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Abstract 

Water is found to catalyze the tetrahydropyranylation of alcohols at elevated temperature. 

Interestingly, tetrahydropyranylation of alcohols works under a wide range of pH, 6.5 to 2, and 

does not work beyond pH 7.5 in an aqueous medium. Hydrophobic interactions between the 

substrate alcohol and dihydropyran ether (DHP) and favorable pKa’s of water, alcohols, and 

protonated hydroxyl and protonated ethereal functions are the driving forces for the reaction. 

Thus the reaction, which is carried out in anhydrous aprotic solvents, can be carried out in 

aqueous medium in an environmentally benign way. 
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Introduction 
 

Aqueous mediated reactions have received considerable attention in organic synthesis due to 

environmental safety reasons. Water is the cheapest, most abundant and non-toxic chemical in 

Nature. It has unique physical and chemical properties such as a high dielectric constant and 

cohesive energy density compared to organic solvents. It has also special effects on reactions 

arising from inter and intramolecular non-covalent interactions leading to novel solvation and 

assembly processes. Large numbers of organic reactions have been performed successfully 

utilizing water as the reaction medium, and several books and reviews have been devoted to such 

a use.1 Thus, development of an efficient and convenient synthetic methodology in water is an 

important subject in these environmentally conscious days. Recently, we have reported acylation 

of amines in an aqueous medium.2  

 

 

Results and Discussion 
 

The tetrahydropyranyl ether is one of the most frequently used protecting groups for alcohols 

employed during multi-step organic synthesis.3 Most of the reported methods use acidic reagents 

in an aprotic solvent such as CH2Cl2, THF, acetone and toluene.4 At times their formation has 
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been carried out in ionic liquids.5 Although these methods are suitable for many synthetic 

conditions, some of these methods suffer from use of excess amounts and/or  toxic catalysts,  

volatile organic solvents and large amounts of solid supports which ultimately result in the 

generation of considerable amounts of toxic wastes. Tetrahydropyranylation is usually performed 

in anhydrous aprotic organic solvents because of the longer reaction time and poor yields of 

products obtained in the presence of water. Based on the pKa’s of water (15.74), alcohols 

(~16.5), protonated hydroxyl of 2-hydroxytetrahydropyran (~-2) and protonated ethereal 

functions (~-6), we speculate that pyranylation of alcohols should occur in an aqueous medium 

and, due to an unfavorable pKa, phenol should not undergo pyranylation in water. 2-

Hydroxytetrahydropyran is formed in all reactions involving dihydropyran (DHP) and water. The 

hydroxyl group of 2-hydroxytetrahydropyran is more likely to be protonated compared to the 

ethereal oxygen. An oxycarbenium species could be generated due to protonation of the hydroxyl 

group followed by water elimination, which should react with alcohol giving rise to the 

corresponding THP ether. The attack of water occurs but it is unproductive and regenerates the 

oxycarbenium species via a hemiacetal while the attack of the alcohol produces the acetal. The 

latter should be favored because the hydroxyl group having a lower pKa will leave preferentially 

over the alkoxide, driving the reaction in favor of product formation as shown in Scheme 1.  
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Scheme 1. Mechanism of formation of THP ether in water. 

 

With this assumption, when 3-phenyl-1-propanol 2 (5 mmol) was treated with DHP 

(7.5 mmol) in water (5 ml), 60% of the product was formed after 24 h at room temperature. 

However, ca. 60% conversion was achieved in 7 h by performing the reaction at reflux 

temperature. Alcohol and DHP formed a heterogeneous reaction mixture in water. In order to 

make the reaction homogeneous with the hope of accelerating the reaction, phase transfer reagents 

such as tetrabutylammonium bromide (ca. 50 mg) were added to the medium. Unfortunately, the 

percentage conversion was a mere 50% after 10 h, even at reflux temperature. When the reaction 

was repeated in a saturated solution of sodium chloride under reflux conditions, the yield 

improved to ca. 80% within 7 h. Thus, hydrophobic interactions between the alcohol and the DHP 

unit are essential for the reaction leading to product formation. The pH of the medium 

progressively decreased from ca. 6.8 at the beginning of the reaction to ca. 4.3 after the 

completion of the reaction when 3-phenyl-1-propanol 2 was used as the substrate.  This prompted 
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us to investigate the optimum pH conditions of the reaction medium required for the pyranylation 

of alcohol. Pyranylation was performed under reflux at different pH (1 M buffer), saturated with 

NaCl. The results are summarized in Table 1. 

 

Table 1. Tetrahydropyranylation of 3-phenyl-1-propanol 2 in different buffers 

   pH of the Solution              Time (h)                      Conversion (%)a      Types of Buffer Used                

8 15 Nil Na2HPO4 + NaH2PO4 

7.5 15 10% Na2HPO4 + NaH2PO4 

7 15 20% Na2HPO4 + NaH2PO4 

6.5 15 72% Na2HPO4 + NaH2PO4 

6 15 80% Na2HPO4 + NaH2PO4 

5.5 10 > 95% Na2HPO4 + NaH2PO4 

5 8 > 95% Na2HPO4 + NaH2PO4 

4.5 7 > 95% Na2HPO4 + NaH2PO4 

4 5 > 95% Sodium citrate + Citric acid 

3.5 4.5 > 95% Sodium citrate + Citric acid 

3 3 > 95% Sodium citrate + Citric acid 

2 1 > 95% Sodium citrate + Citric acid 

a GC yields.  

 

It is interesting to note that the reaction worked from pH 7.5 down to pH 2. The process is 

more facile at lower pH and worked even in 10% aqueous HCl giving 90% yield of the product 

after 2.5 h. It seems that under acidic conditions the oxycarbenium species is more susceptible to 

attack by alcohol than water (Scheme 1). There are several reports of deprotection of THP 

ethers3 in an acidic medium and in almost all of these cases methanol or ethanol is used as the 

co-solvent, possibly because a large excess of the alcohol shifts the equilibrium with concurrent 

formation of 2-methoxytetrahydropyran via a transacetalization process. When the THP ether of 

3-phenyl-1-propanol 2a (1 mmol) was treated with 10% aq. HCl (2 mL) and refluxed for 2 h, 

less than 5% of the product was deprotected. However, more than 90% deprotection could be 

achieved after 2 h under identical conditions when methanol (2 mL) was added to the medium. 

When pyranylation of 3-phenyl-1-propanol 2 (1 mmol) was performed under identical conditions 

at pH 2 (1M buffer) in the presence of methanol (2 mL), only a trace of pyranylated product  (< 

5 %) could be seen, further supporting the facile formation of 2-methoxytetrahydropyran and the 

role of methanol during the depyranylation process (Scheme 2). 
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Scheme 2. Pyranylation in different solvents. 

 

Mechanistically, it is possible to suggest other reasonable pathways, as for instance the 

addition of the alcohol to the aldehyde group of the open-chain tautomer of 2-

hydroxytetrahydropyran followed by protonation of the hemiacetal OH, loss of water, 

intramolecular acetalisation followed by deprotonation. This possibility can be ruled out because 

IR and 1H NMR analysis of 2-hydroxytetrahydropyran showed less than 1% of the open chain 

tautomer. Similar to reducing sugars it may contain < 0.01% of the aldehydic form, however 

unlike glucose, 2-hydroxytetrahydropyran failed to respond to both Tollen’s and Fehling’s tests. 

In another experiment, when 2-hydroxytetrahydropyran (5 mmol) and 3-phenyl-1-propanol 2a (2 

mmol) were reacted in a pH 2 buffer (1 M, 2 mL) saturated with NaCl and refluxed for 2 h, more 

than 95% of the pyranylated product could be obtained, further supporting the intermediacy of 2-

hydroxytetrahydropyran (Scheme 3). 
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Scheme 3. Pyranylation of 3-phenyl-1-propanol 2 with 2-hydroxytetrahydropyran. 

 

The reaction works even in pure water under non buffered conditions, giving a moderate yield 

of the product, but the pH of the medium changes depending on the nature of the substrate. 

Therefore, we decided to perform the reaction under buffered conditions. In spite of the shorter 

reaction time at lower pH we decided to perform the reaction at pH 5 since many acid sensitive 

groups are expected to survive at this pH. Thus, in a typical reaction, alcohol (5 mmol), DHP 

(7.5 mmol), in 1M phosphate buffer (5 mL) saturated with NaCl was refluxed for a specific period 

of time as shown in Table 2. 
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Table 2. Tetrahydropyranylationa of alcohol in phosphate buffer pH 5 

_________________________________________________________________________ 

          Substrate                 Productb                         Time (h)         Yield (%)c    

_____________________________________________________________________________________________________________ 
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______________________________________________________________________________ 
a Reactions were monitored by TLC. bConfirmed by comparison with IR, 1H NMR of the 

authentic sample. cIsolated yields.  

 

Pyranylation of several alcohols such as primary, benzylic and secondary was achieved in 

good to excellent yields via this procedure as shown in Table 2. In all the cases examined the 

reactions were nearly complete, however isolated yields were 10-15% less. As evident from Table 
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2, acid sensitive protecting groups such as THP, TBS, TBDPS and isopropylidine survived these 

conditions. Thus, the present method is mild enough to tolerate a wide range of functional groups. 

As shown in Table 1, depending on the sensitivity of the other protecting group present in the 

substrate, this reaction can be performed from pH 6.5-2. Phenol, which has a lower pKa than 

water, is a better leaving group; hence the method was not successful for pyranylation of phenols 

in the entire range of pH tested. One important feature of this method is the chemoselective mono 

tetrahydropyranylation of symmetrical 1,n-diols 18 and 19 and unsymmetrical diol 20 (Table 3), a 

transformation that is difficult to accomplish via conventional methods. Only a few methods have 

been reported in the literature.4m-s,5a-b We assume that the selectivity of the mono 

tetrahydropyranylation arises because, after the monopyranylation, the other hydroxyl group 

points away from the hydrophobic pockets formed by the DHP and alcohol. A primary alcolol has 

been selectively pyranylated in the presence of a secondary alcohol 20 and a phenolic hydroxyl 

group 21. 

 

Table 3. Tetrahydropyranylationa of alcohol in water 

      Substrate                           Productb                               Time (h)           Yield (%)c 
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______________________________________________________________________________ 

a Reactions were monitored by TLC. b Confirmed by comparison with IR, 1H NMR of the 

authentic sample. c Isolated yields.  
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Conclusions 
 

In conclusion, this manuscript describes a method for pyranylation in water that  takes advantage 

of the pKa’s of different functional groups and the reaction medium. Thus the reaction, which is 

typically carried out in an anhydrous aprotic solvent, can be carried out in water in an 

environmentally benign way. The procedure works over a broad pH range and even without an 

acid catalyst. Mild reaction conditions, simplicity of the procedure, general applicability for a 

wide range of alcohols and selective mono-tetrahydropyranylation of diols are other significant 

advantages over many existing procedures. 

 

 

Experimental Section 
 

General experimental procedure. To a mixture of  alcohol (5 mmol) and 3,4-dihydro-2H-pyran 

(7.5 mmol) was added 1M Na2HPO4+NaH2PO4 buffer (5 mL) saturated with NaCl. The reaction 

was refluxed in a oil bath and the progress of the reaction was monitored by TLC. After the 

specific time, the reaction mixture  was extracted with ethyl acetate (2 x 25 mL). The combined 

organic extracts were dried with anhydrous Na2SO4 and the solvent was removed in a rotary 

evaporator under reduced pressure. The crude product was purified by passing through a short 

column of silica gel to yield the pure product, which was identified by its NMR6 and IR spectra 

and GC pattern, and GC co-injection with authentic samples prepared by known methods. 
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7.26 (d, 2H, J = 7.6 Hz), 7.34 (t, 2H, J = 7.2 Hz), 7.63 (d, 2H, J = 7.6 Hz), 7.72 (d, 2H, J=7.2 

Hz). 13C NMR (100 MHz, CDCl3) δ 18.0, 24.1, 29.2, 46.4, 60.5, 68.6, 97.4, 118.17, 118.18, 

123.6, 123.7, 125.2, 125.2, 125.7, 139.5, 143.0, 143.5.  

12a. 1H NMR (400 MHz, CDCl3) Obtained as a mixture of diastereomers δ 1.30-1.84 (brm, 

12H), 3.49 (m, 2H), 3.75 (m, 3H), 4.06 (m, 1H), 4.29 (m, 1H), 4.62 (m, 1H). 13C NMR (100 

MHz, CDCl3) Peaks from both diastereomers δ 19.6, 19.8, 25.7, 25.8, 25.9, 27.0, 27.1, 30.7, 

62.3, 62.5, 67.0, 67.2, 68.2, 68.8, 74.9, 75.1, 99.1, 99.3, 109.4, 109.6; Anal. calcd for 

C11H20O4: C, 61.09; H 9.32. Found C, 61.23, H, 8.43.  

13a. 1H NMR (400 MHz, CDCl3) δ 1.50-1.86 (m, 6H), 3.54 (m, 1H), 3.90 (m, 1H), 4.42 (d, 

1H, J =11.2 Hz), 4.52 (m, 2H), 4.70 (m, 2H), 5.30 (dd, 2H, J = 10.8 Hz, J = 17.2 Hz), 6.02 

(m, 1H), 6.87 (d, 2H, J =8.0 Hz), 7.27 (d, 2H, J = 8.4 Hz). 13C NMR (100 MHz, CDCl3) δ 

19.8, 25.8, 30.9, 62.4, 68.8, 69.1, 97.7, 114.8, 117.8, 129.6, 130.6, 133.4, 158.2.  

14a. 1H NMR (400 MHz, CDCl3) δ 1.45-1.90 (brm, 6H), 3.51 (m, 1H), 3.80 (m, 1H), 3.88 

(m, 1H), 4.05 (m, 1H), 4.51 (m, 2H), 4.71 (m, 1H), 7.44 (m, 2H), 7.55 (m, 1H), 8.06 (m, 2H). 
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13C NMR (100 MHz, CDCl3) δ 19.6, 25.8, 30.8, 62.3, 64.5, 65.5, 99.0, 128.5, 129.8, 130.3, 

133.0, 166.6.  

15a. 1H NMR (400 MHz, CDCl3) δ 0.03 (s, 6H), 0.88 (s, 9H), 1.28-1.90 (m, 14H), 3.37 (m, 

1H), 3.48 (m, 1H), 3.59 (t, 2H, J = 6.8 Hz), 3.70 (m, 1H), 3.84 (m, 1H), 4.56 (m, 1H). 13C 

NMR (100 MHz, CDCl3) δ –4.7, 18.7, 20.0, 25.9, 26.1, 26.3, 26.4, 30.1, 31.1, 33.2, 62.5, 

63.5, 67.8, 99.0.  

16a. 1H NMR (400 MHz, CDCl3) δ 1.40-1.88 (m, 20H), 3.38 (m, 2H), 3.48 (m, 2H), 3.73 (m, 

2H), 3.85 (m, 2H), 4.57 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 20.1, 25.9, 26.5, 30.1, 31.1, 

62.6, 67.8, 99.0.   

17a. 1H NMR (400 MHz, CDCl3) δ 1.22-1.83 (m, 14H), 2.45 (s, 3H), 3.34 (m, 1H), 3.49 (m, 

1H), 3.68 (m, 1H), 3.83 (m, 1H), 4.02 (t, 2H, J = 6.4 Hz), 4.54 (m, 1H), 7.33 (d, 2H, J = 8.4 

Hz), 7.77 (d, 2H, J = 8.4 Hz). 13C NMR (100 MHz, CDCl3) δ 20.1, 22.0, 25.6, 25.8, 26.0, 

29.1, 29.8, 31.1, 62.7, 67.6, 70.8, 99.1, 128.0, 129.9, 133.3, 144.7.  

18a. 1H NMR (400 MHz, CDCl3) δ 1.40-1.84 (brm, 13H), 3.43 (m, 1H), 3.50 (m, 1H), 3.65 

(t, 2H, J = 6.4 Hz), 3.75 (m, 1H), 3.84 (m, 1H), 4.57 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 

20.0, 22.8, 25.8, 29.8, 31.1, 32.9, 62.7, 63.1, 67.8, 99.1.  

18b.  1H NMR (400 MHz, CDCl3) δ 1.44-1.86 (m, 18H), 3.39 (m, 2H), 3.49 (m, 2H), 3.72 

(m, 2H), 3.86 (m, 2H), 4.57 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 20.1, 23.3, 25.9, 30.0, 

31.1, 62.6, 67.8, 99.0. 

16.  1H NMR (400 MHz, CDCl3) δ 1.39 (m, 4H), 1.50-1.80 (m, 11H), 3.38 (m, 1H), 3.49 (m, 

1H), 3.63 (t, 2H, J = 6.4 Hz), 3.74 (m, 1H), 3.85 (m, 1H), 4.57 (m, 1H). 13C NMR (100 MHz, 

CDCl3) δ 20.0, 25.8, 25.9, 26.4, 30.0, 31.1, 33.0, 62.6, 62.9, 67.8, 99.0.  

20a. 1H NMR (400 MHz, CDCl3) δ 1.23 (d, 3H, J = 6.4 Hz), 1.40-1.68 (m, 9H), 2.09 (brs, 

1H), 3.62 (t, 2H, J = 6.4 Hz), 3.73 (m, 2H), 4.07 (m, 1H), 4.53 (t, 1H, J = 5.2 Hz). 13C NMR 

(100 MHz, CDCl3) δ 20.6, 22.0, 32.6, 33.3, 34.9, 62.4, 66.7, 73.0, 102.0.  

20b. 1H NMR (400 MHz, CDCl3) Obtained as a mixture of diastereomers δ 1.23 (d, 3H, J = 

6.4 Hz), 1.40-1.84 (m, 14H), 3.37 (m, 1H), 3.49 (m, 1H), 3.71 (m, 3H), 3.85 (m, 1H), 4.06 

(m, 1H), 4.52 (m, 2H). 13C NMR (100 MHz, CDCl3) Peaks from both diastereomers δ 19.8, 

20.0, 21.1, 21.2, 21.9, 22.1, 25.7, 25.8, 29.8, 29.9, 30.95, 31.09, 33.2, 33.4, 35.1, 35.3, 62.2, 

62.5, 66.6, 66.8, 67.4, 67.6, 72.7, 72.9, 98.7, 98.9, 101.8, 102.0. Anal. calcd  for C14H26O4: C, 

65.09; H 10.14. Found C, 65.26, H, 9.87.  

21a.  1H NMR (400 MHz, CDCl3) δ 1.48-1.84 (m, 6H), 2.82 (t, 2H, J = 12 Hz), 3.48-3.62 (m, 

2H), 3.79-3.92 (m, 2H), 4.61 (m, 1H), 6.07 (brs, 1H), 6.73 (d, 2H, J = 8.4 Hz,), 7.05 (d, 2H, J 

= 8.4 Hz). 13C NMR (100 MHz, CDCl3) δ 19.4, 25.4, 26.4, 30.6, 35.4, 62.2, 68.6, 98.7, 

115.1, 130.0, 130.7, 154.3. 


