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Abstract 
Various 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 are obtained by alkylation of the 
methyl carbonate of 2,3-dihydro-1,4-benzodioxin-2-ylideneethanol 5 with various carbon 
nucleophiles in the presence of a palladium complex. Altough the yields in alkytion products are 
good in the case of a non–bulky nucleophile, formation of the diene 7 was generally observed 
when a bulky nucleophile was used. 
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Introduction 
 
Compounds containing 1,4-benzodioxin and 1,4-benzodioxan structures have attracted 
considerable interest in recent years. This is mainly due to the interesting properties of these 
compounds. Some of them act as α- or β-blocking agents and could be used in antidepression or 
antihypertension therapy.1–5 Others have antihyperglycemic properties6 or act as inhibitors of 5-
lipoxygenase.7 The 1,4-benzodioxan frame is also found in a variety of biological active natural 
products.8–11 It is also to be noticed that these compounds are useful intermediates in a variety of 
synthetic transformations.12–14 

There are many approaches for the synthesis of substituted 1,4-benzodioxins,15–20 even in an 
asymmetric way.20,21 We have recently described the preparation of various 2,3-dihydro-2-
ylidene-1,4-benzodioxins via a palladium–catalyzed condensation of benzene-1,2-diol with 
different propargylic carbonates.22 Among the prepared heterocyclic compounds, we expected 
that tert-butyldimethyl-[(2,3-dihydro-1,4-benzodioxin-2-ylidene)ethoxy]silane 3, obtained by 
palladium condensation of benzene-1,2–diol 1 with propargylic carbonate 2, could be a valuable 
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starting material for the preparation of 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins. We 
described in this paper preliminary results in this field.  

 
 

Results and Discussion 
 
Cyclization of benzene-1,2-diol 1 with carbonate 223 was performed  in THF at room 
temperature in the presence of 2.5 mol% Pd2(dba)3 and 10 mol % dppb or 1,4-
bis(diphenylphosphino)butane to afford after column chromatography 2,3-dihydro-1,4-
benzodioxin derivative 3 in 67% yield (Scheme 1). Desilylation of compound 3 performed in 
THF as the solvent in the presence of tetrabutylammonium bromide trihydrate gave 2,3-dihydro-
1,4-benzodioxin-2-ylideneethanol 4 in 95% yield after column chromatography. Carbonate 5 was 
obtained in 95% yield after column chromatography by condensation of this alcohol 4 with 
methyl chloroformate in CH2Cl2 in the presence of pyridine and dimethylaminopyridine. 
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Scheme 1 
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The reaction of various nucleophiles with this carbonate 5 was performed in THF at room 
temperature in the presence of 2.5 mol % Pd2(dba)3 and 10 mol % dppb. The results are 
summarized in Table 1. 
 
Table 1. Palladium–catalyzed reaction of NuH with allylic carbonate 5 

Entry Nucleophile NuH Yield % compound 6 Yield % compound 7
1 CH2(CO2CH3)2 67 11 
2 CH2(COCH3)2 53 33 
3 CH(CH3)(CO2CH3)2 6 15 
4 CH2(COCH3)(CO2C2H5) 61 18 
5 C(NHCOCH3)(CO2CH3)2 0 24 

 
Dimethyl malonate (Table 1, entry 1) and acetylacetone (Table 1, entry 2) reacted with 

carbonate 5 to give after column chromatography the alkylated 2,3-dihydro-2-vinyl-benzo-1,4-
dioxins 6a and 6b in 67 and 53% yield, respectively. The formation of 2-vinylbenzo-1,4-dioxine 
7 was also observed in 11 and 33% yield, respectively. When dimethyl methylmalonate was used 
as the nucleophile (Table 1, entry 3), the formation of the alkylated compound 6c was observed 
in quite low yield (6%) together with diene 7 (15%). The use of dimethyl acetamidomalonate as 
the nucleophile (Table 1, entry 5) afforded only the unsaturated compound 7 in 24% yield, with 
no trace of the corresponding alkylated compound. 

Finally reaction of carbonate 5 with ethyl acetoacetate as the nucleophile gave the alkylated 
product 6d in 61% yield as a mixture of the two diastereoisomers in a ratio 66:34, together with 
the diene 7 in 18% yield (Table 1, entry 4). 

The formation of compounds 6 and 7 could be explained according to Scheme 2. The first 
step is the formation of the η3-allyl intermediate A by oxidative addition of the palladium 
complex on compound 5. One possibility is the generation of the nucleophile by abstraction of a 
hydrogen from Nu-H by CH3O-. The attack of the nucleophile on the η3-allyl intermediate A 
occured not at the less hindered termini, but at the more electrophilic termini of this intermediate 
affording compound 6 bearing a quaternary carbon center. This regioselectivity is in agreement 
with previous studies on η3-allyl intermediates bearing an oxygen atom on one of the termini of 
the η3-allyl system.24–26 It is to be noticed that this alkylation reaction is very sensitive to the 
bulkiness of the nucleophile; the more bulky the nucleophile is (dimethyl methylmalonate, 
dimethyl acetamidomalonate), the lowest is the chemical yield in the alkylated product.  

The formation of the diene 7 could be explained by a β-hydrogen elimination from the 
intermediate A, leading to compound 7 and the formation of H(CH3O)Pd(dppb), affording 
Pd(dppb) via a reductive elimination of CH3OH.27 It seems that there is a competition between 
these two pathways.  



Issue in Honor of Prof. Marcial Moreno-Mañas ARKIVOC 2002 (v) 102-109 

ISSN 1424-6376 Page 105 ©ARKAT USA, Inc 

O

O

OCO2Me

5

O

O

Pd+L2

CH3O-

NuH

O

O

6

Nu

O

O

7

β-H elimin.

A  
 
Scheme 2 

Mechanism of formation of compounds 6 and 7 
 
 

Conclusions 
 
In conclusion, we have shown that various 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 
bearing a quaternary carbon could be very easily obtained from tert-butyldimethyl-[(2,3-dihydro-
1,4-benzodioxin-2-ylidene)ethoxy]silane 4 via a palladium– catalyzed alkylation reaction of the 
corresponding carbonate with various carbon– nucleophiles. However the chemical yields are 
strongly dependent on the bulkiness of the nucleophile, with the preferential formation of a diene 
when this nucleophile is too bulky. Work is actually in progress in our group in order to prepare 
chiral 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 via the use of chiral ligands. 

 
 

Experimental Section 
 
General Procedures. All manipulations involving palladium catalysis were performed in 
Schlenk tubes under a nitrogen atmosphere. Unless otherwise stated, the materials were 
commercial samples; propargylic carbonate 2 was prepared as previously described.23 All 
organic solvents were of analytical quality and used as purchased. Solvents mixtures are defined 
by volume ratios (v/v). Tetrahydrofuran was distilled from sodium/benzophenone. All 1H– and 
13C–NMR spectra were recorded on a Brücker AM 300 spectrometers in CDCl3. Chemical shifts 
are reported on the δ scale with the reference to tetramethylsilane or CDCl3 as the internal 
standard and the coupling constants J are given in Hz. The IR–spectra were recorded on a 
Perkin–Elmer 681 instrument. Tin–layer chromatography was performed using Merck silica gel 
60 F254 precoated aluminium plates, 0.2 mm thickness. Visualisation was by UV or by spraying 
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with 10% sulphuric acid and then heating. Column chromatography was carried out using Merck 
silica gel (Kieselgel 60, 70–230 mesh). 
 
(Z)-tert-Butyldimethyl-[(2,3-dihydro-1,4-benzodioxin-2-ylidene)ethoxy]silane (3). A mixture 
of Pd2(dba)3 (20.8 mg, 2.2 x 10-2 mmol), in THF (7 mL), was stirred under a nitrogen atmosphere 
at room temperature for 30 min. This catalyst solution was added to a mixture of benzene-1,2-
diol 1 (100 mg, 0.9 mmol) and carbonate 2 (284 mg, 1.1 mmol). The resulting solution was 
stirred at room temperature for 24 h. The solvent was evaporated and the residue 
chromatographed over silica (Rf = 0.24, petroleum ether/EtOAc 100:1) to give 196 mg of  3 as an 
oil (yield 67%);1H–NMR δ 7.10–6.80 (4H, m, Harom), 4.91 (1H, t, J = 6.3, =CH-CH2), 4.47 (2H, 
s, 3–H), 4.47 (2H, d, J = 6.3, =CH-CH2), 0.88 (9H, s, CH3), 0.12 (6H, s, CH3); 13C–NMR δ 144.0 
(2–C), 143.2 (Carom), 142.6 (Carom), 122.3 (Carom), 122.2 (Carom), 117.4 (Carom), 116.6 (Carom), 
107.7 (=CH-CH2), 65.1 (3–C), 56.6 (CH2OSi), 26.1 (CMe3), 18.4 (CMe3), –5.1 (SiMe); IR ν 
3060, 3040, 2950, 2920, 2880, 2850, 1690, 1590, 1480, 1460, 1250 cm–1. Anal. Calcd for 
C16H24O3Si: C, 65.72; H, 8.28. Found: C, 65.39; H, 8.61. 
(Z)-2,3-Dihydro-1,4-benzodioxin-2-ylideneethanol (4). A solution of compound 3 (2.57 g, 9 
mmol) and Bu4NBr.3H2O (4.60 g, 18 mmol) in tetrahydrofuran (80 mL) was stirred at 25 °C for 
1 h. After evaporation of the solvent, the residue was diluted with diethyl ether (100 mL), and the 
ethereal solution was washed three times with a saturated aqueous solution of sodium chloride 
(3x40 mL), and dried over sodium sulfate. Chromatography (Rf = 0.24, petroleum ether/EtOAc 
4:3) of the residue obtained after evaporation of the solvent gave 1.49 g of compound 4 (yield 
95%); oil; 1H–NMR δ 7.10–6.80 (4H, m, Harom), 4.93 (1H, t, J = 7.0, =CH-CH2), 4.44 (2H, s, 3–
H), 4.38 (2H, d, J = 7.0, =CH-CH2), 2.65 (1H, bs, OH); 13C–NMR δ 144.5 (2–C), 143.9 (Carom), 
142.4 (Carom), 122.5 (Carom), 122.4 (Carom), 117.4 (Carom), 116.6 (Carom), 106.7 (=CH-CH2), 65.9 
(3–C), 56.8 (CH2OH); IR ν 3350, 3060, 3040, 2940, 2920, 2850, 1690, 1590, 1490, 1250 cm–1. 
These values are in agreement with the literature.28 
Carbonic acid (Z)-(2-benzo[1,4]dioxin-2-ylidenethyl) ester methyl  ester (5). To a stirred 
solution of the alcohol 4 (360 mg, 2 mmol), dimethylaminopyridine (50 mg, 0.4 mmol), and 
pyridine (632 mg, 8 mmol), in CH2Cl2 (10 mL) at 0 °C under argon was slowly added methyl 
chloroformiate (756 g, 8 mmol). After being stirred for 24 h at room temperature, the solution 
was hydrolyzed with a saturated aqueous solution of copper sulfate (10 mL), and extracted three 
times with diethyl ether (3x20 mL). The ethereal solution was washed with a saturated aqueous 
solution of copper sulfate (10 mL), and dried over sodium sulfate. Evaporation of the solvent 
followed by column chromatography (Rf = 0.66, petroleum ether/EtOAc 4:1) of the residue gave 
448 mg of compound 5 as an oil (yield 95%); 1H–NMR δ 7.10–6.80 (4H, m, Harom), 5.00–4.87 
(3H, m, =CH-CH2, =CH-), 4.45 (2H, s, 3–H), 3.80 (3H, s, CH3); 13C–NMR δ 155.8 (CO), 147.0 
(2–C), 143.9 (Carom), 142.2 (Carom), 122.7 (Carom), 122.4 (Carom), 117.4 (Carom), 116.7 (Carom), 
100.7 (=CH-CH2), 64.8 (3–C), 61.0 (=CH2CH2O), 54.8 (CH3); IR ν 3060, 3040, 3020, 2990, 
2950, 2890, 2850, 1750, 1690, 1590, 1490, 1450, 1250 cm–1. Anal. Calcd for C12H12O5: C, 
60.00; H, 5.12. Found: C, 60.63; H, 5.16. 
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Alkylation of carbonic acid (Z)-(2-benzo[1,4]dioxin-2-ylidenethyl) ester methyl ester. To a 
stirred solution of carbonate 5 (104 g, 0.44 mmol) and nucleophile (0.53 mmol) in THF (7 mL) 
at 25 °C under argon was  added  the catalyst solution obtained by stirring under argon for 0.5 h 
Pd2(dba)3 (10.4 mg, 1.1 x 10-2 mmol) and dppb (19.4 mg, 4.6 x 10-2 mmol) in THF (7 mL). After 
being stirred for 24 h at room temperature, the solvent was evaporated and the residue purified 
by column chromatography to give the alkylated compound 6. 
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)malonic acid dimethyl ester (6a). Oil; yield 
69%; Rf = 0.20 (petroleum ether/AcOEt 15:1); 1H–NMR δ 7.00–6.80 (4H, m, Harom), 6.26 (1H, 
dd, J = 17.3, 11.0, -CH=), 5.49 (1H, dd, J = 17.3, 0.7, =CH2), 5.38 (1H, dd, J = 11.0, 0.7, =CH2), 
4.56 (1H, d, J = 11.4, 3–H), 4.15 (1H, d, J = 11.4, 3–H), 4.01 (1H, s, -CH<), 3.76 (3H, s, CH3), 
3.72 (3H, s, CH3); 13C–NMR δ 166.9 (CO), 166.5 (CO), 142.5 (Carom), 141.7 (Carom), 133.6 (-
CH=), 122.2 (Carom), 121.8 (Carom), 118.9 (=CH2), 117.7 (Carom), 117.2 (Carom), 76.1 (2–C), 68.1 
(3–C), 55.5 (-CH<), 52.8 (CH3), 52.6 (CH3); IR ν 3080, 3040, 3020, 2950, 2920, 2870, 2840, 
1750, 1645, 1595, 1490, 1430, 1255 cm–1. Anal. Calcd for C15H16O6: C, 61.62; H, 5.52. Found: 
C, 61.89; H, 5.55. 
3-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)pentane-2,4-dione (6b). Oil; yield 53%; Rf = 
0.24 (petroleum ether/AcOEt 10:1); 1H–NMR δ 7.00–6.80 (4H, m, Harom), 6.25 (1H, dd, J = 17.3, 
11.0, -CH=), 5.51 (1H, dd, J = 17.3, 1.1, =CH2), 5.35 (1H, dd, J = 11.0, 1.1, =CH2), 4.36 (1H, d, 
J = 11.6, 3–H), 4.30 (1H, s, -CH<), 3.95 (1H, d, J = 11.6, 3–H), 2.29 (3H, s, CH3), 2.21 (3H, s, 
CH3); 13C–NMR δ 202.9 (CO), 202.7 (CO), 143.0 (Carom), 141.6 (Carom), 133.8 (-CH=), 122.8 
(Carom), 122.4 (Carom), 118.9 (=CH2), 118.0 (Carom), 117.8 (Carom), 77.5 (2–C), 69.2 (3–C), 68.0 (-
CH<), 32.8 (CH3), 32.5 (CH3); IR ν 3080, 3030, 2990, 2950, 2910, 2870, 1720, 1640, 1590, 
1490, 1460, 1250 cm–1. Anal. Calcd for C15H16O4: C, 69.20; H, 6.20. Found: C, 69.43; H, 6.22. 
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)-2methylmalonic acid dimethyl ester (6c). Oil; 
yield 6%; Rf = 0.30 (petroleum ether/AcOEt 15:1); 1H–NMR δ 7.30–6.80 (4H, m, Harom), 6.07 
(1H, dd, J = 17.1, 10.9, -CH=), 5.29 (1H, dd, J = 10.9, 1.0, =CH2), 5.20 (1H, dd, J = 17.1, 1.0, 
=CH2), 4.80 (1H, d, J = 11.2, 3–H), 4.32 (1H, d, J = 11.2, 3–H), 3.73 (3H, s, CH3), 3.71 (3H, s, 
CH3), 3.09 (3H, s, CH3); IR ν 3040, 2950, 2880, 1750, 1645, 1600, 1450, 1430, 1255 cm–1. 
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)-3-oxobutyric acid methyl ester (6d). As an oily 
mixture of two diastereoisomers 66:34; yield 61%; Rf = 0.30 (petroleum ether/AcOEt 15:1); 1H–
NMR δ 6.96–6.86 (4H, m, Harom), 6.32 (0.66H, dd, J = 17.2, 11.1, -CH=), 6.18 (0.34H, dd, J = 
17.3, 10.9, -CH=), 5.52 (0.66H, dd, J = 17.2, 1.1, =CH2), 5.45 (0.34H, dd, J = 17.3, 1.1, =CH2), 
5.39 (0.66H, dd, J = 11.1, 1.1, =CH2), 5.34 (0.34H, dd, J = 10.9, 1.1, =CH2), 4.50 (0.66H, d, J = 
11.5, 3–H), 4.37 (0.34H, d, J = 11.5, 3–H), 4.28 (0.34H, d, J = 11.5, 3–H), 4.26–4.15 (2H, m, 
OCH2CH3), 4.09 (0.66H, s, -CH<), 4.06 (0.34H, s, -CH<), 3.96 (0.66H, d, J = 11.5, 3–H), 2.33 
(3H, s, CH3), 2.24 (3H, s, CH3), 1.26 (1.98H, t, J = 7.1, CH3), 1.25 (1.02H, t, J = 7.1, CH3); 13C–
NMR δ 201.7 (CO), 143.0 (Carom), 142.1 (0.34 Carom), 141.7 (0.66 Carom), 134.5 (0.34 -CH=), 
133.5 (0.66 -CH=), 122.8 (0.66 Carom), 122.5 (0.34 Carom), 122.4 (0.66 Carom), 122.1 (0.34 Carom), 
119.1 (0.66 =CH2), 119.0 (0.34 =CH2), 118.1 (0.66 Carom), 117.9 (0.34 Carom), 117.8 (0.66 Carom), 
117.6 (0.34 Carom), 77.2 (0.34 2-C), 76.9 (0.66 2-C), 69.4 (0.66 3–C), 68.2 (0.34 3–C), 62.1 (0.34 
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OCH2CH3), 62.0 (0.66 OCH2CH3), 63.2 (0.34 –CH<), 61.4 (0.66 –CH<), 32.3 (0.66 CH3), 32.2 
(0.34 CH3), 14.4 (CH3); IR ν 3080, 3040, 2980, 2930, 2880, 1745, 1715, 1595, 1490, 1255 cm–1. 
Anal. Calcd for C16H18O5: C, 66.18; H, 6.25. Found: C, 66.01; H, 6.32. 
2-Vinyl-1,4-benzodioxin (7). Rf = 0.85 (petroleum ether/AcOEt 15:1); 1H–NMR δ 6.90–6.30 
(4H, m, Harom), 5.95 (1H, bs, 3–H), 5.90 (1H, dd, J = 17.0, 11.0, -CH=), 5.42 (1H, dd, J = 17.0, 
0.8, =CH2), 5.02 (1H, dd, J = 11.0, 0.8, =CH2); IR ν 3040, 2950, 2880, 1750, 1645, 1600, 1490, 
1430, 1255 cm–1. These values are in agreement with those published in the litterature.12 
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