Palladium-catalyzed synthesis of 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins

Jean-Robert Labrosse, Nathalie Pichon, Catherine Goux-Henry, Paul Lhoste, and Denis Sinou*

Laboratoire de Synthèse Asymétrique, CPE Lyon, Université Claude Bernard Lyon 1, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cédex, France E-mail: sinou@univ-lyon1.fr

Dedicated to Professor Marcial Moreno-Mañas on the occasion of his $\mathbf{6 0}^{\text {th }}$ birthday (received 28 Dec 01; accepted 11 Mar 02; published on the web 19 Mar 02)

Abstract

Various 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 are obtained by alkylation of the methyl carbonate of 2,3-dihydro-1,4-benzodioxin-2-ylideneethanol 5 with various carbon nucleophiles in the presence of a palladium complex. Altough the yields in alkytion products are good in the case of a non-bulky nucleophile, formation of the diene 7 was generally observed when a bulky nucleophile was used.

Keywords: Substituted 2-vinyl-benzodioxins, condensation, palladium, alkylation

Introduction

Compounds containing 1,4-benzodioxin and 1,4-benzodioxan structures have attracted considerable interest in recent years. This is mainly due to the interesting properties of these compounds. Some of them act as α - or β-blocking agents and could be used in antidepression or antihypertension therapy. ${ }^{1-5}$ Others have antihyperglycemic properties ${ }^{6}$ or act as inhibitors of 5lipoxygenase. ${ }^{7}$ The 1,4-benzodioxan frame is also found in a variety of biological active natural products. ${ }^{8-11}$ It is also to be noticed that these compounds are useful intermediates in a variety of synthetic transformations. ${ }^{12-14}$

There are many approaches for the synthesis of substituted 1,4-benzodioxins, ${ }^{15-20}$ even in an asymmetric way. ${ }^{20,21}$ We have recently described the preparation of various 2,3-dihydro-2-ylidene-1,4-benzodioxins via a palladium-catalyzed condensation of benzene-1,2-diol with different propargylic carbonates. ${ }^{22}$ Among the prepared heterocyclic compounds, we expected that tert-butyldimethyl-[(2,3-dihydro-1,4-benzodioxin-2-ylidene)ethoxy]silane 3, obtained by palladium condensation of benzene-1,2-diol 1 with propargylic carbonate 2 , could be a valuable
starting material for the preparation of 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins. We described in this paper preliminary results in this field.

Results and Discussion

Cyclization of benzene-1,2-diol 1 with carbonate 2^{23} was performed in THF at room temperature in the presence of $2.5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $10 \mathrm{~mol} \% \mathrm{dppb}$ or $1,4-$ bis(diphenylphosphino)butane to afford after column chromatography 2,3-dihydro-1,4benzodioxin derivative 3 in 67\% yield (Scheme 1). Desilylation of compound 3 performed in THF as the solvent in the presence of tetrabutylammonium bromide trihydrate gave 2,3-dihydro-1,4-benzodioxin-2-ylideneethanol 4 in 95\% yield after column chromatography. Carbonate 5 was obtained in 95% yield after column chromatography by condensation of this alcohol 4 with methyl chloroformate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of pyridine and dimethylaminopyridine.

a $\mathrm{Nu}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
b $\mathrm{Nu}=\mathrm{CH}(\mathrm{COMe})_{2}$
c $\mathrm{Nu}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
d $\mathrm{Nu}=\mathrm{CH}(\mathrm{COMe})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$
(a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, THF, 20 h ; (b) $\mathrm{Bu}_{4} \mathrm{NBr}^{2} 3 \mathrm{H}_{2} \mathrm{O}$, THF; (c) $\mathrm{ClCO}_{2} \mathrm{Me}$, DMAP, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{NuH}, \mathrm{THF}$.

Scheme 1

The reaction of various nucleophiles with this carbonate 5 was performed in THF at room temperature in the presence of $2.5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $10 \mathrm{~mol} \% \mathrm{dppb}$. The results are summarized in Table 1.

Table 1. Palladium-catalyzed reaction of NuH with allylic carbonate 5

Entry	Nucleophile NuH	Yield \% compound $\mathbf{6}$	Yield \% compound 7
1	$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}$	67	11
2	$\mathrm{CH}_{2}\left(\mathrm{COCH}_{3}\right)_{2}$	53	33
3	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}$	6	15
4	$\mathrm{CH}_{2}\left(\mathrm{COCH}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$	61	18
5	$\mathrm{C}\left(\mathrm{NHCOCH}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}$	0	24

Dimethyl malonate (Table 1, entry 1) and acetylacetone (Table 1, entry 2) reacted with carbonate 5 to give after column chromatography the alkylated 2,3-dihydro-2-vinyl-benzo-1,4dioxins $\mathbf{6 a}$ and $\mathbf{6 b}$ in 67 and 53% yield, respectively. The formation of 2 -vinylbenzo-1,4-dioxine 7 was also observed in 11 and 33\% yield, respectively. When dimethyl methylmalonate was used as the nucleophile (Table 1, entry 3), the formation of the alkylated compound $\mathbf{6 c}$ was observed in quite low yield (6\%) together with diene 7 (15\%). The use of dimethyl acetamidomalonate as the nucleophile (Table 1, entry 5) afforded only the unsaturated compound 7 in 24% yield, with no trace of the corresponding alkylated compound.

Finally reaction of carbonate 5 with ethyl acetoacetate as the nucleophile gave the alkylated product $\mathbf{6 d}$ in 61% yield as a mixture of the two diastereoisomers in a ratio 66:34, together with the diene 7 in 18% yield (Table 1, entry 4).

The formation of compounds $\mathbf{6}$ and 7 could be explained according to Scheme 2. The first step is the formation of the η^{3}-allyl intermediate \mathbf{A} by oxidative addition of the palladium complex on compound $\mathbf{5}$. One possibility is the generation of the nucleophile by abstraction of a hydrogen from $\mathrm{Nu}-\mathrm{H}$ by $\mathrm{CH}_{3} \mathrm{O}^{-}$. The attack of the nucleophile on the η^{3}-allyl intermediate \mathbf{A} occured not at the less hindered termini, but at the more electrophilic termini of this intermediate affording compound $\mathbf{6}$ bearing a quaternary carbon center. This regioselectivity is in agreement with previous studies on η^{3}-allyl intermediates bearing an oxygen atom on one of the termini of the η^{3}-allyl system. ${ }^{24-26}$ It is to be noticed that this alkylation reaction is very sensitive to the bulkiness of the nucleophile; the more bulky the nucleophile is (dimethyl methylmalonate, dimethyl acetamidomalonate), the lowest is the chemical yield in the alkylated product.

The formation of the diene 7 could be explained by a β-hydrogen elimination from the intermediate \mathbf{A}, leading to compound 7 and the formation of $\mathrm{H}\left(\mathrm{CH}_{3} \mathrm{O}\right) \operatorname{Pd}(\mathrm{dppb})$, affording $\mathrm{Pd}(\mathrm{dppb})$ via a reductive elimination of $\mathrm{CH}_{3} \mathrm{OH} .{ }^{27}$ It seems that there is a competition between these two pathways.

Scheme 2

$$
\text { Mechanism of formation of compounds } 6 \text { and } 7
$$

Conclusions

In conclusion, we have shown that various 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 bearing a quaternary carbon could be very easily obtained from tert-butyldimethyl-[(2,3-dihydro-1,4-benzodioxin-2-ylidene)ethoxy]silane 4 via a palladium- catalyzed alkylation reaction of the corresponding carbonate with various carbon- nucleophiles. However the chemical yields are strongly dependent on the bulkiness of the nucleophile, with the preferential formation of a diene when this nucleophile is too bulky. Work is actually in progress in our group in order to prepare chiral 2,3-dihydro-2-substituted-2-vinyl-1,4-benzodioxins 6 via the use of chiral ligands.

Experimental Section

General Procedures. All manipulations involving palladium catalysis were performed in Schlenk tubes under a nitrogen atmosphere. Unless otherwise stated, the materials were commercial samples; propargylic carbonate 2 was prepared as previously described. ${ }^{23}$ All organic solvents were of analytical quality and used as purchased. Solvents mixtures are defined by volume ratios (v/v). Tetrahydrofuran was distilled from sodium/benzophenone. All ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-$ NMR spectra were recorded on a Brücker AM 300 spectrometers in CDCl_{3}. Chemical shifts are reported on the δ scale with the reference to tetramethylsilane or CDCl_{3} as the internal standard and the coupling constants J are given in Hz. The IR-spectra were recorded on a Perkin-Elmer 681 instrument. Tin-layer chromatography was performed using Merck silica gel $60 \mathrm{~F}_{254}$ precoated aluminium plates, 0.2 mm thickness. Visualisation was by UV or by spraying
with 10% sulphuric acid and then heating. Column chromatography was carried out using Merck silica gel (Kieselgel 60, 70-230 mesh).
(Z)-tert-Butyldimethyl-[(2,3-dihydro-1,4-benzodioxin-2-ylidene)ethoxy]silane (3). A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(20.8 \mathrm{mg}, 2.2 \times 10^{-2} \mathrm{mmol}\right)$, in THF (7 mL), was stirred under a nitrogen atmosphere at room temperature for 30 min . This catalyst solution was added to a mixture of benzene-1,2diol 1 ($100 \mathrm{mg}, 0.9 \mathrm{mmol}$) and carbonate $2(284 \mathrm{mg}, 1.1 \mathrm{mmol})$. The resulting solution was stirred at room temperature for 24 h . The solvent was evaporated and the residue chromatographed over silica ($R_{f}=0.24$, petroleum ether/EtOAc 100:1) to give 196 mg of 3 as an oil (yield 67%); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.10-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 4.91\left(1 \mathrm{H}, \mathrm{t}, J=6.3,=\mathrm{CH}-\mathrm{CH}_{2}\right), 4.47(2 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H}), 4.47\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3\right.$, $\left.=\mathrm{CH}-\mathrm{CH}_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 144.0$ (2-C), 143.2 ($\mathrm{C}_{\text {arom }}$), 142.6 ($\mathrm{C}_{\text {arom }}$), 122.3 ($\mathrm{C}_{\text {arom }}$), 122.2 ($\mathrm{C}_{\text {arom }}$), 117.4 ($\mathrm{C}_{\text {arom }}$), 116.6 ($\mathrm{C}_{\text {arom }}$), $107.7\left(=\mathrm{CH}-\mathrm{CH}_{2}\right), 65.1(3-\mathrm{C}), 56.6\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 26.1\left(\mathrm{CMe}_{3}\right), 18.4\left(\mathrm{CMe}_{3}\right),-5.1(\mathrm{SiMe})$; IR v 3060, 3040, 2950, 2920, 2880, 2850, 1690, 1590, 1480, 1460, $1250 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 65.72$; H, 8.28. Found: C, 65.39; H, 8.61.
(Z)-2,3-Dihydro-1,4-benzodioxin-2-ylideneethanol (4). A solution of compound 3 ($2.57 \mathrm{~g}, 9$ mmol) and $\mathrm{Bu}_{4} \mathrm{NBr} .3 \mathrm{H}_{2} \mathrm{O}(4.60 \mathrm{~g}, 18 \mathrm{mmol})$ in tetrahydrofuran $(80 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . After evaporation of the solvent, the residue was diluted with diethyl ether (100 mL), and the ethereal solution was washed three times with a saturated aqueous solution of sodium chloride ($3 \times 40 \mathrm{~mL}$), and dried over sodium sulfate. Chromatography ($R_{\mathrm{f}}=0.24$, petroleum ether/EtOAc 4:3) of the residue obtained after evaporation of the solvent gave 1.49 g of compound 4 (yield 95%); oil; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.10-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 4.93\left(1 \mathrm{H}, \mathrm{t}, J=7.0,=\mathrm{CH}-\mathrm{CH}_{2}\right), 4.44(2 \mathrm{H}, \mathrm{s}, 3-$ H), $4.38\left(2 \mathrm{H}, \mathrm{d}, J=7.0,=\mathrm{CH}-\mathrm{CH}_{2}\right), 2.65(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 144.5(2-\mathrm{C}), 143.9\left(\mathrm{C}_{\text {arom }}\right)$, $142.4\left(\mathrm{C}_{\text {arom }}\right), 122.5\left(\mathrm{C}_{\text {arom }}\right), 122.4\left(\mathrm{C}_{\text {arom }}\right), 117.4\left(\mathrm{C}_{\text {arom }}\right), 116.6\left(\mathrm{C}_{\text {arom }}\right), 106.7\left(=\mathrm{CH}-\mathrm{CH}_{2}\right), 65.9$ (3-C), $56.8\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; IR $\vee 3350,3060,3040,2940,2920,2850,1690,1590,1490,1250 \mathrm{~cm}^{-1}$. These values are in agreement with the literature. ${ }^{28}$
Carbonic acid (Z)-(2-benzo[1,4]dioxin-2-ylidenethyl) ester methyl ester (5). To a stirred solution of the alcohol 4 ($360 \mathrm{mg}, 2 \mathrm{mmol}$), dimethylaminopyridine ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$), and pyridine ($632 \mathrm{mg}, 8 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was slowly added methyl chloroformiate ($756 \mathrm{~g}, 8 \mathrm{mmol}$). After being stirred for 24 h at room temperature, the solution was hydrolyzed with a saturated aqueous solution of copper sulfate (10 mL), and extracted three times with diethyl ether ($3 \times 20 \mathrm{~mL}$). The ethereal solution was washed with a saturated aqueous solution of copper sulfate (10 mL), and dried over sodium sulfate. Evaporation of the solvent followed by column chromatography ($R_{\mathrm{f}}=0.66$, petroleum ether/EtOAc 4:1) of the residue gave 448 mg of compound 5 as an oil (yield 95\%); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.10-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right.$), 5.00-4.87 $\left(3 \mathrm{H}, \mathrm{m},=\mathrm{CH}-\mathrm{CH}_{2},=\mathrm{CH}-\right), 4.45(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 155.8(\mathrm{CO}), 147.0$ (2-C), 143.9 ($\mathrm{C}_{\text {arom }}$), 142.2 ($\mathrm{C}_{\text {arom }}$), 122.7 ($\mathrm{C}_{\text {arom }}$), 122.4 ($\mathrm{C}_{\text {arom }}$), 117.4 ($\mathrm{C}_{\text {arom }}$), 116.7 ($\mathrm{C}_{\text {arom }}$), $100.7\left(=\mathrm{CH}-\mathrm{CH}_{2}\right), 64.8(3-\mathrm{C}), 61.0\left(=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 54.8\left(\mathrm{CH}_{3}\right)$; IR v 3060, 3040, 3020, 2990, 2950, 2890, 2850, 1750, 1690, 1590, 1490, 1450, $1250 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$: C, 60.00; H, 5.12. Found: C, 60.63; H, 5.16.

Alkylation of carbonic acid (Z)-(2-benzo[1,4]dioxin-2-ylidenethyl) ester methyl ester. To a stirred solution of carbonate $5(104 \mathrm{~g}, 0.44 \mathrm{mmol})$ and nucleophile (0.53 mmol) in THF (7 mL) at $25^{\circ} \mathrm{C}$ under argon was added the catalyst solution obtained by stirring under argon for 0.5 h $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(10.4 \mathrm{mg}, 1.1 \times 10^{-2} \mathrm{mmol}\right)$ and dppb $\left(19.4 \mathrm{mg}, 4.6 \times 10^{-2} \mathrm{mmol}\right)$ in THF (7 mL). After being stirred for 24 h at room temperature, the solvent was evaporated and the residue purified by column chromatography to give the alkylated compound 6.
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)malonic acid dimethyl ester (6a). Oil; yield $69 \% ; R_{\mathrm{f}}=0.20$ (petroleum ether/AcOEt 15:1); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.00-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 6.26(1 \mathrm{H}$, dd, $J=17.3,11.0,-\mathrm{CH}=$), $5.49\left(1 \mathrm{H}, \mathrm{dd}, J=17.3,0.7,=\mathrm{CH}_{2}\right), 5.38\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,0.7,=\mathrm{CH}_{2}\right)$, $4.56(1 \mathrm{H}, \mathrm{d}, J=11.4,3-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{d}, J=11.4,3-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}<), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 166.9(\mathrm{CO}), 166.5(\mathrm{CO}), 142.5\left(\mathrm{C}_{\text {arom }}\right), 141.7\left(\mathrm{C}_{\text {arom }}\right), 133.6(-$ $\mathrm{CH}=$), $122.2\left(\mathrm{C}_{\text {arom }}\right), 121.8\left(\mathrm{C}_{\text {arom }}\right), 118.9\left(=\mathrm{CH}_{2}\right), 117.7\left(\mathrm{C}_{\text {arom }}\right), 117.2\left(\mathrm{C}_{\text {arom }}\right), 76.1(2-\mathrm{C}), 68.1$ (3-C), $55.5(-\mathrm{CH}<), 52.8\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right)$; IR $v 3080,3040,3020,2950,2920,2870,2840$, 1750, 1645, 1595, 1490, 1430, $1255 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 61.62; H, 5.52. Found: C, 61.89; H, 5.55.
3-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)pentane-2,4-dione (6b). Oil; yield 53\%; $R_{\mathrm{f}}=$ 0.24 (petroleum ether/AcOEt 10:1); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.00-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 6.25$ (1H, dd, $J=17.3$, 11.0, $-\mathrm{CH}=$), $5.51\left(1 \mathrm{H}, \mathrm{dd}, J=17.3,1.1,=\mathrm{CH}_{2}\right), 5.35\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.1,=\mathrm{CH}_{2}\right), 4.36(1 \mathrm{H}, \mathrm{d}$, $J=11.6,3-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}<), 3.95(1 \mathrm{H}, \mathrm{d}, J=11.6,3-\mathrm{H}), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.21(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 202.9(\mathrm{CO}), 202.7(\mathrm{CO}), 143.0\left(\mathrm{C}_{\text {arom }}\right), 141.6\left(\mathrm{C}_{\text {arom }}\right), 133.8(-\mathrm{CH}=), 122.8$ $\left(\mathrm{C}_{\text {arom }}\right), 122.4\left(\mathrm{C}_{\text {arom }}\right), 118.9\left(=\mathrm{CH}_{2}\right), 118.0\left(\mathrm{C}_{\text {arom }}\right), 117.8\left(\mathrm{C}_{\text {arom }}\right), 77.5(2-\mathrm{C}), 69.2(3-\mathrm{C}), 68.0(-$ $\mathrm{CH}<)$, $32.8\left(\mathrm{CH}_{3}\right), 32.5\left(\mathrm{CH}_{3}\right)$; IR $v 3080,3030,2990,2950,2910,2870,1720,1640,1590$, 1490, 1460, $1250 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 69.20; H, 6.20. Found: C, 69.43; H, 6.22.
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)-2methylmalonic acid dimethyl ester (6c). Oil; yield 6%; $R_{\mathrm{f}}=0.30$ (petroleum ether/AcOEt $15: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.30-6.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 6.07$ (1H, dd, $J=17.1,10.9,-\mathrm{CH}=$), $5.29\left(1 \mathrm{H}, \mathrm{dd}, J=10.9,1.0,=\mathrm{CH}_{2}\right), 5.20(1 \mathrm{H}, \mathrm{dd}, J=17.1,1.0$, $\left.=\mathrm{CH}_{2}\right), 4.80(1 \mathrm{H}, \mathrm{d}, J=11.2,3-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{d}, J=11.2,3-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.71(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; IR $\vee 3040$, 2950, 2880, 1750, 1645, 1600, 1450, 1430, $1255 \mathrm{~cm}^{-1}$.
2-(2,3-Dihydro-2-vinyl-1,4-benzodioxin-2-yl)-3-oxobutyric acid methyl ester (6d). As an oily mixture of two diastereoisomers 66:34; yield 61\%; $R_{\mathrm{f}}=0.30$ (petroleum ether/AcOEt 15:1); ${ }^{1} \mathrm{H}-$ NMR $\delta 6.96-6.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right)$, 6.32 ($0.66 \mathrm{H}, \mathrm{dd}, J=17.2,11.1,-\mathrm{CH}=$), 6.18 ($0.34 \mathrm{H}, \mathrm{dd}, J=$ 17.3, 10.9, -CH=), $5.52\left(0.66 \mathrm{H}, \mathrm{dd}, J=17.2,1.1,=\mathrm{CH}_{2}\right), 5.45\left(0.34 \mathrm{H}, \mathrm{dd}, J=17.3,1.1,=\mathrm{CH}_{2}\right)$, $5.39\left(0.66 \mathrm{H}, \mathrm{dd}, J=11.1,1.1,=\mathrm{CH}_{2}\right), 5.34\left(0.34 \mathrm{H}, \mathrm{dd}, J=10.9,1.1,=\mathrm{CH}_{2}\right), 4.50(0.66 \mathrm{H}, \mathrm{d}, J=$ $11.5,3-\mathrm{H}), 4.37(0.34 \mathrm{H}, \mathrm{d}, J=11.5,3-\mathrm{H}), 4.28(0.34 \mathrm{H}, \mathrm{d}, J=11.5,3-\mathrm{H}), 4.26-4.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.09(0.66 \mathrm{H}, \mathrm{s},-\mathrm{CH}<), 4.06(0.34 \mathrm{H}, \mathrm{s},-\mathrm{CH}<), 3.96(0.66 \mathrm{H}, \mathrm{d}, J=11.5,3-\mathrm{H}), 2.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(1.98 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1, \mathrm{CH}_{3}\right), 1.25\left(1.02 \mathrm{H}, \mathrm{t}, J=7.1, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}-$ NMR $\delta 201.7$ (CO), $143.0\left(\mathrm{C}_{\text {arom }}\right.$), 142.1 ($0.34 \mathrm{C}_{\text {arom }}$), 141.7 ($0.66 \mathrm{C}_{\text {arom }}$), 134.5 (0.34 - $\mathrm{CH}=$), 133.5 ($0.66-\mathrm{CH}=$), 122.8 ($0.66 \mathrm{C}_{\text {arom }}$), 122.5 ($0.34 \mathrm{C}_{\text {arom }}$), 122.4 ($0.66 \mathrm{C}_{\text {arom }}$), 122.1 ($0.34 \mathrm{C}_{\text {arom }}$), $119.1\left(0.66=\mathrm{CH}_{2}\right), 119.0\left(0.34=\mathrm{CH}_{2}\right), 118.1\left(0.66 \mathrm{C}_{\text {arom }}\right), 117.9\left(0.34 \mathrm{C}_{\text {arom }}\right), 117.8\left(0.66 \mathrm{C}_{\text {arom }}\right)$, 117.6 (0.34 C $_{\text {arom }}$), 77.2 (0.34 2-C), 76.9 (0.66 2-C), 69.4 (0.66 3-C), 68.2 (0.34 3-C), 62.1 (0.34
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.0\left(0.66 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.2(0.34-\mathrm{CH}<), 61.4(0.66-\mathrm{CH}<)$, $32.3\left(0.66 \mathrm{CH}_{3}\right)$, 32.2 ($0.34 \mathrm{CH}_{3}$), $14.4\left(\mathrm{CH}_{3}\right)$; IR $\vee 3080,3040,2980,2930,2880,1745,1715,1595,1490,1255 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 66.18; H, 6.25. Found: C, 66.01; H, 6.32.
2-Vinyl-1,4-benzodioxin (7). $R_{\mathrm{f}}=0.85$ (petroleum ether/AcOEt 15:1); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 6.90-6.30$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {arom }}\right), 5.95(1 \mathrm{H}, \mathrm{bs}, 3-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{dd}, J=17.0,11.0,-\mathrm{CH}=), 5.42(1 \mathrm{H}, \mathrm{dd}, J=17.0$, $\left.0.8,=\mathrm{CH}_{2}\right), 5.02\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,0.8,=\mathrm{CH}_{2}\right)$; IR $\vee 3040,2950,2880,1750,1645,1600,1490$, $1430,1255 \mathrm{~cm}^{-1}$. These values are in agreement with those published in the litterature. ${ }^{12}$

Acknowledgements

J. R. L. thanks the MENRT for a fellowship.

References

1. Nelson, W. L.; Wennerstrom, J. E.; Dyer, D. C.; Engel, J. E. J. Med. Chem. 1977, 20, 880.
2. Marciniak, G.; Delgado, A.; Leclerc, G.; Velly, J.; Decker, N.; Schwartz, J. J. Med. Chem. 1989, 32, 1402.
3. Ruffolo Jr., R. R.; Bondinell, W.; Hieble, J. P. J. Med. Chem. 1995, 38, 3681.
4. Giardina, D.; Bertini, R.; Brancia, E.; Brasili, L.; Melchiorre, C. J. Med. Chem. 1985, 28, 1354.
5. Quaglia, W.; Pigini, M.; Tayebati, S. K.; Piergentili, A.; Gianella, M.; Leonardi, A.; Taddei, C.; Melchiorre, C. J. Med. Chem. 1996, 39, 2253.
6. Fagan, G. P.; Chapleo, C. B.; Lane, A. C.; Myers, M.; Roach, A. G.; Smith, C. F. C.; Stillings, M. R.; Welbourn, A. P. J. Med. Chem. 1988, 31, 944.
7. Satoh, Y.; Powers, C.; Toledo, L. M.; Kowalski, T. J.; Peters, P. A.; Kimble, E. F. J. Med. Chem. 1995, 38, 68.
8. (a) Merlini, L.; Zanarotti, A. J. Chem. Soc., Chem. Commun. 1979, 695. (b) Arnone, A.; Merlini, L.; Zanarotti, A. J. Chem. Soc., Chem. Commun. 1979, 696.
9. Bosseray, P.; Guillaumet, G.; Coudert, G.; Wasserman, H. Tetrahedron Lett. 1989, 30, 1387.
10. Debenedetti, S. L.; Nadinic, E. L.; Coussio, J. D.. Kimpe, N. De.; Dupont, J. F.; Declercq, J. P. Phytochemistry 1991, 30, 2757.
11. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Tetrahedron 1994, 50, 13583.
12. (a) Lee, T. V.; Leigh, A. J.; Chapleo, C. B. Tetrahedron 1990, 46, 921 . (b) Lee, T. V.; Leigh, A. J.; Chapleo, C. B. Synlett 1989, 30.
13. Moreau, P.; Guillaumet, G.; Coudert, G. Synth. Commun. 1994, 24, 1781.
14. Mata, E. G.; Suarez, A. G. Synth. Commun. 1997, 27, 1291.
15. Katritzky, A. R.; Sewell, M. J.; Topsom, R. D.; Monro, A. M.; Potter, G. W. H. Tetrahedron 1966, 22, 931.
16. Farina, G.; Zecchi, G. Synthesis 1977, 755.
17. (a) Guillaumet, G.; Coudert, G.; Loubinoux, B. Tetrahedron Lett. 1979, 4379. (b) Ruiz, N.; Pujol, M. D.; Guillaumet, G.; Coudert, G. Tetrahedron Lett. 1992, 33, 2965.
18. Adam, W.; Schmidt, E.; Takayama, K. Synthesis 1982, 322.
19. (a) Chapleo, C. B.; Davis, J. A.; Myers, P. L.; Readhead, M. J.; Stillings, M. R.; Welbourn, A. P.; Hampton, F. C.; Sugden, K. J. Heterocycl. Chem. 1984, 21, 77. (b) Lee, H. H.; Denny, W. A. J. Chem. Soc. Perkin Trans. 1 1990, 1071.
20. (a) Massacret, M.; Goux, C.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1994, 35, 6093. (b) Massacret, M.; Lhoste, P.; Lakhmiri, R.; Parella, T.; Sinou, D. Eur. J. Org. Chem. 1999, 2665.
21. Lhoste, P.; Massacret, M.; Sinou, D. Bull. Soc. Chim. 1997, 134, 343.
22. (a) Labrosse, J. R.; Lhoste, P.; Sinou, D. Tetrahedron Lett.1999, 40, 9025. (b) Labrosse, J. R.; Lhoste, P.; Sinou, D. Organic Lett. 2000, 2, 527. (c) Labrosse, J. R.; Lhoste, P.; Sinou, D. J. Org. Chem. 2001, 66, 6634.
23. Hagashi, M.; Saigo, K. Tetrahedron Lett. 1997, 38, 6241.
24. Brakta, M.; Lhoste, P.; Sinou, D. J. Org. Chem. 1989, 54, 1890.
25. Yamamoto, Y.; Al-Masum, M. Synlett 1995, 969.
26. Vicart, N.; Cazes, B.; Gore, J. Tetrahedron Lett. 1995, 36, 535.
27. Tsuji, J. In Palladium Reagents and Catalysts. Innovation in Organic Synthesis; Wiley: New York, 1995; pp 356-363.
28. Basak, A.; Bhattacharya, G.; Mallik, U. K.; Khamrai, U. K. Synth. Commun. 1997, 27, 367.
