Diacetylketene N,S-acetals in synthesis of new functionalized 2(1H)-pyrimidinethiones

Vladimir Dorokhov,* Alexander Komkov, and Sergey Baranin

N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
47 Leninsky prosp., 119991 Moscow, Russian Federation
E-mail: vador@ioc.ac.ru

Dedicated to Professor Branko Stanovnik on the occasion of his 65th birthday
(received 25 July 03; accepted 15 Dec 03; published on the web 29 Dec 03)

Abstract
New 5-acetyl-4-alkylthio-6-methyl-2(1H)-pyrimidinethiones were prepared from diacetylketene N,S-acetals and isothiocyanates. They were converted into 4-amino derivatives, which can be applied for the construction of functionalized pyrido[2,3-d]pyrimidines and pyrimido[4,5-d]pyrimidines.

Keywords: Diacetylketene N,S-acetals, isothiocyanates, heterocyclization, 2(1H)-pyrimidinethiones, pyrimido[4,5-d]pyrimidines, pyrido[2,3-d]pyrimidines

Introduction

Ketene N,S-acetals are known to be useful reagents in heterocyclic synthesis. Among these, particular attention has been given to oxoketene N,S-acetals as functionalized enaminoes. Previously we reported a convenient procedure for the preparation of N-unsubstituted diacetylketene N,S-acetals from β-diketones and alkyl thiocyanates in the presence of Ni(acac)₂. These compounds were shown to be suitable starting materials for synthesizing 4-acetyl-5-aminopyrazoles, pyrazolo[3,4-d]pyrimidines, functionalized 2(1H)pyrimidinones, and 3-cyano-4-pyridones. In continuation of our work on the synthetic utility of dioxoketene N,S-acetals, we describe the synthesis of functionalized 2-pyrimidinethiones from diacetylketene N,S-acetals and isothiocyanates. Although 2-pyrimidinethiones have been extensively investigated and different approaches to their preparation have been developed, new methods for the synthesis of 2-pyrimidinethiones carrying functional groups in the 5- and 6-positions are desirable, since compounds of this type may be used for constructing fused pyrimidines.

Monoaroylketene N,S-acetals are reported to react with benzoyl isothiocyanate as C-nucleophiles to give the corresponding adducts which undergo cyclization into 4-pyrimidine-
thiones.10 It is quite general that the C-C bond is formed by the attack of the enaminone nucleophilic C atom to the electrophilic C atom of isothiocyanate,11 although enaminones as N-nucleophiles were found to react with phenylisothiocyanate in the presence of NaH affording 1-phenyl-4,6-disubstituted 2-pyrimidinethiones.12

Results and Discussion

We have previously shown that the condensation of diacetylketene N,S-acetals with isocyanates occurs in the absence of basic catalysts and gives 4-alkylthiouracil derivatives.7 It turned out that N,S-acetals 1\textsubscript{a,b} react in similar manner with phenylisothiocyanate and allylisothiocyanate in boiling toluene providing the corresponding N-substituted 5-acetyl-4-alkylthio-6-methyl-2(1\textsubscript{H})-pyrimidinethiones 2\textsubscript{a,b} and 3\textsubscript{a} (Scheme 1). The action of 1\textsubscript{a} on the benzoylisothiocyanate in toluene at room temperature results in thiourea 4, which is isolated as crude material. The structure of 4 is confirmed by 1H NMR spectra (see the Experimental Section). When 4 is boiled with MeONa in MeOH, the closure of the pyrimidine ring is accompanied by debenzoylation, and the subsequent treatment with AcOH or MeI leads to pyrimidinethione 5 or its S-methyl derivative 6. Evidently, the formation of pyrimidinethiones 2, 3 is also supposed to involve the attack by isothiocyanate at the N-nucleophilic center of acetals 1 but the intermediate thioureas formed easily undergo cyclization in the absence of MeONa.

Crystalline pyrimidinethiones 2\textsubscript{a,b} and 3\textsubscript{a} are easily soluble in DMF, CHCl\textsubscript{3}, EtOH, and acetone, moderately soluble in benzene and toluene, and insoluble in petroleum ether and water. Compound 5 is soluble only in DMF and DMSO. The structures of 2\textsubscript{a,b}, 3\textsubscript{a}, and 5 were confirmed by spectral data (mass spectrometry, 1H and 13C NMR, IR spectroscopy).

The MeS group in pyrimidinethiones 2, 3 can be substituted by primary and secondary amines, and compound 2\textsubscript{a} was thus converted into the corresponding 4-amino-2(1\textsubscript{H})-pyrimidinethione derivatives 7-9. It should be noted that the yields of 7, 8 (42-43\%) appear to be lower than the yield of 9 (69\%), because the reaction of 2\textsubscript{a} with primary amines is accompanied by the partial cleavage of the pyrimidine ring. Indeed, the N-benzyl-N`-phenylthiourea was isolated as by-product when 2\textsubscript{a} reacted with benzyamine.

In the case of 5, the double substitution by morpholine can be achieved, and dimorpholino-pyrimidine 10 was obtained in 79\% yield.

The presence of vicinal MeCO and NH groups in the molecules of compounds 7, 8 is favorable for the annelation of the second nitrogen-containing ring to the pyrimidine cycle.
Scheme 1

We have chosen pyrimidinethione 7 to demonstrate the selected examples for fused pyrimidines construction. Earlier the series of 4-methylene-3,4-dihydro-2(1H),7(6H)-pyrimido[4,5-d]pyrimidinediones had been prepared from substituted 4-amino-5-acetyl-2(1H)-pyrimidonones and isocyanates. Now we synthesized new representatives of pyrimido[4,5-d]pyrimidine system 11, 12 containing oxo-, thio-, and exo-methylene groups in 75-82% yields by the reaction of 7 with isocyanates (Scheme 2).
The process probably involves the addition of 7 to isocyanate with the formation of intermediate ureas, intramolecular cyclization of which gives 11 and 12. However, compound 7 failed to react with less electrophilic isothiocyanates.

Yellow crystalline compounds 11, 12 are soluble in most organic solvents. The presence of the exo-methylene group in their molecules is confirmed by NMR spectroscopy. Thus, in 1H NMR spectra, methylene protons display the signals of the AB system (δ_A 4.36 and δ_B 4.37 for 11; δ_A 4.49 and δ_B 4.90 for 12, J=2.5 Hz), while the C atom of the CH$_2$ group in 13C NMR spectra gives a triplet (δ 100.6 for 11 and δ 97.2 for 12).

Different approaches to the construction of pyrido[2,3-d]pyrimidine system were applied. In accordance with Scheme 2, refluxing of 7 with dimethylformamide dimethylacetal (DMF DMA) in benzene results in the condensation product 13, which in the boiling xylene undergoes cyclization to give the corresponding functionalized pyrido[2,3-d]pyrimidine 14. In a similar manner, 8-benzyl-4-methylthio-2-phenyl-5(8H)-pyrido[2,3-d]pyrimidinone has earlier been prepared.13
Recently we have suggested a method for the synthesis of alkyl 5-oxo-5,8-
dihydropyrido[2,3-d]pyrimidine-7-carboxylates14 based on the condensation of 2,6-disubstituted
5-acetyl-4-aminopyrimidines with ethyl oxalate in the presence of MeONa or EtONa.
Accordingly, the compound 7 was transformed into methyl ester 15 isolated in moderate yield.
Evidently, the process is accompanied by transesterification. No traces of ethyl ester were
detected by 1H NMR spectroscopy.

The structures of pyrido[2,3-d]pyrimidine derivatives 14, 15 were confirmed by spectroscopic methods and microanalysis data (see below in Experimental Section).

Experimental Section

General Procedures. Melting points were determined using a Koffler apparatus and were uncorrected. 1H NMR (250 MHz) and 13C NMR (75 MHz) spectra were recorded on Bruker WM-250 and Bruker AM-300 spectrometers with CDCl\textsubscript{3} and DMSO-d\textsubscript{6} as solvent and TMS as internal standard. Mass spectra were obtained on a Varian MAT-311A instrument (EI, 70eV). IR spectra were recorded on a Specord M-80 spectrometer. Column chromatography was conducted with silica gel, grade 100-160 mesh. Phenyl-, allyl- and benzoylisothiocyanates, DMF DMA, phenyl- and methylisocyanates, and also diethyl oxalate were purchased from Lancaster. Diacetylketene N,S-acetals5 were prepared according to published procedures.

5-Acetyl-6-methyl-4-acetylthio-1-phenyl-2(1\textsubscript{H})-pyrimidinethione (2a). A mixture of 1a (2.60 g, 15 mmol) and phenylisothiocyanate (3.60 mL, 30 mmol) in toluene (25 mL) was heated under reflux for 3 h. After cooling, the precipitate was collected by filtration to give light yellow 2a: 2.22 g (51%); mp 226-227 °C (from C\textsubscript{6}H\textsubscript{6} / n-hexane 8:1). 1H NMR (CDCl\textsubscript{3}): \(\delta\) 1.92 (3H, s, CH\textsubscript{3}CO), 2.60 (3H, s, CH\textsubscript{3}), 2.68 (3H, s, CH\textsubscript{3}), 7.15-7.21 (2H, m, 2H of Ph), 7.43-7.65 (3H, m, 3H of Ph). 13C NMR (CDCl\textsubscript{3}): \(\delta\) 13.34 (SCH\textsubscript{3}), 19.54 (CH\textsubscript{3}), 32.03 (CH\textsubscript{3}CO), 122.91 (C-5), 127.17, 129.32, 130.25, 140.84 (Ph), 151.56 (q, C-6, \(\text{J}=5.0\)), 167.45 (q, C-4, \(\text{J}=3.0\)), 181.88 (C-2), 199.48 (CO). MS m/z: 290 (M+). IR (CHCl\textsubscript{3}) \(\nu/cm^{-1}\): 1705 (CO), 1580, 1500. Anal. Calcd for C\textsubscript{14}H\textsubscript{14}N\textsubscript{2}OS\textsubscript{2}: C, 57.90; H, 4.86; N, 9.65; S, 22.08. Found: C, 58.28; H, 4.99; N, 9.29; S, 22.06.

5-Acetyl-1-allyl-6-methyl-4-acetylthio-2(1\textsubscript{H})-pyrimidinethione (3a). A mixture of 1a (1.04 g, 5 milli-
6 mmol) and allylisothiocyanate (1.17 mL, 12 mmol) in toluene (12 mL) was heated under reflux for 3 h. After cooling to 20 °C, hexane (20 mL) was added to the reaction mixture. The precipitate obtained was filtered off and recrystallized from C₆H₆ / n-hexane (1:1) to give yellow-brown solid 3a: 0.79 g (52%); mp 129-130 °C. ¹H NMR (CDCl₃): δ 2.34 (3H, s, CH₃), 2.54 (3H, s, CH₃), 2.61 (3H, s, CH₃), 5.12-5.37 (4H, m, CH₂=CHCH₂), 5.92-6.08 (1H, m, CH₂=CHCH₂). ¹³C NMR (CDCl₃): δ 13.17 (SCH₃), 17.81 (CH₃), 32.02 (CH₃CO), 54.04 (NCH₂), 118.35 (dd, CH₂=CH, ³J=154, ¹J=161), 123.64 (C-5), 129.82 (d, CH₂=CH, ¹J=159), 151.17 (q, C-6, ³J=5.6), 166.02 (q, C-4, ³J=4.3), 181.23 (t, C-2, ³J=4.4), 199.76 (CO). MS m/z: 254 (M⁺).

IR (CHCl₃) ν/cm⁻¹: 1705 (CO), 1580, 1490. Anal. Calcd for C₁₁H₁₄N₂O₃: C, 51.94; H, 5.55; N, 11.01; S, 25.21. Found: C, 51.84; H, 5.63; N, 10.90; S, 24.82.

5-Acetyl-6-methyl-4-methylthio-2(1H)-pyrimidinethione (5). A mixture of 1a (1.04 g, 6 mmol) and benzoylisothiocyanate (0.97 mL, 7.2 mmol) in C₆H₆ (30 mL) was stirred for 3 h at 20 °C. Hexane (60 mL) was added to the reaction mixture. The precipitate obtained was filtered off to give 1.49 g (74%) of crude urea 4 (¹H NMR (CDCl₃): δ 2.28 (6H, s, 2CH₃CO), 2.56 (3H, s, SCH₃), 7.50-7.57 (2H, m, 2H of Ph), 7.62-7.68 (1H, m, 1H of Ph), 7.85-7.92 (2H, m, 2H of Ph), 9.45 (1H, s, NH), 16.64 (1H, s, NH).). A mixture of 4 (0.67 g, 2 mmol) and 2.4 mmol MeONa in MeOH (20 mL) was heated under reflux for 1.5 h. The solvent was evaporated in vacuo, the residue was triturated with H₂O (30 mL) and extracted with CHCl₃ (2 x 30 mL). The aqueous solution was separated and treated with AcOH. The precipitate obtained was filtered off and washed with ether (2 x 30 mL) to give colorless solid 5: 0.274 g (64%); mp 210-211 °C. ¹H NMR (DMSO-d₆): δ 2.31 (3H, s, CH₃), 2.46 (3H, s, CH₃), 2.49 (3H, s, CH₃), 13.40 (1H, s, NH). ¹³C NMR (DMSO-d₆): δ 13.21 (SCH₃), 17.47 (CH₃), 31.71 (CH₃CO), 120.60 (C-5), 153.64 (q, C-6, ³J=6.3), 170.02 (q, C-4, ³J=4.3), 178.73 (C-2), 198.85 (CO). MS m/z: 214 (M⁺). IR (KBr) ν/cm⁻¹: 3425, 3150 (NH), 1660 (CO), 1585, 1540. Anal. Calcd for C₈H₁₀N₂O₃S: C, 44.83; H, 4.70; N, 13.07; S, 29.92. Found: C, 44.68; H, 4.96; N, 12.75; S, 29.75.

5-Acetyl-6-methyl-2,4-dimethylthiopyrimidine (6). A mixture of crude 4 (0.67 g, 2 mmol) and MeONa (2.4 mmol) in MeOH (20 mL) was heated under reflux for 1.5 h. After cooling to 20 °C, MeI (0.25 mL, 4 mmol) was added and the mixture was stirred for 30 min. The solvent was evaporated in vacuo. The residue was subjected to column chromatography (silica gel) and eluted with hexane / C₆H₆ (1:1) and then C₂H₆ to afford the pure 6: 0.32 g (71%); mp 73-74 °C (from hexane). ¹H NMR (CDCl₃): δ 2.36 (3H, s, CH₃), 2.56 (3H, s, CH₃), 2.56 (3H, s, CH₃). ¹³C NMR (CDCl₃): δ 13.89 (2SCH₃), 22.23 (CH₃), 31.32 (CH₃CO), 127.50 (C-5), 160.72 (q, C-6, ³J=6.3), 166.06 (q, C-4, ³J=4.5), 170.97 (q, C-2, ³J=4.3), 201.78 (CO). MS m/z: 228 (M⁺). IR (CHCl₃) ν/cm⁻¹: 1698 (CO), 1530, 1518. Anal. Calcd for C₉H₁₂N₂O₂S: C, 47.34; H, 5.30; N, 12.27; S, 28.09. Found: C, 47.33; H, 5.56; N, 11.94; S, 28.04.

5-Acetyl-4-benzylamino-6-methyl-1-phenyl-2(1H)-pyrimidinethione (7). A mixture of 2a (2.03 g, 7.0 mmol) and benzyamine (1.14 mL, 10.5 mmol) in toluene (20 mL) was heated under reflux for 3 h. The precipitate obtained after cooling to 20 °C was filtered off to give colorless solid 7: 1.03 g (42%); mp 217-218 °C (from C₆H₆). ¹H NMR (CDCl₃): δ 2.18 (3H, s, CH₃), 2.49 (3H, s, CH₃), 4.83 (2H, d, CH₂, J=5.5), 7.19-7.60 (10H, m, 10H of 2 Ph), 8.47 (1H, t, NH,
$J=5.5$). 13C NMR (CDCl$_3$): δ 22.65 (CH$_3$), 32.99 (CH$_3$CO), 45.22 (CH$_2$), 109.48 (C-5), 127.66, 128.03, 128.12, 128.78, 129.09, 129.95, 137.22, 141.45 (2 Ph), 154.22 (C-4), 157.46 (q, C-6, $^2J=5.4$), 182.89 (C-2), 200.08 (CO). MS m/z: 349 (M$^+$). IR (CHCl$_3$) ν/cm$^{-1}$: 3340 (NH), 1690 (CO), 1588. Anal. Calcd for C$_{20}$H$_{10}$N$_3$OS: C, 68.74; H, 5.48; N, 12.03; S, 9.18. Found: C, 69.05; H, 5.63; N, 12.39; S, 9.02.

The filtrate was subjected to column chromatography (silica gel) and eluted with C$_6$H$_6$ to afford pure N-benzyl-N'-phenylthiourea (0.57 g): mp 155-156 °C; lit.15 mp 153-154 °C. 1H NMR (CDCl$_3$): δ 4.91 (2H, d, CH$_2$), 7.20-7.50 (10H, m, 10H of 2 Ph), 8.08 (1H, s, NH). MS m/z: 242 (M$^+$).

5-Acetyl-4-butyramino-6-methyl-1-phenyl-2(1H)-pyrimidinethione (8). A mixture of 2a (0.44 g, 1.5 mmol) and BuNH$_2$ (0.23 mL, 2.3 mmol) in toluene (10 mL) was heated under reflux for 3 h. After cooling to 20 °C, hexane (10 mL) was added to the reaction mixture. The precipitate obtained was filtered off to give solid 8: 0.19 g (41%); mp 219-220 °C. IR (CHCl$_3$) ν/cm$^{-1}$: 3320 (NH), 1655 (CO). MS m/z: 315 (M$^+$). IR (CHCl$_3$) ν/cm$^{-1}$: 3180 (NH), 1648 (CO). Anal. Calcd for C$_{17}$H$_{21}$N$_3$OS: C, 64.73; H, 6.71; N, 13.32; S, 10.17. Found: C, 64.70; H, 6.76; N, 13.03; S, 10.38.

5-Acetyl-6-methyl-4-morpholino-1-phenyl-2(1H)-pyrimidinethione (9). A mixture of 2a (1.74 g, 6.0 mmol) and morpholine (1.04 mL, 12 mmol) in toluene (20 mL) was heated under reflux for 6 h. The solvent and excess morpholine were evaporated in vacuo. The residue obtained was recrystallized from C$_6$H$_6$ to give colorless solid 9: 1.36 g (69%); mp 228-229 °C. 1H NMR (CDCl$_3$): δ 1.99 (3H, s, CH$_3$), 2.42 (3H, s, CH$_3$), 3.75 (8H, s, 4 CH$_2$), 7.19-7.23 (2H, m, 2H of Ph), 7.40-7.62 (3H, m, 3H of Ph). 13C NMR (CDCl$_3$): δ 18.85 (CH$_3$), 31.08 (CH$_3$CO), 41.81 (CH$_2$), 66.52 (CH$_2$), 111.67 (C-5), 127.95, 129.06, 129.80, 141.31 (Ph), 155.51 (q, C-6, $^2J=6.0$), 156.89 (C-4), 181.58 (C-2), 200.08 (CO). MS m/z: 329 (M$^+$). IR (CHCl$_3$) ν/cm$^{-1}$: 1690 (CO), 1575. Anal. Calcd for C$_{17}$H$_{19}$N$_3$OS: C, 61.98; H, 5.81; N, 12.76; S, 9.73. Found: C, 62.22; H, 5.96; N, 12.51; S, 9.36.

5-Acetyl-6-methyl-2,4-dimorpholinopyrimidine (10). A mixture of 5 (0.21 g, 1 mmol) and morpholine (9 mL, 102 mmol) was heated under reflux for 6 h. A morpholine excess was evaporated in vacuo. The residue obtained was subjected to column chromatography (silica gel) and eluted with C$_6$H$_6$ to afford colorless pyrimidine 10: 0.24 g (79%); mp 159-160 °C (from hexane). 1H NMR (CDCl$_3$): δ 2.30 (3H, s, CH$_3$), 2.38 (3H, s, CH$_3$), 3.40 (4H, t, 2 CH$_2$), 3.72 (8H, t, 4 CH$_2$), 3.79 (4H, t, 2 CH$_2$). 13C NMR (CDCl$_3$): δ 23.23 (CH$_3$), 30.10 (CH$_3$CO), 44.14 (CH$_2$), 49.22 (CH$_2$), 66.49 (CH$_2$), 66.85 (CH$_2$), 111.01 (C-5), 159.55 and 164.36 (C-2 and C-4), 166.19 (q, C-6, $^2J=6.0$), 202.45 (CO). MS m/z: 306 (M$^+$). IR (CHCl$_3$) ν/cm$^{-1}$: 1675 (CO), 1558, 1535, 1520. Anal. Calcd for C$_{15}$H$_{23}$N$_3$O$_3$: C, 58.80; H, 7.24; N, 18.29. Found: C, 59.07; H, 7.43; N, 18.04.

1-Benzyl-5-methyl-4-methylene-3,6-diphenyl-7-thioxo-3,4,6,7-tetrahydro-2(1H)-pyrimido[4,5-d]pyrimidinone (11). A mixture of 7 (0.17 g, 0.5 mmol) and PhNCO (0.11 mL, 1
mmol) in toluene (6 mL) was heated under reflux for 3 h. The solvent was evaporated in vacuo. The residue obtained was subjected to column chromatography (silica gel) and eluted with C₆H₆ and then C₆H₆ / CHCl₃ (1:1) to afford the oil, which was dissolved in C₆H₆. Hexane (6 mL) was added to the solution, and the precipitate obtained was filtered off to give yellow solid 11: 0.18 g (82%); mp 137-138 °C. ¹H NMR (CDCl₃): δ 2.22 (3H, s, CH₃), 4.36 and 4.43 (both for 1H, both d, CH₂=J=2.5), 5.45 (2H, s, CH₂), 7.20-7.78 (15H, m, 15H of 3 Ph). ¹³C NMR (CDCl₃): δ 21.93 (CH₃), 45.19 (CH₂), 100.62 (t, CH₂=J=164.0), 104.40 (C-4a), 127.57, 127.66, 128.34, 128.66, 128.80, 129.37, 129.95, 130.16, 130.35, 136.76, 137.69, 137.89 (3 Ph), 141.89 (t, C-4,J=8.0, 149.94, 152.31 (C-2 and C-8a), 154.01 (q, C-5, 2J=6.0), 182.73 (C-7). MS m/z: 450 (M⁺). IR (CHCl₃) ν/cm⁻¹: 1708 (CO), 1624, 1605, 1590, 1520. Anal. Calcd for C₂₇H₂₂N₄O₆S: C, 71.97; H, 4.92; N, 12.44; S, 8.81. Found: C, 71.89; H, 5.00; N, 12.12; S, 8.69.

1-Benzyl-3,5-dimethyl-4-methylene-6-phenyl-7-thioxo-3,4,6,7-tetrahydro-2(1H)-pyrimido[4,5-d]pyrimidinone (12). A mixture of 7 (0.17 g, 0.5 mmol) and MeNCO (0.06 mL, 1 mmol) in toluene (6 mL) was heated in a sealed tube in an oil bath (110-115 °C) for 6 h. The further procedure was analogous to the above experiment and afforded solid 12: 0.146 g (75%); mp 216-217 °C. ¹H NMR (CDCl₃): δ 2.25 (3H, s, CH₃), 3.29 (3H, s, NCH₃), 4.49 and 4.90 (both for 1H, both d, CH₂=J=2.5), 5.45 (2H, s, CH₂), 7.20-7.74 (5H, m, 5H of 2 Ph). ¹³C NMR (CDCl₃): δ 21.74 (CH₃), 32.54 (NCH₃), 45.04 (CH₂), 97.25 (CH₂=), 104.29 (C-4a), 127.60, 128.32, 129.28, 129.55, 130.28, 136.74, 136.95 (2 Ph), 141.96 (C-4), 150.39 and 152.16 (C-2 and C-8a), 153.79 (C-5), 182.76 (C-7). MS m/z: 388 (M⁺). IR (CHCl₃) ν/cm⁻¹: 1698 (CO), 1624, 1605, 1590, 1522. Anal. Calcd for C₂₂H₂₀N₄OS: C, 68.02; H, 5.19; N, 14.42; S, 8.25. Found: C, 67.88; H, 5.02; N, 14.48; S, 8.01.

8-Benzyl-4-methyl-3-phenyl-2-thioxo-2,3-dihydro-5(8H)-pyrido[2,3-d]pyrimidinone (14). A mixture of 7 (0.35 g, 1 mmol) and DMF DMA (0.26 mL, 2 mmol) in C₆H₆ (6 mL) was heated under reflux for 1 h. The solvent was evaporated in vacuo. The residue obtained was subjected to column chromatography (silica gel) and eluted with CHCl₃ to give pyrimidine 13: 0.36 g (89%); mp 122-125 °C. ¹H NMR (CDCl₃): δ 2.03 (3H, s, CH₃), 2.22 (3H, s, CH₃), 2.88 and 3.15 (both for 3H, both d, CH=J=12.8), 7.18-7.60 (11H, m, 10H of 2 Ph and NH). A solution of 13 (0.36 g) in m-xylene (20 mL) was heated under reflux for 6 h. The solvent was evaporated in vacuo. The residue obtained was dissolved in C₆H₆ (5 mL). Hexane (8 mL) was added to the solution, and the precipitate obtained was filtered off to give yellow solid 14: 0.23 g, (73%); mp 170-171 °C. ¹H NMR (CDCl₃): δ 2.73 (3H, s, CH₃), 5.43 (2H, s, CH₂), 6.07 and 7.40 (both for 1H, both d, H-6 and H-7, J=6.5), 7.28-7.65 (10H, m, 10H of 2 Ph). ¹³C NMR (CDCl₃): δ 21.61 (CH₃), 52.37 (CH₂), 109.64 (C-4a), 114.52 (d, C-6, J=171), 127.13, 128.50, 128.60, 129.05, 129.53, 130.42, 135.17, 141.18 (2 Ph), 142.01 (d, C-7, J=178), 152.90 (C-8a), 166.90 (q, C-4, 2J=6.5), 179.06 (C-5), 181.59 (C-2). MS m/z: 359 (M⁺). IR (CHCl₃) ν/cm⁻¹: 1652 (CO), 1567, 1560. Anal. Calcd for C₂₁H₁₇N₃OS: C, 70.17; H, 4.77; N, 11.69; S, 8.92. Found: C, 69.85; H, 4.89; N, 11.37; S, 8.69.
Methyl 8-benzyl-4-methyl-5-oxo-2-thioxo-2,3,5,8-tetrahydropyrido[2,3-d]-pyrimidine-7-carboxylate (15). A mixture of 7 (0.14 g, 0.4 mmol), diethyl oxalate (0.16 mL, 1.2 mmol), and MeONa (1.2 mmol) in MeOH (8 mL) was heated under reflux for 2 h. After cooling to 20 °C, AcOH was added, and the solvent was evaporated in vacuo. The residue was subjected to column chromatography (silica gel) and eluted with C₆H₆ and then C₆H₆ / MeOH (50:0.2). The solvents were removed and diethyl ether (3 mL) was added. The precipitate obtained was filtered off to afford yellow solid 15: 0.07 g (42%); mp 155-156 °C. ¹H NMR (CDCl₃): δ 2.77 (3H, s, CH₃), 3.71 (3H, s, CH₃O), 5.92 (2H, s, CH₂), 6.41 (1H, s, H-6), 7.15-7.25 (4H, m, 4H of 2 Ph), 7.25-7.38 (3H, m, 3H of Ph), 7.50-7.68 (3H, m, 3H of Ph). ¹³C NMR (CDCl₃): δ 21.71 (CH₃), 52.45 (CH₂), 53.65 (CH₃O), 109.77 (C-4a), 116.04 (C-6), 126.94, 128.53, 128.64, 129.10, 129.57, 130.42, 135.28, 140.97 (2 Ph), 143.96 (C-7), 153.30 (C-8a), 156.78 (C-4), 178.48 (C-5), 181.55 (C-2). MS m/z: 417 (M⁺). IR (CHCl₃) ν/cm⁻¹: 1740 (CO), 1644 (CO), 1560. Anal. Calcd for C₂₃H₁₉N₃O₃S: C, 66.17; H, 4.59; N, 10.07; S, 7.68. Found: C, 66.12; H, 4.61; N, 9.86; S, 7.80.

References