Preparation of N-substituted sulfoximines by benzotriazole methodology

Alan R. Katritzky,* Yuming Zhang, Sandeep K. Singh, and Yves P. Le Gall

Center for Heterocyclic Compounds, Department of Chemistry,
University of Florida, Gainesville, FL 32611-7200
E-mail: Katritzky@chem.ufl.edu
(received 13 Nov 03; accepted 09 Jan 04; published on the web 15 Jan 04)

Abstract
Diverse N-substituted sulfoximines 5a–n were prepared by nucleophilic replacement of the benzotriazole moiety in N-(benzotriazol-1-ylalkyl)sulfoximines 3a–e using organozinc reagents or allylsilanes. N-(Benzotriazol-1-ylalkyl)sulfoximines 3, in turn, were obtained by condensation of sulfoximines 1 with aldehydes 2 and benzotriazole.

Keywords: N-Substituted sulfoximines, condensation, nucleophilic substitution, organozinc reagents, allylsilanes

Introduction

N-Functionalized sulfoximine derivatives are antimuscarinic, spasmolytic,¹ antiarrhythmic,² γ-glutamylcysteine synthetase inhibitors,³ possess antitumor activity,⁴ and are important synthetic intermediates.⁵ Several methods have been developed for the preparation of N-substituted sulfoximines from NH-sulfoximines: (i) Eschweiler-Clark conditions for N-methylated sulfox- imines;⁶ (ii) palladium-catalyzed reactions for N-arylated sulfoximines;⁷ and (iii) base-catalyzed Michael-type additions⁸ or base-promoted alkylations⁹a or acylations⁹b (Scheme 1).

Nucleophilic substitution of the benzotriazole moiety in benzotriazolylmethyl amines is an efficient method to prepare N-alkylated amines,¹⁰ amides,¹¹ thioamides,¹² or sulfonamides.¹³ Herein, we report the preparation of N-(benzotriazol-1-ylalkyl)sulfoximines 3 as intermediates and subsequent nucleophilic replacement of the benzotriazolyl anion to introduce a simple route to N-substituted sulfoximines 5.

Results and Discussion

Preparation of N-(benzotriazol-1-ylmethyl)sulfoximines 3a–e
A variety of benzotriazolyl intermediates, which provide convenient routes to diverse hetero- cycles,¹⁴a are readily available by condensations of benzotriazole and aldehydes with amides, thio
amides, sulfonylamides or acylhydrazines.14b We have now similarly prepared \(N\)-functionalized sulfoximines via \(N\)-(benzotriazol-1-ylmethyl)sulfoximines 3a–e (Scheme 2, Table 1). Thus, condensation of (±)-S-methyl-S-phenylsulfoximine (1a) with formaldehyde and benzotriazole in the presence of catalytic amounts of \(p\)-toluenesulfonic acid in refluxing toluene gave \(N\)-(benzotriazol-1-ylmethyl)-S-methyl-S-phenylsulfoximine (3a) in 73\% yield. Similarly, reaction of 1a with benzotriazole and ethyl glyoxylate gave the desired ethyl 2-(1\(H\)-1,2,3-benzotriazol-1-yl)-2-[[methyl(oxo)phenyl-\(\lambda^6\)-sulfanylidene]amino]acetate (3b) in 82\% yield. Condensation of diphenyl sulfoximine with formaldehyde or ethyl glyoxylate and benzotriazole gave the corresponding benzotriazole adducts 3c and 3d in 78\% and 71\% yield, respectively. Use of (1\(R\))-(−)-menthyl glyoxylate in this condensation reaction provided the adduct 3e in 62\% yield as a mixture of diastereomers in 1:1 ratio, as determined by the \(^1\)H-NMR spectrum of the crude product. Condensation of (S)-(−)-S-methyl-S-phenylsulfoximine (S)-1a with formaldehyde and benzotriazole afforded the enantiopure benzotriazole intermediate (S)-3a in 69\% yield. Structures of intermediates 3a–e are supported by their \(^1\)H and \(^{13}\)C NMR spectra and by elemental analysis or high-resolution MS data.

Nucleophilic substitution of 3a–c with organozinc reagents

Lewis acid (ZnCl\(_2\)) facilitates the loss of the benzotriazolyl anion in \(N\)-(benzotriazol-1-ylalkyl)sulfoximines 3 to form \(N\)-methylenem-(\(\lambda^6\)-sulfanylidene)iminium ions 4-I \(\leftrightarrow\) 1-(methyleneamino)-\(\lambda^4\)-sulfonium ions 4-II, which can undergo nucleophilic addition by organozinc reagents. Nucleophilic substitution of the benzotriazolyl group in 3a–c by allyl or aryl groups was achieved by treatment of 3a–c with allyl- or arylzinc reagents prepared \textit{in situ} by reaction of zinc chloride with the corresponding Grignard reagents. The desired \(N\)-functionalized sulfoximines

Scheme 1

(i) H\(_2\)CO, HCO\(_2\)H

(ii) Ar-1 / Pd

(iii) R-Br

(iii) R-COCl

(i) H\(_2\)CO, HCO\(_2\)H

Pd-catalyzed arylation

Michael addition

alkylation

acylation

\(O\) \(S\)

\(\text{CH}_2\text{CH}_2\text{CO}_2\text{R}\)

\(\text{Me}\)

\(R'\)

\(R''\)

\(\text{R}^1\)

\(\text{R}^2\)

\(R'\)

\(R''\)

\(\text{R}^1\)

\(\text{R}^2\)

\(\text{R}^1\)

\(\text{R}^2\)

\(\text{R}^1\)

\(\text{R}^2\)

\(\text{R}^1\)

\(\text{R}^2\)
5a–h were obtained in 41–65% yields (Scheme 2, Table 2). Reaction of 3b with benzylzinc chloride gave 5e as a mixture of diastereoisomers in a 2:3 ratio. Attempts to improve the diastereoselectivity by lowering the reaction temperature or increasing the reaction time remained unsuccessful.

Scheme 2

Table 1. Preparation of 4-(benzotriazol-1-ylalkyl)sulfoximines 3a–e

<table>
<thead>
<tr>
<th>Sulfoximine</th>
<th>Aldehyde</th>
<th>R¹</th>
<th>R²</th>
<th>Product</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2a</td>
<td>Me</td>
<td>H</td>
<td>3a</td>
<td>73</td>
</tr>
<tr>
<td>1a</td>
<td>2b</td>
<td>Me</td>
<td>CO₂Et</td>
<td>3b</td>
<td>82</td>
</tr>
<tr>
<td>1b</td>
<td>2a</td>
<td>Ph</td>
<td>H</td>
<td>3c</td>
<td>78</td>
</tr>
<tr>
<td>1b</td>
<td>2b</td>
<td>Ph</td>
<td>CO₂Et</td>
<td>3d</td>
<td>71</td>
</tr>
<tr>
<td>1b</td>
<td>2c</td>
<td>Ph</td>
<td></td>
<td>3e</td>
<td>62</td>
</tr>
<tr>
<td>(S)-1a</td>
<td>2a</td>
<td>Me</td>
<td>H</td>
<td>(S)-3a</td>
<td>69</td>
</tr>
</tbody>
</table>

Nucleophilic substitution of 3a–e with allylsilanes

Lewis acid promoted reactions of allylsilanes with benzotriazole intermediates result in nucleophilic substitution. 15 Reaction of 3b with allyltrimethylsilane in the presence of BF₃•Et₂O gave N-substituted sulfoximine 5i in 64% yield (Table 2). Similarly, (benzotriazol-1-ylmethyl)diphenylsulfoximine 3e reacted with allyltrimethylsilane or (2-methylpropenyl)-trimethylsilane to give 5j and 5k in 74% and 92% yields, respectively. Bulky intermediates 3d,e, which showed no reactivity towards organozinc reagents, reacted readily with
allyltrimethylsilane to afford N-substituted sulfoximines 5l and 5m in 71% and 60% yields, respectively. However, the sulfur chiral center did not exert any diastereoselectivity, and sulfoximine 5i was obtained as a 1:1 mixture of diastereoisomers as determined by 1H and 13C NMR spectra. Use of (R)-(−)-menthyl group as an additional chiral moiety in 3e also resulted in the formation of a 1:1 mixture of diastereomers 5m in 60% yield upon reaction with allyl(trimethyl)silane. Similarly, reactions of (S)-3a with allyl(trimethyl)silane or 2-methyl-3-(trimethyl)silyl-1-propene gave sulfoximines (S)-5a or (S)-5n in 77 and 67% yields, respectively.

Table 2. Preparation of N-substituted sulfoximines 5a–n

<table>
<thead>
<tr>
<th>Starting material</th>
<th>Nucleophile</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Product</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>ZnCl</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>5a</td>
<td>45</td>
</tr>
<tr>
<td>3a</td>
<td>PhZnCl</td>
<td>Me</td>
<td>H</td>
<td>Ph</td>
<td>5b</td>
<td>45</td>
</tr>
<tr>
<td>3a</td>
<td>4-ClC₆H₄ZnCl</td>
<td>Me</td>
<td>H</td>
<td>4-ClC₆H₄</td>
<td>5c</td>
<td>62</td>
</tr>
<tr>
<td>3a</td>
<td>PhCH₂ZnCl</td>
<td>Me</td>
<td>H</td>
<td>PhCH₂</td>
<td>5d</td>
<td>65</td>
</tr>
<tr>
<td>3b</td>
<td>PhCH₃ZnCl</td>
<td>Me</td>
<td>CO₂Et</td>
<td>PhCH₂</td>
<td>5e</td>
<td>41</td>
</tr>
<tr>
<td>3c</td>
<td>4-ClC₆H₄ZnCl</td>
<td>Ph</td>
<td>H</td>
<td>4-ClC₆H₄</td>
<td>5f</td>
<td>62</td>
</tr>
<tr>
<td>3c</td>
<td>PhCH₃ZnCl</td>
<td>Ph</td>
<td>H</td>
<td>Ph</td>
<td>5g</td>
<td>49</td>
</tr>
<tr>
<td>3c</td>
<td>(2-mesityl)ZnCl</td>
<td>Ph</td>
<td>H</td>
<td>2-mesityl</td>
<td>5h</td>
<td>53</td>
</tr>
<tr>
<td>3b</td>
<td>SiMe₃</td>
<td>Me</td>
<td>CO₂Et</td>
<td></td>
<td>5i</td>
<td>64</td>
</tr>
<tr>
<td>3c</td>
<td>SiMe₃</td>
<td>Ph</td>
<td>H</td>
<td></td>
<td>5j</td>
<td>74</td>
</tr>
<tr>
<td>3c</td>
<td>SiMe₃</td>
<td>Ph</td>
<td>H</td>
<td></td>
<td>5k</td>
<td>92</td>
</tr>
<tr>
<td>3d</td>
<td>SiMe₃</td>
<td>Ph</td>
<td>CO₂Et</td>
<td></td>
<td>5l</td>
<td>71</td>
</tr>
<tr>
<td>3e</td>
<td>SiMe₃</td>
<td>Ph</td>
<td></td>
<td></td>
<td>5m</td>
<td>60</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>SiMe₃</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>(S)-5a</td>
<td>77</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>SiMe₃</td>
<td>Me</td>
<td>H</td>
<td></td>
<td>(S)-5n</td>
<td>67</td>
</tr>
</tbody>
</table>

Conclusions

In summary, we have introduced a general and convenient method for the preparation of N-substituted sulfoximines via readily available N-(benzotriazol-1-ylmethyl)sulfoximines.
Experimental Section

General Procedures. 1H NMR spectra were determined at 300 MHz and 13C NMR at 75 MHz in CDCl$_3$ (with TMS for 1H and CDCl$_3$ for 13C as the internal reference). HRMS was measured on an AEI-30 mass spectrometer. Tetrahydrofuran (THF) was distilled from Na/benzophenone, dichloromethane was distilled from CaH$_2$ under N$_2$. Sulfoximines 1a, 1b and (S)-1a were prepared according to literature procedures.16

General procedure for the preparation of N-(benzotriazol-1-ylalkyl)sulfoximines 3a–e

A mixture of aldehyde 2 (10 mmol), benzotriazole (1.19 g, 10 mmol), sulfoximine 1 (10 mmol) and catalytic p-TsOH (30 mg) in toluene was refluxed overnight under N$_2$ in a Dean-Stark apparatus. After removal of water, toluene was evaporated under reduced pressure, and the residue was purified by column chromatography with hexanes/ethyl acetate (from 1:1 to 1:3) to give the desired product 3.

1-[[Methyl(oxo)phenyl-λ^6-sulfanylidene]amino][methyl]-1H-1,2,3-benzotriazole (3a). Colorless plates (from hexanes/chloroform); mp 88–89 °C; yield 73%. 1H NMR: δ 7.93 (d, $J = 8.4$ Hz, 1H), 7.72–7.68 (m, 3H), 7.53–7.29 (m, 5H), 5.95 (d, $J = 13.2$ Hz, 1H), 5.84 (d, $J = 13.2$ Hz, 1H), 3.09 (s, 3H); 13C NMR: δ 146.0, 139.0, 133.3, 132.5, 129.3, 127.7, 127.1, 123.7, 119.6, 110.3, 57.0, 45.4. Anal. Calcd for C$_{14}$H$_{14}$N$_4$OS: C, 58.72; H, 4.93; N, 19.57. Found: C, 58.86; H, 4.79; N, 19.95.

Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[methyl(oxo)phenyl-λ^6-sulfanylidene]amino]acetate (3b). A 1:1 mixture of diastereomers as determined by 1H NMR spectrum of the crude product. After recrystallization, one isomer was separated and characterized. Colorless plates (from hexanes/chloroform); mp 114–115 °C; yield 82%. 1H NMR: δ 8.07–7.99 (m, 1H), 7.74–7.62 (m, 3H), 7.51 (t, $J = 7.4$ Hz, 1H), 7.38 (t, $J = 8.1$ Hz, 1H), 6.63 (s, 1H), 4.25–4.10 (m, 2H), 3.07 (s, 3H), 1.15 (t, $J = 7.1$ Hz, 3H); 13C NMR: δ 167.5, 146.5, 137.6, 133.9, 132.1, 129.7, 128.6, 127.2, 123.9, 119.7, 112.5, 70.3, 62.3, 45.1, 13.8. Anal. Calcd for C$_{17}$H$_{18}$N$_4$O$_3$S: C, 56.97; H, 5.06; N, 15.63. Found: C, 57.31; H, 4.95; N, 15.92.

1-[[Oxo(diphenyl-λ^6-sulfanylidene]amino]methyl]-1H-1,2,3-benzotriazole (3c). White prisms (from hexanes/chloroform); mp 123–124 °C; yield 78%. 1H NMR: δ 7.96 (d, $J = 8.4$ Hz, 1H), 7.86 (d, $J = 7.4$ Hz, 4H), 7.79 (d, $J = 8.4$ Hz, 1H), 7.50–7.28 (m, 8H), 6.04 (s, 2H); 13C NMR: δ 146.1, 140.0, 132.9, 132.6, 129.2, 128.0, 127.1, 123.7, 119.6, 110.6, 57.3. Anal. Calcd for C$_{19}$H$_{16}$N$_4$OS: C, 65.50; H, 4.63; N, 16.08. Found: C, 65.80; H, 4.48; N, 16.17.

Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[oxo(diphenyl-λ^6-sulfanylidene]amino]acetate (3d). White prisms (from hexanes/ethyl acetate); mp 86–87 °C; yield 71%. 1H NMR: δ 8.05–7.96 (m, 4H), 7.67–7.64 (m, 2H), 7.62–7.25 (m, 8H), 6.77 (s, 1H), 4.22 (q, $J = 7.0$ Hz, 2H), 1.20 (t, $J = 7.0$ Hz, 3H); 13C NMR: δ 167.7, 146.4, 139.0, 133.3, 133.0, 132.1, 129.4, 129.1, 128.4, 128.0, 127.2, 123.9, 119.6, 112.6, 70.0, 62.4, 13.9. Anal. Calcd for C$_{22}$H$_{20}$N$_4$O$_3$S: C, 62.84; H, 4.79; N, 13.32. Found: C, 62.96; H, 4.77; N, 13.27.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[[diphenyl(oxo)-\lambda^6-sulfanylidene]amino]acetate (3e). Isolated as a 1:1 mixture of diastereomers; colorless oil; yield 62%. \(^1\)H NMR: \(\delta \) 8.03–7.94 (m, 4H), 7.75–7.68 (m, 2H), 7.60–7.25 (m, 8H), 6.77 (s, 0.5×1 H), 6.76 (s, 0.5×1 H, isomer), 4.76 (dt, \(J = 10.9, 4.4 \text{ Hz}, 0.5\times1\)H), 4.67 (dt, \(J = 10.9, 4.4 \text{ Hz}, 0.5\times1\)H, 2.07–1.81 (m, 2H), 1.65–0.73 (m, 13H), 0.58 (d, \(J = 6.9 \text{ Hz}, 0.5\times3\) H), 0.42 (d, \(J = 6.9 \text{ Hz}, 0.5\times3\)H, isomer); \(^1\)C NMR: \(\delta \) 167.3 (167.2), 146.3 (146.3), 139.2 (139.1), 138.9, 133.2, 133.0 (132.9), 132.1 (132.0), 129.3, 129.0 (128.9), 128.5 (128.4), 128.0 (127.9), 127.1 (127.0), 123.8 (123.7), 119.5, 112.7 (112.5), 70.2 (70.1), 46.8 (46.6), 40.2 (40.1), 33.9, 31.2 (31.2), 25.9 (25.4), 23.1 (22.8), 21.8, (21.8), 20.6 (20.4), 16.1 (15.6). HRMS calcd for C\(_{30}\)H\(_{35}\)N\(_4\)O\(_3\)S: 531.2429, found: 531.2425.

\((S)-1-[[\text{Methyl(oxo)phenyl-\lambda^6-sulanylidene}][\text{methyl]}]-1H-1,2,3-benzotriazole \((S)-(3a). \) \([\alpha]_D^{25} = +32.6 \text{ (c 1.32, CHCl}_3\); other data same as 3a.

General procedure for the nucleophilic substitution of 3a–c with organozinc reagents

A solution of zinc chloride (1.0 M, 1.2 mL, 1.2 mmol) in THF was added to a flask containing a solution of the Grignard reagent (1.0 M, 1.2 mL, 1.2 mmol) in THF (10 mL) under nitrogen at 0 °C. The reaction mixture was stirred at 25 °C for 45 min and then cooled to 0 °C again, and N-(benzotriazol-1-ylalkyl)sulfoximine 3 (1 mmol) in THF (10 mL) was added dropwise. The reaction mixture was stirred overnight at 25 °C, quenched with dil. aqueous NH\(_4\)Cl and extracted with diethyl ether. The organic layer was washed with NaHCO\(_3\), brine, dried over Na\(_2\)SO\(_4\) and then removed. The residue was purified by column chromatography on silica gel using hexanes/ethyl acetate (1:2) as eluent to afford the desired N- substituted sulfoximines 5a–h.

(3-Butenylimino)(methyl)oxo(phenyl)-\lambda^6-sulfane (5a). Colorless oil; yield 45%. \(^1\)H NMR: \(\delta \) 7.93–7.90 (m, 2H), 7.65–7.54 (m, 3H), 5.90–5.76 (m, 1H), 5.08–4.97 (m, 2H), 3.14–3.00 (m, 4H), 2.90–2.81 (m, 1H), 2.32 (q, \(J = 7.1 \text{ Hz}, 2\) H). \(^1\)C NMR: \(\delta \) 139.5, 136.6, 132.8, 129.4, 128.6, 115.7, 45.1, 43.5, 37.1. Anal. Calcd for C\(_{11}\)H\(_{15}\)NOS: C, 63.12; H, 7.22; N, 6.69. Found: C, 62.64; H, 7.51; N, 6.89.

(Benzylimino)(methyl)oxo(phenyl)-\lambda^6-sulfane (5b). Colorless oil; yield 45%. \(^1\)H NMR: \(\delta \) 7.95–7.92 (m, 2H), 7.64–7.53 (m, 3H), 7.37–7.16 (m, 5H), 4.21 (d, \(J = 14.3 \text{ Hz}, 1\)H), 3.97 (d, \(J = 14.3 \text{ Hz}, 1\)H), 3.14 (s, 3H). \(^1\)C NMR: \(\delta \) 141.2, 139.4, 132.9, 129.4, 128.6, 126.5, 115.7, 47.3, 45.3. Anal. Calcd for C\(_{14}\)H\(_{15}\)NOS: C, 68.54; H, 6.16; N, 5.71. Found: C, 68.07; H, 6.32; N, 5.92.

[(4-Chlorobenzyl)imino](methyl)oxo(phenyl)-\lambda^6-sulfane (5c).\(^{9b}\) White prisms (from hexanes /ethyl acetate); mp 61–62 °C; yield 62%. \(^1\)H NMR: \(\delta \) 7.93–7.90 (m, 2H), 7.66–7.52 (m, 3H), 7.31–7.23 (m, 4H), 4.15 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.93 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.14 (s, 3H). \(^1\)C NMR: \(\delta \) 139.7, 139.3, 133.0, 132.2, 129.5, 128.9, 128.6, 128.3, 46.7, 45.3. Anal. Calcd for C\(_{14}\)H\(_{15}\)ClNOS: C, 60.10; H, 5.04; N, 5.01. Found: C, 60.06; H, 5.12; N, 4.97.

Methyl(oxo)(phenethylimino)(phenyl)-\lambda^6-sulfane (5d). Colorless oil; yield 65%. \(^1\)H NMR: \(\delta \) 7.79–7.76 (m, 2H), 7.61–7.48 (m, 3H), 7.27–7.16 (m, 5H), 3.28–3.19 (m, 1H), 3.06–2.96 (m,
4H), 2.90–2.85 (m, 2H). 13C NMR: δ 140.4, 139.4, 132.8, 129.3, 128.9, 128.6, 128.2, 125.9, 45.8, 45.1, 39.4. HRMS calcld for C$_{15}$H$_{18}$NOS: 260.1109, found: 260.1107.

Ethyl 2-[[(methyl(oxo)phenyl-λ^6-sulfanylidene)amino]-3-phenylpropanoate (5e). Isolated as a mixture of diastereomers in 2:3 ratio; colorless oil; yield 41%. 1H NMR: δ 7.91–7.89 (m, 1H), 7.60–7.50 (m, 2H), 7.32–7.17 (m, 7H), 4.20–3.60 (m, 3H), 3.20–2.90 (m, 5H), 1.23 (t, J = 7.2 Hz, 0.4×3H, diastereomer 1), 1.02 (t, J = 7.1 Hz, 0.6×3H, diastereomer 2). 13C NMR: δ 173.6 (172.8), 138.3 (137.8), 133.0 (132.7), 129.9, 129.6, 129.2, 129.1, 128.5, 128.4, 128.1, 126.1, 60.8 (60.4), 59.4 (58.3), 45.2 (45.1), 42.3 (41.4), 14.0 (13.9). Anal. Calcd for C$_{18}$H$_{21}$NO$_3$S: C, 65.23; H, 6.39; N, 4.23. Found: C, 65.41; H, 6.52; N, 4.49.

[(4-Chlorobenzyl)imino](oxo)diphenyl-λ^6-sulfane (5f). Colorless oil; yield 62%. 1H NMR: δ 8.01–7.98 (m, 4H), 7.53–7.45 (m, 6H), 7.38 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 4.24 (s, 2H). 13C NMR: δ 140.5, 140.1, 132.5, 132.1, 129.2, 128.8, 128.5, 128.3, 46.5. Anal. Calcd for C$_{19}$H$_{16}$ClNOS: C, 66.76; H, 4.72. Found: C, 66.39; H, 4.96.

[(Benzylimino)(oxo)diphenyl-λ^6-sulfane (5g). White microcrystals (from ethyl acetate/hexanes); mp 97 °C; yield 53%. 1H NMR: δ 7.96–7.93 (m, 4H), 7.48–7.42 (m, 6H), 6.78 (s, 2H), 4.20 (s, 2H), 2.35 (s, 6H), 2.23 (s, 3H). 13C NMR: δ 141.3, 136.9, 136.1, 134.5, 132.1, 128.9, 128.8, 128.3, 40.7, 20.8, 19.6. Anal. Calcd for C$_{22}$H$_{23}$NOS: C, 75.61; H, 6.63; N, 4.01. Found: C, 75.29; H, 6.75; N, 4.01.

General procedure for the nucleophilic substitution of 3a–e with allyl(trimethyl)silanes

To a mixture of N-(benzotriazol-1-ylalkyl)sulfoximine 3 (1 mmol) and allyl(trimethyl)silane (1 mmol) in CH$_2$Cl$_2$ (20 mL) was added BF$_3$•Et$_2$O (2 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h and then at room temperature for 18 h. The reaction was quenched by aqueous NaHCO$_3$ solution and extracted with CH$_2$Cl$_2$. The combined solvent extract was dried over anhydrous Na$_2$SO$_4$ and removed in vacuo. The residue was purified by column chromatography with hexanes/ethyl acetate (2:1) as eluent to give the desired N-substituted sulfoximine 5.

Ethyl 2-[[methyl(oxo)phenyl-λ^6-sulfanylidene]amino]-4-pentenoate (5i). Isolated as a 1:1 mixture of diastereomers; colorless oil; yield 64%. 1H NMR: δ 7.96–7.92 (m, 2H), 7.67–7.52 (m, 3H), 5.93–5.70 (m, 1H), 5.13–5.02 (m, 2H), 4.18 (q, J = 7.1 Hz, 0.5×2H, diastereomer 1), 4.12–3.91 (m, 0.5×2H, diastereomer 2), 3.76 (t, J = 6.5 Hz, 0.5×1H, diastereomer 1), 3.69 (t, J = 6.7 Hz, 0.5×1H, diastereomer 2), 3.15 (s, 3H), 2.64–2.40 (m, 2H), 1.27 (t, J = 7.1 Hz, 0.5×3H, diastereomer 1), 1.15 (t, J = 7.1 Hz, 0.5×3H, diastereomer 2). 13C NMR: δ 173.2, 172.7 (other diastereomer), 139.7, 139.4 (other diastereomer), 134.1, 134.0 (other diastereomer), 132.9, 129.2, 128.5, 128.3 (other diastereomer), 117.4, 117.3 (other diastereomer), 60.5, 60.3 (other diastereomer), 56.9, 56.4 (other diastereomer), 45.4, 45.0 (other diastereomer), 40.4, 39.5 (other
diastereomer), 14.04, 13.98 (other diastereomer). Anal. Calcd for C_{14}H_{19}NO_{3}S: C, 59.76; H, 6.81; N, 4.98. Found: C, 60.17; H, 7.18; N, 4.92.

(3-Butenylimino)(oxo)diphenyl-\(\lambda^6\)-sulfane (5j). Colorless oil; yield 74%. \(^1^H\) NMR: \(\delta\) 8.00–7.96 (m, 4H), 7.53–7.43 (m, 6H), 5.97–5.84 (m, 1H), 5.13–4.99 (m, 2H), 3.12 (t, \(J = 7.3\) Hz, 2H), 2.46–2.39 (m, 2H). \(^1^C\) NMR: \(\delta\) 140.7, 136.8, 132.2, 129.0, 128.5, 115.7, 43.5, 37.3. Anal. Calcd for C_{16}H_{17}NO_{3}S: C, 70.81; H, 6.31; N, 5.16. Found: C, 71.16; H, 6.47; N, 5.36.

[(3-Methyl-3-butenyl)imino](oxo)diphenyl-\(\lambda^6\)-sulfane (5k). Colorless oil; yield 92%. \(^1^H\) NMR: \(\delta\) 7.99–7.96 (m, 4H), 7.50–7.43 (m, 6H), 4.75–4.74 (m, 2H), 3.17 (t, \(J = 7.6\) Hz, 2H), 2.39 (t, \(J = 7.6\) Hz, 2H), 1.71 (s, 3H). \(^1^C\) NMR: \(\delta\) 144.2, 140.8, 132.2, 129.0, 128.5, 110.9, 42.5, 41.2, 22.7. Anal. Calcd for C_{17}H_{19}NO_{3}S: C, 71.54; H, 6.71; N, 4.91. Found: C, 71.37; H, 6.78; N, 4.80.

Ethyl 2-[[oxo(diphenyl)-\(\lambda^{6}\)-sulfanylidene]amino]-4-pentenoate (5l). Colorless oil; yield 71%. \(^1^H\) NMR: \(\delta\) 8.04–7.96 (m, 4H), 7.54–7.42 (m, 6H), 5.98–5.84 (m, 1H), 5.17–5.06 (m, 2H), 4.19–4.06 (m, 2H), 3.83 (t, \(J = 6.7\) Hz, 1H), 2.67–2.60 (m, 2H), 1.23 (t, \(J = 7.0\) Hz, 3H). \(^1^C\) NMR: \(\delta\) 173.0, 140.3, 134.3, 132.4, 132.4, 128.9, 128.9, 128.6, 128.3, 117.3, 60.5, 56.9, 40.1, 14.1. Anal. Calcd for C_{19}H_{21}NO_{3}S: C, 66.45; H, 6.16; N, 4.08. Found: C, 66.56; H, 6.28; N, 4.28.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-[[oxo(diphenyl)-\(\lambda^6\)-sulfanylidene]amino]-4-pentenoate (5m). Isolated as a 1:1 mixture of diastereomers; colorless oil; yield 60%. \(^1^H\) NMR: \(\delta\) 8.08–8.04 (m, 2H), 7.96–7.92 (m, 2H), 7.54–7.42 (m, 6H), 6.01–5.83 (m, 1H), 5.15–5.06 (m, 2H), 4.78–4.67 (m, 1H), 3.80 (t, \(J = 6.7\) Hz, 1H), 2.71–2.54 (m, 2H), 2.06–1.78 (m, 2H), 1.69–1.64 (m, 2H), 1.55–1.35 (m, 2H), 1.10–0.84 (m, 9H), 0.78–0.72 (m, 3H). \(^1^C\) NMR: \(\delta\) 172.7 (172.6), 140.6, 140.4 (140.3), 134.5 (134.4), 132.5 (132.4), 129.1 (129.0), 129.0, 128.9 (128.8), 128.5 (128.4), 117.4 (117.3), 74.4, 57.5 (57.3), 46.9 (46.8), 40.7 (40.5), 40.4 (40.3), 34.1, 31.3, 25.8 (25.7), 23.2 (22.9), 22.0, 20.8 (20.7), 16.1 (15.8). Anal. Calcd for C_{27}H_{35}NO_{3}S: C, 71.49; H, 7.78; N, 3.09. Found: C, 71.33; H, 7.99; N, 3.24.

\((S)-(3-Butenylimino)(methyl)oxo(phenyl)-\(\lambda^6\)-sulfane \((S)-5a)\). [\(\alpha\)]_{D}^{25} = +136.9 (c 2.08, CHCl_{3}). Other data same as 6a.

\((S)-Methyl(3-methyl-3-butenylimino)oxo(phenyl)-\(\lambda^6\)-sulfane \((S)-5n)\). Colorless oil; yield 67%. [\(\alpha\)]_{D}^{25} = +130.6 (c 1.75, CHCl_{3}); \(^1^H\) NMR: \(\delta\) 7.94–7.90 (m, 2H), 7.62–7.54 (m, 3H), 4.72 (s, 1H), 4.68 (s, 1H), 3.15–3.05 (m, 4H), 2.95–2.86 (m, 1H), 2.29 (t, \(J = 7.7\) Hz, 2H), 1.69 (s, 3H). \(^1^C\) NMR: \(\delta\) 144.0, 139.6, 132.8, 129.4, 128.6, 110.8, 45.2, 42.5, 40.9, 22.7. Anal. Calcd for C_{12}H_{17}NO_{3}S: C, 64.53; H, 7.67; N, 6.27. Found: C, 64.16; H, 7.97; N, 6.23.

References