Aldol derivatives of 5-phenyl-1,4-benzodiazepin-2-on- N^{4}-oxide; intriguing inertness of \mathbf{N}-oxides in aldol reactions

Dragan Šepac, Zdenko Hameršak and Vitomir Šunjić*
Ruđer Bošković Institute, Bijenička c. 54, P. O. Box 180, HR-10002 Zagreb, Croatia
E-mail: sunjic@irb.hr

Dedicated to Professor Branko Stanovnik on his $65{ }^{\text {th }}$ birthday (received 07 Feb 03; accepted 20 Mar 03; published on the website $15 \mathrm{Apr} \mathrm{03)}$

Abstract

In an attempt to prepare 3-substituted 7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-on- N^{4}-oxides 7-10, C(3) carbanion of 5-phenyl-1,4-benzodiazepin-2-on- N^{4} oxide (2) proved completely inert in aldol reaction: Detour to the target compounds $\mathbf{7 - 1 0}$ via aldols 3-6 was required. Unexpected inertness of C(3) carbanion of 2 was attributed to the high charge delocalization.

Keywords: Aldol reaction, benzodiazepines, carbanions, N-oxides

Introduction

In the course of the study of stereoselective aldol reaction of 5-phenyl-1,4-benzodiazepin-2-one ${ }^{1}$ and its 5 -pyrido- analogue ${ }^{2}$ with aromatic and aliphatic aldehydes, we have entered the preparation of the N^{4}-oxides of diastereomerically pure aldol products $\mathbf{7 - 1 0}$ as potential ligands for catalytic organometallic complexes. A number of reports appeared on successful application of N -oxides as ligands in catalytic $\mathrm{C}-\mathrm{C} ; \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{H}$ bond forming reactions, such as allylation of aldehydes, ${ }^{3,4}$ aldol reactions of ketones, ${ }^{5}$ cyclopropanation of styrene, ${ }^{6}$ epoxidations, ${ }^{7}$ oxidation of alkenes to diols, ${ }^{8}$ desymmetrization of epoxides, ${ }^{9}$ addition of thiols to enones, ${ }^{10.11}$ rearrangement of thiones to thiols. ${ }^{12}$ Chiral β-hydroxy- N-oxides catalyse the enatioselective borane reduction of ketones. ${ }^{13}$

Results and Discussion

Two synthetic alternatives to the target compounds $\mathbf{7 - 1 0}$ were considered, depending whether the N -oxidation is performed before or after aldol reaction, Scheme 1, paths \mathbf{A} and \mathbf{B}.

Scheme 1. a. $\mathrm{MCPB} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ R.T, b. LDA/THF/- $78^{\circ} \mathrm{C}$; ArCHO.

We have selected the first approach in view of a. well known, technical-scale N-oxidation of N -demethyl analogue of 1,4-benzodiazepine $\mathbf{1}$ in the production of therapeutically important 3hydroxy derivative ${ }^{14}$ (Praxiten $®$, generic name Oxazepam), b. the observation that in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ and $\mathbf{2} \mathrm{AB}$ system of $\mathrm{C}(3) \mathrm{H}_{2}$ protons is centered at 4.31 ppm and 4.64 ppm , respectively, and in their ${ }^{13} \mathrm{C}$-NMR spectra $\mathrm{C}(3)$ carbon appears at 56.59 ppm and at 67.68 , respectively. This reveals strong electron-deshielding effect of the $\mathrm{N}-\mathrm{O}$ group and consequently higher $\mathrm{C}(3)$-H acidity in $\mathbf{2}$. The carbanion of N^{4}-oxide $\mathbf{2}$ is expected more convenient for the aldol reaction then carbanion of benzodiazepine $\mathbf{1}$, similarly as the S-oxide function in \mathbf{I} is reported by Cadoni et al. ${ }^{15}$ to promote generation of vicinal carbanion that affords in high yield the aldol products II.

I

II

To our surprise, all attempts to complete an aldol reaction with the carbanion of 2 failed. Formation of carbanion on addition of a strong base to the THF solution of $\mathbf{2}$ can be followed by the appearance of an intense orange-red color. On addition of aldehyde this color persists and no formation of aldol product can be traced by HPLC. To the contrary, coloration disappears in few minutes at $-70{ }^{\circ} \mathrm{C}$ when aldehydes are added to the solution of carbanion of $1 .{ }^{1,2}$ At the temperatures around $40^{\circ} \mathrm{C}$ decomposition of $\mathbf{2}$ is observed. To achieve our synthetic target, the pathway B in the Scheme 1 was then followed; preparation of diastereomerically pure syn and anti 7 and $\mathbf{8}$ was completed by N-oxidation of $\mathbf{3}$ and 4, without any loss of stereochemical integrity, as controlled by HPLC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$. In order to test separability of the aldol products of N^{4}-oxides by crystallization, their deoxo-analogs can be separated only by chromatography, ${ }^{1,2}$ diastereomeric N^{4}-oxides $\mathbf{9 / 1 0}$ were prepared from 4.0:6.0 mixture of $\mathbf{5 / 6}$. Diastereomeric ratio remained in the product mixture but separation by crystallization failed; the products can be completely separated by chromatography. In order to explain the failed aldol reaction of N^{4}-oxide 2, and to trace eventual side-products, additional experiments were performed. First, stability of the aldol products was checked by attempting a retro-aldol reaction of diastereomeric mixture 9/10. HPLC monitoring has revealed their complete stability at $-70{ }^{\circ} \mathrm{C}$; on gradual elevation of temperature only syn diastereomer 9 has returned to $\mathbf{2}$. In the separate experiments with syn-7 and anti-8, slow splitting of $\mathbf{7}$ to $\mathbf{2}$ and benzaldehyde at temperatures between ambient and $50{ }^{\circ} \mathrm{C}$ ca be traced, whereas $\mathbf{8}$ proved stable under the same conditions.

III

V

This experiment eliminated retro-aldol reaction of the aldol products of $\mathbf{2}$ as the origin of the synthetic failure. Large difference in the stability of syn and anti diastereomers under basic conditions can be explained by different 6 -membered chelate rings they form with a lithium cation. In the syn diastereomers chelation involves carbonyl oxygen and places the large aryl group in pseudoequatorial position, ${ }^{1,2}$ whereas in the anti-diastereomers aryl group adopts pseudoequatorial conformation on chelation to the N-oxide oxygen atom. The former enolates only can undergo retro-aldol reaction, which is inhibited for the latter ones, however.

Aldol reaction of $\mathbf{2}$ was then monitored by HPLC under conditions that allow identification of benzoin, as the product of dimerization of benzaldehyde catalyzed by the carbanion of 2, and eventual other side-products. No traces of benzoine have been identified, what excluded catalytic activity of the betaine-like carbanion of 2. ${ }^{16}$ Assuming high delocalization of the negative charge to the carbonyl and the N^{4}-oxide oxygen atoms, we envisaged formation of hemiacetale-like product III or acetal-like polycyclic product IV; its carbon analog \mathbf{V} was reported as the addition product of N -oxide 2 to acrylates. ${ }^{17}$ No such side products were identified in the reaction solution. Besides, an attempt to trap the carbanion of $\mathbf{2}$ by benzylbromide has also failed.

To explain difference in the reactivity of the carbanions of the compounds $\mathbf{1}$ and $\mathbf{2}$ we have assumed strong charge delocalization of the, lowering the electron density on the $\mathrm{C}(3)$ carbon. Charge-separated canonic structures have been invoked as the origin of lower inversion barrier for the 7-membered ring in N^{4}-oxide 2. ${ }^{18}$ Charge separation in the canonic structures 2A-2C of carbanion favors delocalization of the negative charge to the oxygen atom (2B, 2C); "soft" electronic nature of delocalized carbanion makes it inert in the attempted aldol reaction.

Experimental Section

General Procedures. IR spectra were run on Perkin Elmer 297 spectrometer for KBr pallets. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were obtained with Varian Gemini XL 300 spectrometer in $\mathrm{CDCl}_{3}, \delta$ in ppm is relative to TMS as internal reference, and J in Hz. HPLC chromatography was performed on HP 1050 chromatograph with Nucleosil C18 RP column, separation was monitored by HP $1050 U V$ detector set up at 254 nm and connected to HP 3396A integrator. M.p.'s were determined on Electrothermal Apparatus, and are not corrected.

Synthetic protocol for \mathbf{N}-oxidation of 3-6. Diastereomers $\mathbf{3}$ or 4, or diastereomeric mixture 5/6 (4.0:6.0; $1.0 \mathrm{~g}, 2.6 \mathrm{mmol}$, prepared according to ref. 1) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL , filtered over the column with Alox), cooled to $0{ }^{\circ} \mathrm{C}$, and over 10 min was added meta-chloroperbenzoic acid (MCPB; $2.1 \mathrm{~g}, 12 \mathrm{mmol}$). The reaction mixture was stirred under argon for 20 h at ambient temperature, then reaction solution was extracted with sat. aqueous NaHCO_{3} solution $(2 \times 10 \mathrm{~mL})$, aqueous phase washed with EtAc $(2 \times 10 \mathrm{~mL})$, organic extracts collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. HPLC control revealed 4.0:6.0 mixture of diasteremeric products $\mathbf{9 / 1 0}$, which are separted by flash chromatography (50 g silicagel; tert-buthyl-methylether $/ n$-hexane $5: 2$). It was obtained 0.47 g of the faster running diastereomer anti-10, and 0.53 g of the slower running syn9.
syn-3-(4-Methoxyphenyl)-hydroxymethyl-7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin- N^{4}-oxide (7). The pure syn-7 was obtained from syn-3 in 87%, mp 205-206 ${ }^{\circ} \mathrm{C}$ (from MeOH). IR (KBr): 3435, 1684, 1611, 1514, 1484, 1443, 1406, 1251, 1181, 1114, 1033, $833 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.71-7.43(\mathrm{~m}, 8 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d} ; J=2.3 \mathrm{~Hz} ; 1 \mathrm{H}), 6.85(\mathrm{~d} ;$ $J=8.6 \mathrm{~Hz} ; 2 \mathrm{H}$), $5.90(\mathrm{~d} ; J=9.4 \mathrm{~Hz} ; \mathrm{C}(3) \mathrm{H}), 4.30(\mathrm{~d} ; J=9.4 \mathrm{~Hz} ; \mathrm{CHOH}), 3.77$ (s, OMe), 3.37 (s, NMe). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 162.8, 159.4, 143.8, 140.0, 131.7, 131.0, 130.8, 130.6, 130.5, 130.4, 130.0, 129.4, 129.2, 129.1, 128.4, 128.1, 123.3, 113.6, 74.0, 69.8, 55.0, 35.3. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}$ (436.89): C 65.98 , H 4.84, N 6.41. Found: C 65.97 , H $4.83, \mathrm{~N} 6.35 \%$.
anti-3-(4-Methoxyphenyl)-hydroxymethyl-7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin- N^{4}-oxide (8). The pure anti-8 was obtained from anti-4 in 78% yield, mp 225 $226{ }^{\circ} \mathrm{C}$ (from MeOH). IR (KBr): 3469, 1687, 1515, 1486, 1446, 1408, 1230, 1180, 1020, 840, $824,765 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.54-7.39(\mathrm{~m}, 9 \mathrm{H}), 7.09(\mathrm{~d} ; J=2.2 \mathrm{~Hz} ; 1 \mathrm{H}), 6.92(\mathrm{~d} ; J=8.5 \mathrm{~Hz}$; $2 \mathrm{H}) ; 6.00(\mathrm{~d} ; J=8.5 \mathrm{~Hz} ; \mathrm{C}(3) \underline{\mathrm{H}}) ; 4.36(\mathrm{~d} ; J=8.5 \mathrm{~Hz} ; \mathrm{C} \underline{H} O H) ; 3.83(\mathrm{~s}, \mathrm{OMe}), 3.57$ (s, NMe). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 163.3, 158.6, 140.8, 134.3, 130.6, 130.5, 130.4, 130.3, 129.7, 129.3, 129.0, $128.9,128.2,128.1,128.0,124.9,113.3,72.4,68.1,55.1,35.2$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}$ (436.89): C 65.98, H 4.84, N 6.41. Found.: C 65.84, H 4.88, N 6.23\%.
syn-3-(Phenyl)hydroxymethyl-7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-N^{4}-oxide (9). After chromatographic separation and on crystallization from $\mathrm{MeOH} \mathrm{mp} 201-202{ }^{\circ} \mathrm{C}$. IR (KBr): 3552, 3447, 1664, 1482, 1410, 1296, 1215, 1109, 1036, 767, 723, 696, $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.58-7.35(\mathrm{~m}, 12 \mathrm{H}), 7.06(\mathrm{~d} ; J=1.9 \mathrm{~Hz} ; 1 \mathrm{H}) ; 6.00(\mathrm{~d} ; J=8.8 \mathrm{~Hz} ; \mathrm{C}(3) \mathrm{H} ; 4.48(\mathrm{~d} ; J=8.8$ $\mathrm{Hz} ; \mathrm{C} \underline{\mathrm{HOH}}), 3.51$ (s, Me). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 165.0,142.2,139.9,139.4,131.6,130.6,130.4$, $130.2,130.0,129.9,129.8,128.7,128.4,128.0,127.8,127.6,127.3,123.2,72.8,69.5,35.4$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (406.86): C. 67.90, H, 4.71, N, 6.89. Found: C, 67.54, H 4.60, N 6.83\%.
anti-3-(Phenyl)hydroxymethyl-7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-N^{4}-oxide (10). After chromatographic separation and on crystallization from $\mathrm{MeOH}, \mathrm{mp} 255-256{ }^{\circ} \mathrm{C}$. IR (KBr): 3441, 1686, 1486, 1443, 1407, 1207, 1044, 827, 726, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: 7.73-7.17 (m, 13H); 5.97 (d; $J=9.6 \mathrm{~Hz} ; \mathrm{C}(3) \mathrm{H}) ; 4.48$ (s, OH), 4.35 (d; J=9.6 Hz; CHOH); 3.38 (s, Me). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 162.7 ; 144.0 ; 140.0 ; 138.0,131.7 ; 131.1,130.9,130.8,130.7,130.5$,
130.4, 128.4, 128.3, 128.2, 126.4, 123.3, 74.0, 70.3, 35.3. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (406.86): C, 67.90, H, 4.71, N, 6.89. Found: C, 67.51, H, 4.41, N, 6.39\%.

Acknowledgements

This work was supported by the Ministry of Science and Technology of Rep. Croatia; Project No. 980701.

References

1. Marković, D.; Hameršak, Z.; Višnjevac, A.; Kojić-Prodić, B.; Šunjić, V. Helv. Chim. Acta 2000, 83, 603.
2. Majerić-Elenkov, M.; Žiher, D.; Višnjevac, A.: Hameršak, Z.; Kojić-Prodić, B.; Šunjić, V. Croat. Chem. Acta 2001, 74, 707.
3. Nakajima, M.; Sasaki, Y.; Shiro, M.; Hashimoto, Sh. Tetrahedron: Asymmetry 1997, 8, 341.
4. Nakajima, M.; Saito, M.; Shiro, M. Hasimoto, Sh. J. Am. Chem. Soc. 1998, 120, 6419.
5. Denmark, S. E.; Fan. Y. J. Am. Chem. Soc. 2002, 124, 4233.
6. Wong, W.-L.; Lee, W.-S.; Kwong, H.-L. Tetrahedron: Asymmetry 2002, 13, 1485.
7. Paulicki, M.; McCormick, G. J.; Jacobsen, E. N. Tetrahedron Lett. 1995, 36, 5457.
8. Kobayashi, S.; Endo, M.; Nagayama, S. J. Am. Chem. Soc. 1999, 121, 11229.
9. Tao, B.; Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 353.
10. Saito, M.; Nakajima, M.; Hashimoto, S. Tetrahedron 2000, 56, 9589.
11. Saito, M.; Nakajima, M.; Hashimoto, S. J. C. S., Chem. Commun. 2000, 1851.
12. Diana, M. B. ; Marchetti, M.; Melloni, M. Tetrahedron: Asymmetry 1995, 6, 1175.
13. O'Niel, I. A,; Turner, C. D.; Kalindjian, S. B. Synlett 1997, 777.
14. Bell, S. C.; Sulkowski, T. S.; Gochman, C.; Childress, S. J. J. Org. Chem. 1962, 27, 562.
15. Cabiddu, S.; Cadoni, E.; Melis, S.; Gelli, G.; M. G. Cabiddu, M. G.; Fattuoni, C.; De Montis, S. Tetrahedron 2001, 57, 10365.
16. Gpong, J. H.; Im, J. Y.; Lee, Y. K.; Kim, N. J. Tetrahedron Lett. 2002, 43, 1247.
17. Aversa, M. C.; Giannetto, P.; Ferlazzo, A.; Romeo, G. J. Chem. Soc., Perkin 1 1982, 2701.
18. Raban, M.; Carlson, E. H.; Smuszkovicz, J.; Slomp, G.; Chidester, C. G.; Duchamp, D. J. Tetrahedron Lett. 1975, 139.
