), 35.7, 42.3, 51.1, 62.4, 120.0, 122.37, 122.43, 124.9, 126.8, 127.8, 128.8 (CH), 134.9, 137.0, 151.4 (C), 173.5 (CO); ν_{max} (CH$_2$Cl$_2$) 1675 cm$^{-1}$; M.S. m/z 276 (M$^+$), 235, 184, 161, 128, 116, 77, 42, 32, 28*; HRMS (FAB) calc. for C$_{18}$H$_{17}$N$_2$O (MH$^+$): 277.1341; found: 277.1341.

Acknowledgements

We thank the Algerian Government for financial support to D.B., Michael Lee for technical assistance, Dr. G. Eaton for mass spectra, and Paul Skerry for preparation of compound 6.
References

13. (a) compounds 2a & 6 in Belkacemi, D.; Malpass, J.R. Tetrahedron 1993, 49, 9105. (b) compounds 9 & 16 in ref. 7.
14. Clearly, the N-containing bridge in (18) - (23) should take priority in defining the terms exo- and endo- with respect to the facial attack on (4) but this unfortunately reverses the terminology with respect to the norbornyl and hetero-norbornyl adducts in Scheme 1. In this paper, we prefer to use the benzo- group as the point of reference in line with previous usage (ref. 13a and references therein).
17. The molecular ion peak in the mass spectrum was weak or undetectable for a number of triazolines as a consequence of ready loss of nitrogen.