Facile synthesis of 4H-naphtho[2,3-e] derivatives of 1,3-thiazines and 1,3-selenazines and naphtho[2',3':4,5] derivatives of selenolo[2,3-b]pyridines and thieno[2,3-b]pyridines via 2,3-didehydronaphthalene

Ramadas Sathunuru and Ed Biehl*

Department of Chemistry, Southern Methodist University, Dallas, TX 75275
E-mail: ebiehl@smu.edu

(received 28 June 04; accepted 13 Aug 04; published on the web 25 Aug 04)

Abstract
Thiaazadienes (2a–e), selenoazadienes (6a–f), Barton selenium esters (8a–e) and Barton sulphur esters (10a–d) react with 2,3-didehydronaphthalene (4) generated from (phenyl)(3-trimethylsilyl)-2-naphthyljodonium triflate (3) at 0°C to give 4H-naphtho[2,3-e]-1,3-thiazines (5a–e), 4H-naphtho[2,3-e]-1,3-selenazines (7a–f), naphtho[2',3':4,5]selenolo[2,3-b]pyridines (9a–e) and naphtho[2',3':4,5]thieno[2,3-b]pyridines (11a–d).

Keywords: Benzyne cycloaddition, nucleophilic addition, 1,3-thiazines, selenolo[2,3-b]pyridines, thieno[2,3-b]pyridines

Introduction
Substituted naphthalenes and 1,4-naphthoquinones show a variety of biological activity, such as antihypotensive1,2, β-adrenergic antagonists3, Ca2+ channel blocker3, antitumour4, antifungal5–8 and antiviral.14 In the present study new fused naphthalenes are synthesized by the benzyne reaction starting from the selenaazadienes, thiaazadienes and Barton esters. Recently, benzyne was found to undergo 1,4 addition reactions with 2-pyridones9. These novel results suggested that the reaction of the corresponding selenium and sulfur derivatives, such as Barton esters with arynes under similar conditions, might be worthy of study. Earlier we have reported the 4H-1,3-benzoselenazines10, benzo[4,5]thieno[2,3-b]pyridines11 and benzo[4,5]selenolo[2,3-b]pyridines12 by the reaction of various benzynes with the respective selenium, sulfur containing Barton esters and selenoaazadienes.10 We report herein a facile synthesis of 4H-naphtho[2,3-b]1,3-thiazines (5a–e), 4H-naphtho [2,3-b]-1,3-selenazines (7a–f), naphtho[2',3':4,5]selenolo[2,3-b]pyridines (9a–e) and naphtho[2',3':4,5]thieno[2,3-b]pyridines (11a–d).
The required (phenyl)[(3-trimethylsilyl)-2-naphthyl]iodonium triflate (3) was prepared from 2,3-dibromonaphthalene.13 The thiaazabutadienes (2a–e)14 and the selenoazadienes (6a–f)15 were prepared by literature procedures. With the exception of thiazadine (2e) the thiaazadienes (2a–d) are new compounds and their % yields are shown in Scheme 1. The Barton selenium esters (8a–e) were prepared from 2-chloropyridines12 and the Barton sulfur esters (10a–d) were prepared by the Barton method.16

With the dienes on hand, the reactions listed in Scheme 2 were performed. The generation of 2,3-didehydronaphthalene (4) was carried out by simply adding Bu4NF to a solution of the precursor 3 at 0 °C in the presence of 1.5 equiv of the diene. As shown, thiaazadienes (2a–e) reacted with 4 to give 4H-naptho[2,3-b]-1,3-thiazines (5a–e) in 89-94% yields. Selenazadienes (6a–f) reacted with 4 to afford 4H-naptho[2,3-e]-1,3-selenazines (7a–f) in 85-92% yields. Similiarly, 4 reacted

\begin{equation}
\text{RRN-S-NH}_2 + (\text{CH}_3)_2\text{NCH(OCH}_3)\text{2} \rightarrow \text{RRN-S-N(N(CH}_3)_2} \text{Yield(%)}
\end{equation}

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a:</td>
<td>C\textsubscript{2}H\textsubscript{5}</td>
<td>C\textsubscript{2}H\textsubscript{5}</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b:</td>
<td>-(CH\textsubscript{2})\textsubscript{4}^-</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c:</td>
<td>-(CH\textsubscript{2})\textsubscript{5}^-</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d:</td>
<td>-CH-(CH\textsubscript{3})\textsubscript{2} (CH\textsubscript{3})\textsubscript{2}CH-</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e:</td>
<td>-(CH\textsubscript{2})\textsubscript{2}O(CH\textsubscript{2})\textsubscript{2}^-</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 1
Scheme 2

with Barton selenium esters (8a–e) supplying naphtho[2',3':4,5]selenolo[2,3-b]pyridines (9a–e) in 74-91% yields and with Barton sulfur esters (10a–d) to give naphtho[2',3':4,5]thieno[2,3-
b]-pyridines (11a–d) in 62–81% yields. The products were identified on the basis of H NMR and C NMR spectroscopy. Additionally, 2-(morpholin-4-yl)-4H-naphtho[2,3-b]-1,3-thiazine (5e) and 2-diethylamino-4H-naphtho[2,3-b]-1,3-selenazine (7b) were determined by single x-ray crystallography. An ORTEP drawing for 7b and 5e are shown in Figures 1 and 2, respectively.

Figure 1. ORTEP of compound (7b).

Figure 2. ORTEP of compound (5e).

Possible mechanisms for the reactions reported here are worthy of discussion. The reaction of benzyne (4) with the esters 8 and 10 giving 9 and 11, respectively, probably proceeds by the usual cycloaddition pathway previously reported. However, the reaction of 4 with thiaazabutadienes (2) and with selenoazadienes (6) to give 5 and 7 is worthy of discussion. We have shown that the reaction of selenoazadienes with benzyynes generated by the reaction of 2-trimethylsilylphenyl triflates with CsF at room temperature gave extremely polar compounds which LC/MS showed to be N-oxide derivatives. By adding NaBH₄, the desired 4H-1,3-benzoselenazines were obtained. We proposed a somewhat controversial mechanism involving the formation of a Diels-Alder adduct intermediate which could aromatize by the electron release from S and NR₂ displacing the NMe₂ anion. What is left behind is a reasonably stable aromatic.
cation which gets reduced by NaBH₄ giving the observed product. However, in this study we found that by generating benzyne (4) from the reaction of (phenyl)((3-trimethylsilyl)-2-naphthyl)iodonium triflate (3) with Bu₄NF, the desired products 5 and 7 are obtained without the aid of the NaBH₄ reducing agent. This dilemma is shown in Scheme 3.

Scheme 3

Thus, it is unlikely that the proposed reduction mechanism in Scheme 3 is operative. One of the referees of this paper suggested the possibility that the electrons in 12 flow the other way in which the heterocyclic ring is reduced to 14 and the dimethylamine moiety is oxidized to CH₃N=CH₂ (15). This possibility is illustrated in Scheme 4. A 1,3-hydride shift would lead to the observed product 7.

Scheme 4

Exactly the same process could apply to the reaction of 4 +2 going to 5. To date we have not been able to trap 15 and have insufficient information to support this mechanism. However, it appears to be a reasonable mechanism, and we are studying its validity.

In summary, we have synthesized a large number of naphthalene derivatives using 2,3-bis(trimethylsilyl)naphthalene with a PhI(OAc)₂/TfOH-reagent system which behaves as a highly efficient 2,3-didehydronaphthalene precursor. Compared with currently available aryne precursors, the hypervalent iodine reagent 3 not only generates arynes under neutral conditions at low temperatures but also reacts with dienes to give adducts in very good yields. This process represents a very powerful tool for the preparation of complex molecules, which might be difficult to prepare by any other present methodology.
Experimental Section

General Procedures. Melting points were taken on a Mel-Temp capillary apparatus and are uncorrected with respect to stem correction. 1H-, and 13C-NMR Spectra were recorded on a 400MHz Bruker AVANCE DRX-400 Multi-nuclear NMR spectrometer. Chemical shifts are reported in reference to TMS as internal standard. Elemental analyses were obtained from SMU Analytical Laboratories. HRMS analyses were provided by the Washington University Mass spectrometry Resource, an NIH Research Resource (Grant No. P41RR0954). Barton esters were stored in an amber bottle in a refrigerator. The glassware was heated overnight in an oven at 125°C prior to use. All the benzyne reactions were done under an atmosphere of dryO$_2$–free Ar via balloon.

General procedure for the synthesis of N1N1-diethyl-N2-(dimethylaminomethylidene)thiourea (2a)
Dimethylformamide acetal (1.93mL, 14.5 mmol) was added to a THF solution (30mL) of diethylthiourea (1a) (1.60g, 12.1 mmol). The reaction mixture was stirred at rt for 5h. The mixture was evaporated to dryness. The residue was purified by flash chromatography in silica gel with hexane: ethyl acetate (7:3) to give 2a 1.75g (77 %) as a light red color liquid; 1H NMR (400MHz, CDCl$_3$): δ 1.19 (t, J = 7.0Hz, CH$_3$), 1.29 (t, J = 7.1Hz, CH$_3$), 3.06 (s, CH$_3$), 3.15 (s, CH$_3$), 3.76 (q, J = 7.0Hz, CH$_2$), 4.01 (q, J = 7.0Hz), 8.81 (s, N=CH); 13C NMR (100MHz, CDCl$_3$): δ 12.7, 13.7, 35.8, 41.5, 44.4, 47.5, 162.3, 189.9; Anal. Calcd for C$_8$H$_{17}$N$_3$S: C, 51.30; H, 9.15; N, 22.43. Found C, 51.45; H, 9.26; N, 22.64.

N1N1- Dimethyl-N2-(pyrrolidinothiacarbonyl)formamidine (2b).
mp: 96–97 °C; 1H NMR (400MHz, CDCl$_3$): δ 1.94 (m, CH$_2$), 3.05 (s, CH$_3$), 3.16 (s, CH$_3$), 3.65 (t, J = 7.5Hz, CH$_2$), 3.89 (t, J = 7.3Hz, CH$_2$), 8.74 (s, N=CH); 13C NMR (100MHz, CDCl$_3$): δ 23.4, 24.61, 36.3, 40.7, 48.5, 53.3, 164.5, 184.8; Anal. Calcd for C$_8$H$_{15}$N$_3$S: C, 51.86; H, 8.16; N, 22.68. Found C, 51.38; H, 8.49; N, 22.87.

N1N1- Dimethyl-N2-(piperidinothiacarbonyl)formamidine (2c).
mp: 84–85 °C; 1H NMR (400MHz, CDCl$_3$): δ 1.57 (m, CH$_2$), 1.68 (m, CH$_2$), 3.06 (s, CH$_3$), 3.15 (s, CH$_3$), 4.02 (m, CH$_2$), 4.26 (m, CH$_2$) 8.82 (s, N=CH); 13C NMR (100MHz, CDCl$_3$): δ 25.1, 26.1, 26.6, 35.90, 41.5, 47.8, 51.4, 160.3, 189.7; Anal. Calcd for C$_9$H$_{17}$N$_3$S: C, 54.23; H, 8.60; N, 21.08. Found C, 54.17; H, 8.25; N, 21.16.

N1N1-Diisopropyl-N2-(dimethylaminomethylidene)thiourea (2d).
mp: 79–80 °C; 1H NMR (400MHz, CDCl$_3$): δ 1.22 (s, CH$_3$), 1.24 (s, CH$_3$), 1.48 (s, CH$_3$), 1.50 (s, CH$_3$), 1.59 (m, N-CH), 3.09 (s, CH$_3$), 3.15 (s, CH$_3$) 8.81 (s, N=CH); 13C NMR (100MHz, CDCl$_3$): δ 20.0, 22.3, 36.4, 41.4, 48.8, 53.9, 161.7, 190.8; Anal. Calcd for C$_{10}$H$_{21}$N$_3$S: C, 55.77; H, 9.83; N, 19.51. Found C, 55.86; H, 9.58; N, 19.67.

General procedure for synthesis of diethylamino-4H-naphtho[2,3-e]-1,3-thiazine (5a)
To a solution of 3 (0.20g, 0.39 mmol), and N1,N1-diethyl-N2-(dimethylaminomethylidene)thiourea (2a) (0.10g, 0.53 mmol) in dichloromethane (10 mL) was added a tetrahydrofuran solution of Bu$_4$NF (1M,
0.57 mL) at 0°C. After the mixture was stirred for 30 min at 0 °C, water was added and the product was extracted with dichloromethane. After evaporation of the solvent, the product was separated by column chromatography on silica gel (hexane/ethyl acetate 8:2) to give diethylamino-4H-naphtho[2,3-e]-1,3-thiazine (5a) 0.93g (93%) as a pale yellow solid, mp: 74–75 °C: 1H NMR (400MHz, CDCl3) δ 1.23 (t, J = 6.0Hz, 6H), 3.56 (q, J = 6.2Hz, 4H), 4.62 (s, 2H), 7.47 (m, 2H), 7.85 (bs, 2H); 13C NMR (CDCl3): δ 14.1, 44.3, 54.27, 124.9, 125.9, 126.3, 126.4, 127.3, 128.1, 130.4, 132.9, 133.0, 134.1, 156.6. Anal. Calcd for C16H18N2S: C, 71.07, H, 6.71, N, 10.36. Found: C, 71.19, H, 6.70, N, 10.30.

2-(Pyrrolidin-1-yl)-4H-naphtho[2,3-e]-1,3-thiazine (5b). Light brown solid, mp: 86–87 °C: 1H NMR (400MHz, CDCl3) δ 1.97 (m, 4H), 3.58 (m, 4H), 4.63 (s, 2H), 7.46 (m, 2H), 7.76 (m, 2H), 7.82 (s, 2H); 13C NMR (100MHz, CDCl3): δ 25.7, 48.7, 54.2, 125.1, 125.7, 126.3, 126.4, 127.3, 128.1, 130.0, 132.9, 133.0, 133.4, 154.7. Anal. Calcd for C16H16N2S: C, 71.61, H, 6.01, N, 10.44. Found: C, 71.55, H, 6.04, N, 10.65.

2-(Piperidin-2-yl)-4H-naphtho[2,3-e]-1,3-thiazine (5c). Yellow solid, mp: 106–107 °C: 1H NMR (400MHz, CDCl3) δ 1.60 (m, 6H), 3.57 (m, 4H), 4.62 (s, 2H), 7.46 (m, 2H), 7.77 (m, 2H), 7.81 (s, 1H); 13C NMR (100MHz, CDCl3): δ 25.3, 26.1, 49.2, 54.4, 124.5, 126.0, 126.1, 126.4, 127.3, 128.1, 130.3, 132.9, 133.0, 133.9, 158.5. Anal. Calcd for C17H18N2S: C, 72.30, H, 6.42, N, 9.92. Found: C, 72.24, H, 6.52, N, 9.72.

2-Diisopropylamino-4H-naphtho[2,3-e]-1,3-thiazine (5d). Yellow solid, mp: 88–89 °C: 1H NMR (400MHz, CDCl3) δ 1.32 (t, J = 6.5Hz, 12H), 4.18 (m, 2H), 4.62 (s, 2H), 7.31 (s, 1H), 7.48 (m, 2H), 7.76 (s, 1H); 13C NMR (100MHz, CDCl3): δ 21.9, 22.1, 49.4, 53.8, 54.6, 125.0, 126.0, 126.4, 127.4, 128.2, 129.8, 134.6, 136.5, 152.6. Anal. Calcd for C18H22N2S: C, 72.44, H, 7.43, N, 9.29. Found: C, 72.31; H, 7.54; N, 9.38.

2-(Morpholin-4-yl)-4H-naphtho[2,3-e]-1,3-selenazine (5e). Colorless solid, mp: 123–124 °C: 1H NMR (400MHz, CDCl3) δ 3.58 (m, 4H), 3.76 (m, 4H), 4.65 (d, J = 5.3Hz, 2H), 7.48 (m, 2H), 7.76 (s, 1H), 7.83 (m, 2H), 7.99 (s, 1H); 13C NMR (100MHz, CDCl3): δ 48.5, 54.3, 67.0, 125.2, 126.1, 126.5, 126.6, 127.3, 128.1, 129.4, 133.0, 133.1, 133.3, 158.8. Anal. Calcd for C16H16N2Se: C, 67.58, H, 5.87, N, 9.85. Found: C, 67.78, H, 5.69; N, 9.73.

2-(Pyrrolidin-1-yl)-4H-naphtho[2,3-e]-1,3-selenazine (5a). Light yellow solid, mp: 87–89 °C: 1H NMR (400MHz, CDCl3) δ 1.96 (m, 4H), 3.54 (m, 4H), 4.58 (s, 2H), 7.47 (m, 2H), 7.76 (s, 1H); 13C NMR (100MHz, CDCl3): δ 21.9, 22.1, 49.4, 53.8, 54.6, 125.0, 126.0, 126.4, 127.2, 128.2, 129.8, 134.6, 136.5, 152.6. Anal. Calcd for C16H16N2Se: C, 60.95, H, 5.12, N, 8.89. Found: C, 61.09, H, 5.32, N, 8.85.

2-Diethylamino-4H-naphtho[2,3-e]-1,3-selenazine (5b). Brown solid, mp: 62–63 °C: 1H NMR (400MHz, CDCl3) δ 1.18 (t, J = 6.8Hz, 6H), 3.50 (q, J = 6.6Hz, 4H), 4.56 (d, J = 6.6Hz, 2H), 7.46 (m, 2H), 7.80 (s, 1H), 7.83 (m, 2H), 7.98 (s, 1H); 13C NMR (100MHz, CDCl3): δ 25.5, 49.5, 58.0, 125.7, 126.3, 126.4, 127.2, 128.2, 128.5, 133.2, 133.8, 153.0. Anal. Calcd for C16H18N2Se: C, 60.57, H, 5.72, N, 8.83. Found: C, 60.88, H, 5.88, N, 8.96.

2-(Piperidin-2-yl)-4H-naphtho[2,3-e]-1,3-selenazine (5c). Yellow solid, mp: 93–94 °C: 1H NMR (400MHz, CDCl3) δ 1.59 (m, 4H), 3.55 (m, 4H), 4.59 (s, 2H), 7.47 (m, 2H), 7.76 (m, 2H),
7.82 (s, 1H), 7.99 (s, 1H); \(^{13}\)C NMR (100MHz, CDCl\(_3\)): \(\delta\) 26.1, 50.0, 58.1, 125.6, 126.3, 126.4, 127.2, 128.2, 128.7, 128.8, 133.2, 134.2, 145.9, 157.3. Anal. Calcd for C\(_{17}\)H\(_{18}\)N\(_2\)Se: C, 62.01, H, 5.51, N, 8.51. Found: C, 62.18, H, 5.52, N, 8.47.

2-Diisopropylamino-4\(H\)-naphtho[2,3-e]-1,3-selenazine (7d). Yellow solid, mp: 110–111 °C: \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta\) 1.32 (t, \(J = 6.7\) Hz, 12H), 4.06 (dd, \(J = 13.3, 6.6\) Hz, 2H), 4.56 (s, 2H), 7.47 (dd, \(J = 6.6, 3.3\)Hz, 2H), 7.77 (m, 2H), 7.83 (s, 1H), 8.00 (s, 1H); \(^{13}\)C NMR (100MHz, CDCl\(_3\)): \(\delta\) 21.5, 21.8, 50.1, 50.3, 58.0, 125.3, 126.2, 127.2, 128.2, 128.8, 129.6, 133.2, 134.5, 153.1. Anal. Calcd for C\(_{18}\)H\(_{22}\)N\(_2\)Se: C, 62.60, H, 6.42, N, 8.11. Found: C, 62.70, H, 6.57, N, 8.08.

2-(Morpholin-4-yl)-4\(H\)-naphtho[2,3-e]-1,3-selenazine (7e). Colorless solid, mp: 122–123 °C: \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta\) 3.56 (m, 4H), 3.74 (m, 4H), 4.62 (s, 2H), 7.30 (m, 2H), 7.49 (s, 1H), 7.80 (m, 2H), 7.99 (s, 1H); \(^{13}\)C NMR (100MHz, CDCl\(_3\)): \(\delta\) 49.3, 58.0, 67.0, 125.8, 126.5, 126.6, 127.2, 127.9, 128.2, 128.8, 133.2, 133.6, 145.9, 157.7. Anal. Calcd for C\(_{16}\)H\(_{16}\)N\(_2\)OSe: C, 58.01, H, 4.87, N, 8.46. Found: C, 58.18; H, 4.62, N, 8.26.

2-Dimethylamino-4\(H\)-naphtho[2,3-e]-1,3-selenazine (7f). Yellow solid, mp: 65–67 °C: \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta\) 3.10 (s, 6H), 4.58 (s, 2H), 7.47 (dd, \(J = 6.0, 3.1\)Hz, 2H), 7.77 (m, 2H), 7.83 (s, 1H), 7.99 (s, 1H); \(^{13}\)C NMR (100MHz, CDCl\(_3\)): \(\delta\) 40.4, 58.1, 125.6, 126.3, 126.4, 127.2, 128.5, 128.6, 133.2, 133.8, 156.7. Anal. Calcd for C\(_{14}\)H\(_{14}\)N\(_2\)Se: C, 58.14, H, 4.88, N, 9.69. Found: C, 58.35, H, 4.97, N, 9.45.

General procedure for synthesis of naphtho[2',3':4,5]selenolo(2,3-b)pyridine (9a)

To a solution of 3 (0.20 g, 0.39 mmol) and a Barton ester (8a, 0.12 g, 0.57 mmol) in dichloromethane (10 mL) was added a tetrahydrofuran solution of Bu4NF (1M, 0.57mL) at 0 °C, and the mixture was stirred for 30 min. Water was added and the resulting mixture was extracted with CH\(_2\)Cl\(_2\). After evaporation of the solvent, the product was purified by column chromatography on silica gel (hexane : ethyl acetate 9:1) to yield 0.91g, (91%) of a colorless liquid identified as naphtho[2',3':4,5]selenolo[2,3-b]pyridines (9a). \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta\) 6.73 (d, \(J = 8.0\)Hz, 1H), 7.00 (dd, \(J = 4.8, 0.9\) Hz, 1H), 7.32 (dd, \(J = 7.9, 2.2\)Hz, 1H), 7.56 (m, 1H), 7.81 (d, \(J = 7.4\)Hz, 1H), 7.91 (d, \(J = 7.0\)Hz, 1H), 8.13 (s, 1H), 8.33 (s, 1H) and 8.46 (t, \(J = 4.67, 1H\)). \(^{13}\)C NMR (100MHz, CDCl\(_3\)): \(\delta\) 120.4, 123.9, 127.5, 127.6, 127.9, 128.52, 130.7, 133.1, 134.9, 137.0, 137.2, 139.4, 144.0, 150.1, 161.5. HRMS (m/z): Calcd for C\(_{15}\)H\(_{9}\)NSe: 282.9900. Found: 282.9896.
9.0 Hz, 1H), 7.91 (dd, J = 2.9, 2.2 Hz, 1H), 8.13 (s, 1H) and 8.32 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 21.4, 121.8, 124.6, 127.3, 127.4, 127.9, 128.5, 130.8, 133.7, 134.8, 137.1, 139.2, 143.9, 148.4, 149.7, 160.8. HRMS (m/z): Calcd for C$_{16}$H$_{11}$NSe: C, 297.0143. Found: 297.0153.

3- Methylnaptho[2',3':4,5]selenolo[2,3-b]pyridine (9d). Colorless liquid. 1H NMR (400 MHz, CDCl$_3$) δ 2.28 (s, CH$_3$), 6.67 (d, $J = 8.1$ Hz, 1H), 7.15 (dd, $J = 2.2$, 1.9 Hz, 1H), 7.53–7.58 (m, 2H), 7.78 (t, $J = 6.9$ Hz, 1H), 7.90 (t, $J = 8.7$ Hz, 1H), 8.11 (s, 1H) and 8.30 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 18.3, 123.8, 127.4, 127.4, 127.8, 128.5, 120.0, 131.2, 133.0, 134.9, 137.0, 137.9, 139.0, 143.9, 150.5, 157.3. HRMS (m/z): Calcd for C$_{16}$H$_{11}$NSe: 297.0176. Found: 297.0186.

3-Trifluoromethylnaphtho[2',3':4,5]selenolo[2,3-b]pyridine (9e). Colorless solid. mp. 190–191 °C; 1H NMR (400 MHz, CDCl$_3$) δ 6.63 (d, $J = 8.5$ Hz, 1H), 7.14 (d, $J = 8.6$ Hz, 1H), 7.44 (m, 1H), 7.62 (m, 1H), 8.11 (bs, 1H), 8.19 (bs, 1H), 8.29 (bs, 1H) and 8.65 (bs, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 122.7, 125.7, 128.0 (q, $J = 256.3$ Hz), 128.7 (q, $J = 3.8$ Hz), 130.2, 131.7, 133.5, 134.8 (q, $J = 3.8$ Hz), 135.07 (q, $J = 35.1$ Hz), 136.2, 138.0, 140.0, 143.9, 158.5, 170.5. HRMS (m/z): Calcd for C$_{16}$H$_8$F$_3$NSe: 350.9893. Found: 350.9890.

Naphtho[2',3':4,5]thieno[2,3-b]pyridines (11a). Colorless solid, mp 190–191 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (dd, $J = 6.3$, 4.8 Hz, 1H), 7.94 (d, $J = 7.4$ Hz, 1H), 8.00 (d, $J = 7.8$ Hz, 1H), 8.31 (s, 1H), 8.45 (dd, $J = 7.8$, 0.9 Hz, 1H), 8.65 (s, 1H) and 8.66 (m, 1H). 13C NMR (CDCl$_3$): δ 120.0, 121.3, 121.5, 125.9, 126.9, 127.6, 128.8, 129.4, 129.7, 131.3, 132.7, 133.3, 136.2, 149.4, 163.3. HRMS (m/z): Calcd for C$_{15}$H$_9$F$_3$NS: 235.0456. Found: 235.0459.

4-Methylnaphtho[2',3':4,5]thieno[2,3-b]pyridine (11b). Colorless solid, mp 165 °C: 1H NMR (400 MHz, CDCl$_3$) δ 3.01 (s, CH$_3$) 7.21 (d, $J = 4.6$ Hz, 1H), 7.53–7.61 (m, 2 H), 7.94 (d, $J = 7.7$ Hz, 1H), 8.06 (d, $J = 7.8$ Hz, 1H), 8.39 (bs, 1H), 8.65 (s, 1H) and 8.66 (m, 1H). 13C NMR (CDCl$_3$): δ 22.3, 121.2, 122.6, 125.0, 125.7, 126.9, 127.2, 128.2, 129.1, 131.3, 132.4, 133.9, 136.2, 144.1, 148.4, 163.3. HRMS (m/z): Calcd for C$_{16}$H$_{11}$NS: 249.0612. Found: 249.0615.

3-Nitronaphtho[2',3':4,5]thieno[2,3-b]pyridine (11c). Colorless solid, mp 181–182 °C: 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (m, 2H), 7.77 (dd, $J = 9.1$, 2.1 Hz, 1H), 7.93 (d, $J = 7.5$ Hz, 1H), 7.97 (d, $J = 7.6$ Hz, 1H), 8.04 (d, $J = 7.7$ Hz, 1H), 8.33 (s, 1H), 8.51 (d, $J = 4.7$ Hz, 1H) and 8.72 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 119.9, 121.6, 124.4, 127.9, 128.4, 128.5, 128.8, 131.2, 131.2, 134.4, 134.7, 136.9, 142.0, 162.5. HRMS (m/z): Calcd for C$_{15}$H$_8$NO$_2$S: 280.0306. Found: 280.0303.

3-Methylnaphtho[2',3':4,5]thieno[2,3-b]pyridine (11d). Colorless solid, mp 146–147 °C: 1H NMR (400 MHz, CDCl$_3$) δ 2.55 (s, CH$_3$), 7.53–7.59 (m, 2H), 7.94 (d, $J = 4.7$, 1.2 Hz, 1H), 8.03 (d, $J = 7.3$ Hz, 1H), 8.28 (d, $J = 1.0$ Hz, 1H), 8.30 (s, 1H), 8.50 (d, $J = 1.5$ Hz, 1H) and 8.58 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 18.9, 121.2, 121.5, 125.8, 126.8, 127.5, 128.7, 129.5, 129.6, 129.9, 131.3, 132.7, 133.2, 136.7, 150.2, and 160.3. HRMS (m/z): Calcd for C$_{16}$H$_{11}$NS: 249.0612. Found: 249.0611.
Acknowledgements

This work was supported in part by grant from the Welch Foundation, Houston, TX.

References