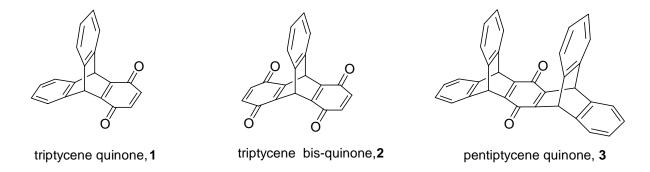
Triptycene quinones in synthesis: preparation of triptycene bis-cyclopentenedione

Spyros Spyroudis* and Nikoletta Xanthopoulou

Laboratory of Organic Chemistry, Department of Chemistry, University of Thessaloniki, Thessaloniki 54124, Greece E-mail: sspyr@chem.auth.gr

Dedicated to Professor Anastasios Varvoglis on his 65th birthday

(received 23 Dec 02; accepted 28 Mar 03; published on the web 06 May 03)


Abstract

The preparation of triptycene bis-quinone 2 starting from a Diels-Alder reaction of 1,4-dimethoxyanthracene and p-benzoquinone is described. This compound was transformed to triptycene bis-cyclopentenedione 16 through a double hydroxyquinone – iodonium ylide formation- ring contraction sequence.

Keywords: Triptycene, quinones, cyclopentenediones, phenyliodonium

Introduction

Triptycene quinones are triptycene derivatives in which at least one benzo group has been replaced by a quinonoid ring. Some representative structures of triptycene quinones are shown in Figure 1 below.

Figure 1. Structures of triptycene quinones.

ISSN 1551-7012 Page 95 [©]ARKAT USA, Inc.

Such compounds combining the rigid structure of triptycene with the redox potential of quinones find several applications in Chemistry. Triptycene quinones serve as building blocks for the construction of three-dimensional supramolecules¹ and liquid crystalline derivatives,² for the synthesis of electron-transfer compounds with porphyrins³ and tetrathiafulavalene⁴ serving as donors, and for the preparation of polymeric chemosensors.⁵ More recently pentiptycene quinones of type 3 were reported to form materials with monolayer assembly structure,⁶ to find application as fluorescent chemosensors for metal ions,⁷ and serve as building blocks for the construction of novel chain and channel networks.⁸

Triptycene quinones exhibit also interesting biological activity: a variety of them decrease the viability of leukemic cells in vitro, ⁹ triptycene quinones with methoxy substituents exhibit antioxidant and anti-inflammatory properties, ¹⁰ while the reaction of triptycene diquinones with amines was reported to afford derivatives with potent anticancer and antimalarial activities. ¹¹

In relation to our interest in hydroxyquinones¹² we recently reported¹³ the synthesis of triptycene hydroxyquinone **3** and its conversion through phenyliodonium chemistry to triptycene cyclopentenedione, **5**. The latter reacts as a dienophile and dipolarophile affording polycyclic adducts **6** bearing the triptycene moiety (Scheme 1).

Scheme 1. Preparation of triptycene cyclopentenedione **5**.

The successful preparation of **5** prompted us to investigate the possibility of preparing the triptycene bis-cyclopentenedione **16** by applying the same methodology. We herein wish to report the results of our efforts.

ISSN 1551-7012 Page 96 [®]ARKAT USA, Inc.

Results and Discussion

The synthesis of **16** was based on the retrosynthetic route shown in Scheme 2, having as key steps the preparation of triptycene dihydroxy-bis-quinones **13** and hence bis-quinone **2**, which was reported in the literature albeit without experimental details for its preparation.¹⁴

Scheme 2. Retrosynthetic route to triptycene bis cyclopentenedione 16.

Triptycene bis-quinone **2** was prepared in three steps starting with a Diels-Alder reaction of 1,4-dimethoxyanthracene and 1,4-benzoquinone. The former is not commercially available and was prepared from quinizarin also in three steps (methylation and two subsequent reductions with NaBH₄) following a literature method. The Diels-Alder reaction did not work well in the solvents usually used for cyclization (toluene or xylene) but in refluxing acetonitrile the dehydro adduct **7** was isolated in reasonable yield. This adduct was acid-isomerised almost quantitatively to the corresponding hydroquinone derivative **8** which was effectively oxidized by (diacetoxyiodo) benzene to dimethoxy triptycene quinone **9**. Finally, **9** was oxidatively-demethylated by ceric ammonium nitrate (CAN) to the desired bis-quinone **2** (Scheme 3).

Scheme 3. Preparation of triptycene bis-quinone **2**.

ISSN 1551-7012 Page 97 [®]ARKAT USA, Inc.

As was mentioned earlier, PhI(OAc)₂ was found to be very effective for the oxidation of hydroquinone 8 to quinone 9. The use of a more conventional oxidant, like potassium bromate, also gave the desired 9 in 60% yield, along with 15% of bis-quinone 2 and 10% of the bromo derivative 10, thus complicating the reaction (Scheme 4).

Scheme 4. Alternative preparation of **2**.

In the next step bis-quinone **2** was converted under Thiele-Winter conditions to a mixture (1:1 estimated by ¹H-NMR spectroscopy) of the two possible hexaacetoxy triptycene isomers **11**. Acid hydrolysis under various conditions did not lead to hexahydroxy isomers **12**, as complex mixtures of partially acetoxylated compounds were always isolated. In contrast, hydrolysis under basic conditions afforded 2-hydroxy-1,4-anthraquinone **14** as the only isolable product (Scheme 5). It is possible that **11** is converted to dihydroxy bis-quinone isomers **13**, as in a typical reaction for the preparation of hydroxy quinones from 1,2,4-triacetoxybenzenes. ¹² Bis-quinone **13** affords **14** through a retro Diels-Alder reaction. This tendency of triptycene quinones to undergo retro Diels-Alder reactions under basic conditions has also been observed with other triptycene quinonic derivatives. ¹⁶

ISSN 1551-7012 Page 98 [©]ARKAT USA, Inc.

Scheme 5. Unsuccessful attempts for the preparation of dihydroxy bis-quinones 13.

In order to confirm the formation of **14**, this hydroxy quinone was prepared by an independent method: available 1,4-dimethoxyanthracene was oxidatively demethylated to 1,4-anthraquinone, which in turn was transformed to 1,2,4-triacetoxyanthracene **14a** which was hydrolyzed to **14** (Scheme 6).

Scheme 6. Independent route to 2-hydroxy-1,4-anthraquinone **14**.

Finally, the acetoxy groups of **11** were smoothly removed by LiAlH₄ to afford a reasonable yield of hexahydroxytriptycene isomers **12**. This mixture was converted in a tandem oxidationaryliodination reaction to the corresponding mixture of bis-ylide isomers **15** using four equivalents of PhI(OAc)₂. This mixture was subjected to thermal decomposition in refluxing acetonitrile and the target molecule triptycene bis-cyclopentenedione **16** was isolated in 7% yield (Scheme 7).

Scheme 7. Synthesis of triptycene bis-cyclopentenedione **16**.

ISSN 1551-7012 Page 99 [©]ARKAT USA, Inc.

Triptycene bis-cyclopentenedione **16** exists in solution in its tetraketo form, analogously to triptycene cyclopentenedione **17.**¹³ The two compounds exhibit similar spectroscopic ¹H-NMR and ¹³C-NMR data, the main difference being the anisotropy of the protons of the methylene groups in **16** (Figure 2).

Figure 2. ¹H NMR and ¹³C NMR data for triptycene bis- and mono-cyclopentenediones, **16** and **5**.

We believe the reaction pathway to be essentially the same as that proposed for the thermal decomposition of aryliodonium ylides of 2-hydroxy-1,4-benzoquinones:¹⁷ bisketene **18** is produced by Wolff rearrangement of bis-carbene **17** resulting from extrusion of PhI.

Scheme 8. Proposed reaction pathway for the preparation of **16**.

ISSN 1551-7012 Page 100 [©]ARKAT USA, Inc.

Highly reactive **18** undergoes hydrolysis with water present in the solvent and the resulting acid **19** decarboxylates to the desired triptycene bis-cyclopentenedione **16** (Scheme 8). This reaction pathway leads also to the preparation of **5** from the thermal degradation of the corresponding mono ylide. The formation of the intermediate ketene is supported by its trapping with methanol to form the corresponding ester.¹³

In conclusion we presented a reaction sequence for the preparation of triptycene biscyclopentenedione **16** based on hydroxyquinone-ylide formation chemistry. This compound, as well as its precursors, might serve as building blocks for the construction of polycyclic structures bearing the triptycene moiety.

Experimental Section

General Procedures. Melting points were determined on a Stuart Scientific Melting Point Apparatus SMP3 (230 Volts) and are uncorrected. ¹H-NMR and ¹³C-NMR spectra were recorded with a Bruker AM 300 (300 MHz and 75 MHz for ¹H and ¹³C, respectively) in ca 5% solution of CDCl₃ using Me₄Si as the internal standard. Mass spectra were recorded with a spectrometer VG-250 in 70eV, ESI. Elemental analyses were carried out in a Perkin-Elmer 2400-II elemental analyst.

5,8–Dimethoxy-4a,9,9a,10–tetrahydro-9,10-[1,2]benzenoanthracene-1,4-dione, (7). To a solution of 1,4-dimethoxy-anthracene (2.26 g, 9.5 mmol) in CH₃CN (40 mL) 1,4-benzoquinone (4.2 g, 38.8 mmol) was added and the mixture was refluxed for 10 h. After cooling, the yellow-green precipitate formed was filtered and dried in a desiccator for 24 h to afford **7** (2.23 g, 68%), mp 220 °C dec. 1 H-NMR δ 2.17 (s, 2H), 3.80 (s, 6H), 6.54 (s, 2H), 6.58 (s, 2H), 7.00-7.11 (m, 2H), 7.42-7.51 (m, 2H). MS (70 eV); m/z (%): 347 (M+1, 100), 239 (77), 224 (70), 208 (31), 180 (48), 152 (68). Anal. Calcd for $C_{22}H_{18}O_4$: C, 76.28%; H, 5.24%. Found C, 76.01%; H, 5.50%.

5,8-Dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-diol, (8). A suspension of 5,8-dimethoxy-4a,9,9a,10-tetrahydro-9,10-[1,2]benzenoanthracene-1,4-dione, **7** (0.75 g, 2.16 mmol) in CH₃COOH (50 mL) was refluxed until the solid was completely dissolved (20-30 min). Hydrobromic acid (48% solution, 20 drops) was added and the resulting mixture was poured onto water (10 mL). The white precipitate formed was filtered and dried in a desiccator for 24 h to yield **3** (0.74 g, 98%), mp >200 °C dec. 1 H -NMR (CDCl₃+DMSO-d₆) δ 3.80 (s, 6H), 6.27 (s, 2H), 6.34 (s, 2H), 6.55 (s, 2H), 6.96-7.01 (m, 2H), 7.35-7.42 (m, 2H). MS (70 eV); m/z (%): 348 (M+2, 100), 330 (36), 316 (94), 298 (34), 284. Anal. Calcd for C₂₂H₁₈O₄ : C, 76.28%; H, 5.24%; Found: C, 76.68%; H, 4.99%.

5,8-Dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione, (9). To a solution of 5,8-dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-diol, **8** (0.243 g, 0.70 mmol) in

ISSN 1551-7012 Page 101 [©]ARKAT USA, Inc.

CH₂Cl₂ (8 mL) a solution of (diacetoxyiodo)benzene (0.237 g, 0.73 mmol) in CH₂Cl₂ (8 mL) was added with stirring at room temperature. Stirring was continued for one h. The solution was concentrated to dryness and purified by column chromatography (silica gel) using a mixture of hexanes – ethyl acetate (5:1) as eluant to afford 0.21 g of **9** (yield 88%), mp 271-272 °C. 1 H - NMR δ 3.81 (s, 6H), 6.24 (s, 2H), 6.55 (s, 2H), 6.59 (s, 2H), 7.00-7.05 (m, 2H), 7.42-7.50 (m, 2H). 13 C-NMR δ 41.2, 56.3, 109.3, 124.5, 125.2, 133.4, 135.2, 144.1, 149.5, 152.7, 183.5 (C=O). MS (70 eV); m/z (%): 344 (M⁺, 100), 330 (40), 286 (25), 176. Anal. Calcd for C₂₂H₁₆O₄ : C, 76.73%; H 4.68%. Found C, 76.41%; H, 4.67%.

9,10-Dihydro-9,10- [1,2]benzenoanthracene-1,4,5,8-tetrone, (2). To a magnetically stirred solution of 5,8-dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione, **9** (0.73 g, 2.1 mmol) in CH₃CN (70 mL) at 0 $^{\circ}$ C a solution of ceric ammonium nitrate, CAN, (3.4 g, 6.2 mmol) in H₂O (60 mL) was added drop wise. Stirring was continued for two hours at room temperature, excess CH₃CN was removed in the rotary evaporator and the resulting solution was extracted with CH₂Cl₂ (3 x 40 mL). The solution was concentrated to dryness and purified by column chromatography (silica gel) using a mixture of hexanes-ethyl acetate (5:1) as eluant to afford 0.38 g of **2** (yield 57%), yellow crystals, mp 220 $^{\circ}$ C dec. 1 H -NMR δ 6.18 (s, 2H), 6.65 (s, 4H), 7.07-7.10 (m, 4H), 7.47-7.50 (m, 4H). 13 C-NMR δ 42.2, 125.5, 126.0, 135.5, 151.6, 182.2 (C=O). MS (70 eV); m/z (%): 314 (M⁺, 100), 286 (15), 258 (25), 232 (60), 208 (75) 176 (24). Anal. Calcd for C₂₀H₁₀O₄: C, 76.43%; H, 3.20%. Found C, 76.30%; H, 3.00%.

Oxidation of 8 with KBrO₃. A solution of 5,8-dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-diol, 8 (0.3 g, 0.96 mmol) in CH₃COOH (20 mL) was refluxed till the hydroquinone was dissolved. A solution of KBrO₃ (1.6 g, 9.4 mmol) in H₂O (10 mL) was added using a dropping funnel, followed by the addition of another 10 mL of H₂O and reflux was continued for 10 min. After cooling at rt the resulting solid was filtered and subjected to column chromatography (silica gel, hexanes-ethyl acetate, 5:1) to afford in order of eluance a) Dimethoxyquinone, 9 (0.17 g, 60% yield) b) 6-Bromo-5,8-dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione, (10), (0.037 g, yield 10%). ¹H NMR δ 3.81 (s, 3H), 3.85 (s, 3H), 6.15 (s, 1H), 6.19 (s, 1H), 6.62 (s, 2H), 6.78 (s, 1H), 6.92-7.08 (m, 2H), 7.42-7.50 (m, 2H). ¹³C NMR δ 41.1, 42.65, 56.20, 62.20, 113.5, 124.6, 124.7, 135.3,135.4, 143.3, 151.6, 183.2 (C=O) and c) diquinone 2 (0.046g, 15% yield).

Thiele-Winter preparation of 1,2,4,5,6,(7),8–hexacetoxy-9,10–dihydro-9,10-[1,2] benzenoa-nthracenes (or 1,2,4,5,6,(7),8-hexacetoxytriptycenes), (11). To a magnetically stirred solution of 9,10-dihydro-9,10- [1,2]benzenoanthracene-1,4,5,8-tetrone, 2 (0.38 g, 1.2 mmol) in acetic anhydride (65 mL) a catalytic amount (0.8 mL) of H₂SO₄ was added drop wise and stirring was continued for 24 h. The mixture was poured onto ice-water (200 mL), stirring was continued for one hour and the resulting solid was filtered, washed repeatedly with water and dried in a desiccator to afford 11 as off-white solid (0.64 g, yield 86%), mp 194-198 °C dec. The 1:1 ratio of the two isomers (11a and 11b) was estimated by integration of the peaks of the bridge protons in ¹H NMR (Figure 3).

ISSN 1551-7012 Page 102 [©]ARKAT USA, Inc.

Figure 3

Both bridge protons (H-1) in **11a** appear as a singlet at 5.50 δ , whereas in **11b** H-1 gives a singlet at 5.53 δ and H-2 a singlet at 5.45 δ . H-3 appears as two singlets for both isomers at 6.78 and 6.79 δ . The methyl groups give broad singlets at 2.23 and 2.40 (1:2) δ and the aromatic protons resonate at 7.01-7.06 (m) and 7.31-7.36 (m). MS (70 eV); m/z (%): 602 (M⁺, 33), 560 (37), 518 (25), 207 (50), 135 (100).

Attempts for hydrolysis of 11. All attempts of acid-hydrolysis of **11** to the corresponding hexahydroxy derivative **12** failed. In all cases (HCl acid of different concentration, CH₃OH as solvent, prolonged periods of reaction at room temperature, heating etc.) complex mixtures of partially hydrolyzed products were isolated. Sometimes even the presence of methoxy groups (probably from the solvent) were detected by ¹H-NMR spectroscopy in the products.

Complicated mixtures of products were also the results of hydrolysis with aqueous NaOH. In this case the only isolable product (after column chromatography in 10-15% yields) was **2-hydroxy-1,4-anthraquinone 14**, mp 238-241 °C, lit. ¹⁸ mp 243 °C. ¹H NMR δ 6.48 (s, 1H), 7.70 (m, 2H), 8.05 (m, 2H), 8.65 (s, 1H), 8.67 (s, 1H), 8.95 (s, br, 1H, OH).

Alternative preparation of 2-hydroxy-1,4-anthraquinone (14). To a magnetically-stirred solution of 1,4-dimethoxyanthracene (0.48 g, 2 mmol) in CH₃CN (50 mL) at 0 °C a solution of CAN (3.3 g, 6 mmol) in water (45 mL) was added, the ice bath was removed and stirring was continued for 2 hours. Excess CH₃CN was removed in the rotary evaporator and the resulting suspension was extracted with CH₂Cl₂ (3 x 50 mL). The solvent was evaporated to dryness and the residue was chromatographed on column (silica gel, hexanes-ethylacetate 5:1) to afford 0.264 g, 63% yield, of **1.4-anthraquinone**, mp 214-217 °C dec. lit. 19 219-223 °C dec. 1H –NMR δ 7.07 (s, 2H), 7.68-7.71 (m, 2H), 8.05-8.08 (m, 2H), 8.61 (s, 2H). MS (70 eV); m/z (%): 208 (M⁺, 60), 180 (75), 153 (95), 127 (100), 76 (66). To a magnetically-stirred solution of 1,4anthraguinone (0.26 g, 1.25 mmol) in acetic anhydride (40 mL) a catalytic amount (0.7 mL) of H₂SO₄ was added dropwise and stirring was continued for 30 min. The mixture was poured onto ice-water (100 mL), stirring was continued for an additional hour and the resulting solid was filtered, washed repeatedly with water and dried in a desiccator to afford 1,2,4triacetoxyanthracene (14a) (0.185 g, 42% yield), mp 188-190 °C, lit. 18 mp 191 °C. 1H –NMR δ 2.22 (s, 3H), 2.46 (s, 3H), 2.67 (s, 3H), 6.88 (s, 1H), 7.09-7.13 (m, 2H), 7.41-7.45 (m, 2H), 8.26 (s, 1H). To a magnetically-stirred solution of 15 (0.04 gr, 0.12 mmol) in CH₃OH (5 mL) a

ISSN 1551-7012 Page 103 [©]ARKAT USA, Inc.

solution of 20% NaOH (1 mL) was added and stirring was continued for 2 hours. The resulting solution was acidified with 20% HCl acid, poured onto water (10 mL) and the precipitated solid was filtered and dried to afford **2-hydroxy-1,4-anthraquinone 14** (0.015 g, 60%), in all respects identical to that isolated from the basic-hydrolysis of hexaacetoxytriptycenes **11**.

Preparation of 1,2,4,5,6,(7),8-hexahydroxy-9,10-dihydro-9,10-[1,2]benzenoanthracenes (or 1,2,4,5,6,(7),8-hexahydroxytriptycenes), (12). A 100 mL three-necked flask, equipped with a reflux condenser and a pressure-equalizing dropping funnel, was charged with a suspension of LiAlH₄ (0.33 g, 8.7 mmol) in anhydrous THF (10 mL) under Ar. A degassed solution of hexacetoxytriptycenes 11 (0.6 g, 1 mmol) in anhydrous THF (20 mL) was added from the dropping funnel at 0 °C with stirring, during a period of 30 min. The cooling bath was removed, the reaction mixture was allowed to reach rt and finally it was refluxed for 6 hours. After cooling the resulting mixture was carefully poured onto ice-H₂SO₄ (10%, 30 mL). The reaction flask was rinsed thoroughly with ether and the combined ether-THF suspension was filtered through a thick layer of celite. The organic solvents were removed with the rotary evaporator, the water suspension was extracted with ether (5 x 30 mL) and dried with Na₂SO₄. Ether was removed to afford 1,2,4,5,6,(7),8-hexahydroxytriptycenes **12** (0.15 g, 44%) mp > 300 °C. ¹H -NMR (CDCl₃+DMSO-d₆) δ both isomers give a complex set of singlets for bridge and aromatic protons (of the trihydroxy moieties) at 5.94, 6.02, 6.06, 6.08 (4H, total), 6.9 (m, 2H), 7.29 (m, 2H) . MS (70 eV); m/z (%): 350 (M⁺, 37), 332 (8), 224 (12), 210 (23), 196 (29) 155 (50), 126 (100). Anal. Calcd for C₂₀H₁₄O₆: C, 68.57%; H, 4.03%. Found C, 68.28%; H, 4.40%.

Preparation of 2,7-dioxido-3,6-di(phenyliodonio)-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone and 2,6-dioxido-3,7-di(phenyliodonio)-9,10-dihydro-9,10-[1,2]benzenoanthracene-**1,4,5,8-tetrone mixture** (15). A solution of (diacetoxyiodo)benzene (0.57 g, 1.76 mmol) in added dropwise to a magnetically-stirred CH₃OH (8 mL) was hexahydroxytriptycenes 12 (0.15 g, 0.44 mmol) at 0 °C. The ice-bath was removed and stirring was continued for one hour at room temperature. The orange precipitate was filtered, the methanolic filtrate was evaporated in vacuum, keeping the temperature as low as possible, and the oily remnant was triturated with ether to afford a second crop of the product. The combined solids were washed repeatedly with ether to afford 0.37 g (57% yield) of 15 as a red-orange powder, mp 120-122 °C dec., kept all the time in the refrigerator. Anal. Calcd for C₃₂H₁₆I₂O₆: C, 51.23%; H, 2.15%. Found C, 51.66%; H, 1.91%.

Triptycene bis-cyclopentenedione (16). A suspension of bis-ylide **15** (0.36 g, 0.48 mmol) in CH₃CN (12 mL) was refluxed for 4 h. The clear solution was evaporated to dryness and the residue was chromatographed on column (silica gel, hexanes-ethyl acetate 5:1 to 2:1) to afford, after iodobenzene extrusion, triptycene bis-cyclopentenedione **16** as yellowish crystals (0.01 g, 7%), mp 106-108 °C. 1 H –NMR δ 3.08 (d, J = 21 Hz, 1H), 3.16 (d, J = 21 Hz, 1H), 5.70 (s, 2H), 7.08-7.12 (m, 2H), 7.47-7.52 (m, 2H). 13 C-NMR δ 40.9, 45.9, 126.5, 142.7, 171.9, 190.5 MS (70 eV); m/z (%): 289 (M-1⁺, 7), 213 (60), 149 (78), 126 (100). Anal. Calcd for C₁₈H₁₀O₄ : C, 74.48%; H 3.47%. Found C, 74.92%; H, 3.64%.

ISSN 1551-7012 Page 104 [©]ARKAT USA, Inc.

References

- 1. (a) Hashimoto, M.; Tagaki, H.; Yamamura, K. *Tetrahedron Lett.* **1999**, 40, 6037. (b) Hashimoto, M.; Yamamura, K.; Yamane, J. *Tetrahedron* **2001**, 51, 10253.
- 2. Norvez, S. J. Org. Chem. 1993, 58, 2414.
- 3. (a) Wiehe, A.; Senge, M. O.; Kurreck, H. *Liebigs Ann./Recueil* **1997**, 1951. (b) Wiehe, A.; Senge, M. O.; Schäfer, A.; Speck, M.; Tannert, S.; Kurreck, H.; Röder, B. *Tetrahedron*, **2001**, *51*, 10089.
- 4. Scheib, S.; Cava, M. P.; Baldwin, J. W.; Metzer, R. M. J. Org. Chem. 1998, 63, 1198.
- 5. Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864.
- 6. Yang, J.-S.; Lee, C.-C.; Yau, S.-L.; Chang, C.-C.; Lee, C.-C.; Leu, J.-M. *J. Org. Chem.* **2000**, *65*, 871.
- 7. Yang, J.-S.; Lin, C.-S.; Hwang, C.-S. *Org. Lett.* **2001**, *3*, 889.
- 8. Yang, J.-S.; Liu, C.-P.; Lee, G.-H Tetrahedron Lett. 2001, 41, 7911.
- 9. Perchellet, E. M.; Magill, M. J.; Huang, X.; Brantis, C. E.; Hua, D. H.; Perchellet, J.-P. *Anti-Cancer Drugs* 1999, *10*, 749.
- 10. Xanthopoulou, N.J.; Kourounakis, A. P.; Spyroudis, S.; Kourounakis, P.N. *Eur. J. Med. Chem.*, accepted for publication.
- 11. Hua, D.H.; Tamura, M.; Huang, X.; Stephany, H, A.; Helfrich, B.A.; Perchellet, E.M., Sperfslage, B. J.; Perchellet, J-P.; Jiang, S.; Kyle, D. E.; Chiang, P.K. *J. Org. Chem.* **2002**, *67*, 2907.
- 12. Spyroudis, S. *Molecules* **2000**, *5*, 1291.
- 13. Spyroudis, S.; Xanthopoulou, N. J. Org. Chem. 2002, 67, 4612.
- 14. Iwamura, H.; Makino, K. J. Chem. Soc., Chem. Commun. 1978, 720.
- 15. Criswell, T. R.; Klanderman, B. H. J. Org. Chem. 1974, 39, 770.
- 16. Xanthopoulou, N. Ph. D. Thesis to be submitted at the University of Thessaloniki.
- 17. Papoutsis, I.; Spyroudis, S.; Varvoglis, A. Tetrahedron Lett. 1994, 35, 8449.
- 18. Fieser, L. J. Am. Chem. Soc. 1928, 50, 465.
- 19. Cava, M., D.; Deava, A. A.; Muth, K. J. Am. Chem. Soc. 1959, 81, 6458.

ISSN 1551-7012 Page 105 [©]ARKAT USA, Inc.