Recent advances in the synthesis of pyrroles via multicomponent reactions using arylglyoxals

Ramin Javahershenas,*a Fatemeh Majidi Arlan, b Rolf Herman Prager, c and Jabbar Khalafy a

a Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
b Research Department of Analytical Chemistry, Iranian Academic Center for Education, Culture and Research, P. O. Box 57155-397, Urmia, Iran
c Faculty of Science & Engineering, School of Chemical & Physical Sciences, Flinders University, Adelaide, S. Australia 5042, Australia

Email address: jshbco@yahoo.com

Abstract

Pyrrole is widely known as an active pharmacophore. This core framework plays an important role in several natural and biological products. Due to its properties, developing such scaffolds has attracted much attention. The accessibility of these role-playing heterocyclic motifs via easy, high efficiency and developed methodologies is of interest and value in the creation of new heterocyclic compounds. This review highlights the broad range of applications of arylglyoxals in the synthesis of pyrrole derivatives via multicomponent reactions over the period 2010-2019.

Keywords: Pyrroles, arylglyoxals, multicomponent reactions

DOI: https://doi.org/10.24820/ark.5550190.p011.172

Page 117
Introduction

1.1 Pyrroles and their importance in biochemistry and medicine

Pyrroles are five-membered nitrogen containing heterocycles, and have attracted much attention due to their presence in a wide range of natural and synthetic bioactive compounds.\cite{1-7} The pyrrole ring is a constituent of numerous natural compounds such as chlorophyll, the porphyrins of heme, vitamin B12, digestive fluid pigments like haematoidin and biliverdin, in bacteriochlorins and porphyrinogens. Porphyrins are a group of heterocyclic macromolecules that are synthesized by the cyclocondensation reaction between pyrrole and several aliphatic or aromatic aldehydes in the presence of various catalysts and under different conditions. Non naturally pyrroles have been found to possess considerable biological activities, and many drugs with this scaffold motif have been designed and synthesized.\cite{8-14} The important pharmaceutical, biological and materials science applications of pyrrole, and its significance as an intermediate in the synthesis of natural products, have led pyrroles to become an important class of heterocyclic compounds in organic chemistry.\cite{14-21}

Therefore, due to the manifold pharmaceutical and biological properties of pyrrole derivatives, such as antibacterial,\cite{22-26} anticancer,\cite{27-33} (for the treatment of several types of tumor), antifungal,\cite{34-37} anti-inflammatory,\cite{38-40} antiviral,\cite{41,42} antimalarial,\cite{43} antiparasitic,\cite{44} anticholestaemic (Atorvastatin is a drug widely used as a cholesterol-lowering agent),\cite{45} antibiotic,\cite{46} anti-HIV,\cite{47,49} antioxidant,\cite{50-53} and as a systemic enzyme inhibitor,\cite{54,55} these compounds have been the subject of considerable research and development in the pharmaceutical industry (Figure 1).
Figure 1. Some pyrrole-derived drugs.

1.2 Multicomponent and domino reactions

The design and synthesis of hetero-aromatic compounds via a simple, efficient and economical method, with the potential to form several bonds in a single operation, are important factors of a valuable and useful synthetic method. The last few years have seen an enormous increase in the number of applications of multicomponent reactions (MCRs) being reported. MCRs are a convenient route to architecturally complex heterocyclic compounds, and they are powerful synthetic tools for the synthesis of a wide variety of biologically active heterocyclic compounds, providing simple and rapid access to complex structures in a single synthetic operation.

Organic chemists are interested in multicomponent reactions involving domino processes in the synthesis of many organic molecules. The products of such reactions have attracted much attention in recent years due to the wide range of their potential biological and pharmaceutical activities. These methods have afforded the easy and convenient isolation of products in short reaction times, usually with high atom-economy, high selectivity, and often by environmentally friendly chemical processes without requiring elaborate purification by solvent and chromatographic methods, both in academic laboratories and industrial processes. These
1.3 Arylglyoxals: their availability and utility

Arylglyoxals are very valuable synthons in the field of heteroaromatic chemistry, owing to these molecules having two active functional groups, aldehyde and ketone, with different reactivities. Therefore, for C–C and C–N bond formation via [3+2] cyclization, they provide two electrophilically active sites (C–O and C=O bonds) as 1,2-acceptors, which can be attacked by the electron-rich β–C atom and the nucleophilic NH group in β-enaminones. Various methods have been reported for the synthesis of arylglyoxals in the literature. The most common method is oxidation of aryl methyl ketones by SeO₂. The various synthetic methods along with reaction conditions are summarized in Table 1.

Table 1. Methods for the synthesis of arylglyoxals

<table>
<thead>
<tr>
<th>Method</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorination of aryl methyl ketones</td>
<td>1,3-Cl₂-5,5-Me₂-hydantoin, Cu(OTf)₂, CHCl₃, reflux, 5–8 h</td>
</tr>
<tr>
<td>Oxidation of aryl acetylenes</td>
<td>(HMPA)MoO₂(O₂), Hg(OAc)₂, DCE-MeOH, 0 °C, 15 min</td>
</tr>
<tr>
<td></td>
<td>NBS, dry DMSO, rt, 20 h</td>
</tr>
<tr>
<td></td>
<td>(PhSe)₂, (NH₄)₂S₂O₈, water-CH₃CN, 60 °C, then chromatography on SiO₂</td>
</tr>
<tr>
<td></td>
<td>DCM-ROH (99/1)</td>
</tr>
<tr>
<td>Oxidation of aryl methyl ketones</td>
<td>SeO₂, dioxane-water, reflux</td>
</tr>
<tr>
<td></td>
<td>H₂SeO₃, dioxane-water, reflux, 4 h</td>
</tr>
<tr>
<td></td>
<td>SeO₂, EtOH, 10% HNO₃(aq), 90 °C ,1h</td>
</tr>
<tr>
<td></td>
<td>(PhSe)₂, (NH₄)₂S₂O₈, MeOH, reflux, 1–4h</td>
</tr>
<tr>
<td></td>
<td>48% HBr (aq), DMSO, 55 °C, 0.5–24 h</td>
</tr>
<tr>
<td>Oxidation of α-diazoketones</td>
<td>Dimethylidioxirane, acetone, rt</td>
</tr>
<tr>
<td>Reaction of methyl benzoates with DMSO then oxidation</td>
<td>(1) DMSO, t-BuOK/ t-BuOH, rt, 4 h, then HCl, water, rt, 30 h</td>
</tr>
<tr>
<td></td>
<td>(2) Cu(OAc)₂·H₂O, CHCl₃, rt, 1 h</td>
</tr>
<tr>
<td>Oxidation of phenacyl bromides</td>
<td>DMSO, rt, 9 h</td>
</tr>
<tr>
<td></td>
<td>α-picoline N-oxide, 0 °C, then Na₂CO₃, water</td>
</tr>
<tr>
<td></td>
<td>Et₂NOH, MeOH, reflux, 2 h</td>
</tr>
<tr>
<td>Reaction of organolithium compounds with diethoxyacetyl-</td>
<td>piperidine-1-yl-COCH(OEt)₂, p-Me₂NC₆H₄Li, ether, reflux, 2h, then HCl,</td>
</tr>
<tr>
<td>piperidine</td>
<td>water, N₂(atm.), rt, 41 h</td>
</tr>
<tr>
<td>Decomposition of phenacyl nitrate esters</td>
<td>NaOAc.3H₂O, DMSO, 20-25 °C, 25-55 min</td>
</tr>
</tbody>
</table>

1.4 Application of active methylene containing compounds in pyrrole synthesis

There are many synthetic methods for the synthesis of pyrrole derivatives and in most of them compounds such as α-diazoketones, α-dicarboxyls, α-hydroxycarbonyl ketones, nitroalkanes, nitroalkenes, isocyanides, 1,4-dicarboxyls, and alkynes are used as adaptable precursors. An overview of the syntheses of pyrrole structures by typical cycloaddition methods and using wide range of methylene active compounds is provided in Figures 2 and 3, respectively.
Figure 2. Typical cycloaddition methods for the synthesis of pyrroles.
2. Pyrrole Syntheses using Arylglyoxals via Multicomponent Reactions

2.1 Synthesis of monocyclic pyrroles
The addition reaction of phosphines to electron-deficient carbon-carbon triple bonds is well known to produce a reactive zwitterionic intermediate, which can be trapped by various electrophiles. The reactions of adducts of dialkyl acetylenedicarboxylates with triphenylphosphine in the presence of a variety of organic acidic compounds, have been shown to trap the zwitterionic intermediates, to provide the synthesis of a series of carbocyclic and heterocyclic compounds through an efficient one-pot route. A four-component reaction leading to the substituted pyrroles 5 has been reported by Anaraki-Ardakani et al. with triphenylphosphine 1, a 2-aminopyridine 2, and dialkyl acetylenedicarboxylate 3 in the presence of arylglyoxals 4 at room temperature in dichloromethane, with good yields (Scheme 1).
Scheme 1. One-pot synthesis of substituted pyrroles by Anaraki-Ardakani et al.74

In a recent environmentally benign and efficient contribution to these reactions, an iodine-promoted MCR protocol was described by Musawwer Khan and co-workers for the synthesis of two kinds of pyrrole. In a facile one-pot four-component reaction between dialkyl acetylenedicarboxylate \(\text{3} \), aromatic amines \(\text{8} \) and arylglyoxals \(\text{4} \) catalyzed by 10 mol\% of iodine in ethanol at room temperature, the 4-arylaminopyrrole-2,3-dicarboxylate esters \(\text{9} \) were formed. Under the same reaction conditions, a three-component reaction between (\(E \))-\(N \)-methyl-1-(methylthio)-2-nitroethenamine (NMSM, 7), aromatic amines \(\text{8} \) and arylglyoxals \(\text{4} \) provided the novel dihydro-1\(H \)-pyrrole derivatives 6 (Scheme 2).75

\[
\text{PPh}_3 + \begin{array}{c}
\text{COOR} \\
\text{COOR}
\end{array} + \begin{array}{c}
\text{CH}_2\text{Cl}_2 \\
\text{R.T., 24h}
\end{array} \rightarrow \begin{array}{c}
\text{5} \\
\text{X}
\end{array}
\]

\(\text{X} = 5\text{-Br}, 5\text{-Cl}, 4\text{-Me} \)
\(\text{R} = \text{Me}, \text{Et} \)
\(\text{Ar} = 4\text{-NO}_2\text{C}_6\text{H}_4, 4\text{-BrC}_6\text{H}_4 \)

Scheme 2. One-pot syntheses of substituted pyrroles developed by Musawwer Khan et al.75

Wang’s group studied the four-component reaction between 1,3-dicarbonyl compounds \(\text{10} \), arylglyoxals \(\text{4} \), a dialkyl acetylenedicarboxylate \(\text{3} \) and aromatic amines \(\text{8} \) in ethanol as solvent under reflux and catalyst-free conditions; the reaction proceeded especially well, affording the expected products \(\text{11} \) in high yields (Scheme 3).76
Mehrabi and coworkers reported similar reactions but under rather milder conditions. To explore the scope of this transformation a series of pyrrole derivatives 11 was prepared in a one-pot four-component reaction; a mixture of various aromatic amines 8 with aryglyoxals 4, dialkyl acetylenedicarboxylate 3 and Meldrum’s acid or dimedone 10 was stirred in ethanol at room temperature (Scheme 4). Again, excellent yields were reported.77

Scheme 3. Wang’s four-component synthesis of polyfunctionalized pyrroles.76

Scheme 4. Four-component synthesis of polysubstituted pyrroles described by Mehrabi et al.77
A very efficient synthesis of the polysubstituted pyrroles 12 and 15, was reported by Shi and coworkers. A 1:1:1:1 mixture of arylglyoxals 4, anilines 8, dialkyl acetylenedicarboxylates 3 or alkyl acetoacetates 13, and malononitrile 14 in the presence of the phase-transfer catalyst TEBAC in ethanol as solvent at reflux temperature, was found to lead to pyrroles (Scheme 5).78

Scheme 5. Synthesis of pyrroles developed by Shi and co-workers.78

For the synthesis of polysubstituted pyrroles 17, Dhinakaran and coworkers have developed an efficient domino protocol from the one-pot, three-component domino reactions of arylglyoxals 4, malononitrile 14 and ethyl (E)-3-(4-arylamino)acrylates 16 under solvent- and catalyst-free conditions simply by grinding (Scheme 6).79

Scheme 6. Three-component synthesis of multifunctionalized pyrroles.79
The polysubstituted pyrroles 21 have been synthesized via a coupling reaction involving acetophenone 18, N,N-dimethylformamide dimethylacetal 19, substituted amines 8, arylglyoxals 4 and malononitrile 14 in methanol under reflux, leading to the novel pyrrole cyanoacetamides 21 in good yields (Scheme 7).\(^{80}\)

\[
\begin{align*}
\text{Ar}^* \quad \text{Ar}^\prime \quad \text{Ar}'' \\
\text{O} \quad \text{O} \quad \text{N} \\
\text{Ar} = \text{Ph}, \ 4\text{-ClC}_6\text{H}_4, \ 4\text{-BrC}_6\text{H}_4, \ 4\text{-MeOC}_6\text{H}_4 \\
\text{Ar}^* = \text{H}, \ 4\text{-ClC}_6\text{H}_4, \ 3\text{-ClC}_6\text{H}_4, \ 4\text{-MeOC}_6\text{H}_4, \ 3\text{-MeOC}_6\text{H}_4, \ 4\text{-MeC}_6\text{H}_4 \\
\text{Ar}'' = \text{Ph}, \ 4\text{-MeOC}_6\text{H}_4
\end{align*}
\]

Scheme 7. Synthesis of substituted pyrroles developed by Ambethkar.\(^{80}\)

Eftekary-Sis \textit{et al.} reported an efficient and facile procedure for the synthesis of pyrrole heterocycles 24 by the reaction of various substituted arylglyoxals 4 and \(\beta\)-dicarbonyl compounds 22 in the presence of ammonium acetate 23 under ultrasound irradiation (US) (Scheme 15).\(^{81}\)

\[
\begin{align*}
\text{Ar} = \text{Ph}, \ 4\text{-ClC}_6\text{H}_4, \ 4\text{-BrC}_6\text{H}_4, \ 4\text{-MeOC}_6\text{H}_4 \\
\text{R} = \text{Me}, \ \text{OMe}, \ \text{OEt}, \ \text{O}^\text{Bu}
\end{align*}
\]

Scheme 8. Ultrasound-assisted synthesis of pyrrole derivatives.\(^{81}\)

Further research into the synthesis of tetrasubstituted pyrroles 24 by Bhat’s group with the reaction of 1,3-dicarbonyls 22, and arylglyoxals 4 with ammonium acetate 23 under solvent- and catalyst-free conditions yielded only one regioisomer (Scheme 16).\(^{82}\)

\[
\begin{align*}
\text{R} = \text{OMe}, \ \text{Me}, \ \text{O}^\text{Bu} \\
\text{Ar} = \text{Ph}
\end{align*}
\]

Scheme 9. Synthesis of fully substituted pyrroles reported by Bhat.\(^{82}\)
Anary-Abbasinejad’s group has reported a green MCR approach for the synthesis of a series of pyrrole derivatives 26. Thus, the four-component domino reaction between arylglyoxals 4, acetylacetone \(22'\), indole 25 and aliphatic amines in water as a solvent in the absence of any catalyst afforded indole derivatives in excellent yields (Scheme 10).

\[
\begin{align*}
\text{RNH}_2 + \text{O} - \text{OH} + \text{Ar} - \text{OH} + \text{O} - \text{Ar} \rightarrow & \text{H}_2\text{O} \\
1\text{h, 60°C} & \rightarrow \text{O} - \text{NH} \text{Ar} \\
\end{align*}
\]

\(\text{R} = \text{Bn, 4-MeOBn, 4-MeOBn, 4-MeOBnethyl} \)
\(\text{Ar} = \text{Ph, 4-ClC}_6\text{H}_4, 4-\text{MeOC}_6\text{H}_4, 4\text{-BrC}_6\text{H}_4, 4\text{-NO}_2\text{C}_6\text{H}_4} \)

Scheme 10. Four-component synthesis of indolyl pyrroles.

Looking further into this reaction, Anary-Abbasinejad and his group studied the three-component reaction between arylglyoxals 4, acetylacetone 22 and enaminoketones 27 (Scheme 11). A mixture of 4 and acetylacetone 22 was stirred in water at 100 °C. Then 27 was added and the mixture was heated at 100 °C, to afford pure 3-acetyl-4-(4-bromobenzoyl)-5-[1-(p-tolylamino)ethyldene]heptane-2,6-dione 28. When the reaction was carried out in 1:1 water–ethanol mixture in the presence of 10 mol% of NaOH under reflux conditions, one of the acetyl groups of an acetylacetone moiety of 28 was removed and the only isolated product was the pyrrole derivative 30. Similar results were obtained when Et₃N was used as catalyst under reflux condition for the synthesis of pyrrole derivative 29.

\[
\begin{align*}
\text{Ar} = \text{Ph, 2-thienylC}_6\text{H}_4, 4-\text{MeC}_6\text{H}_4, 4-\text{ClC}_6\text{H}_4, 4-\text{MeOC}_6\text{H}_4, \\
4-\text{NO}_2\text{C}_6\text{H}_4, 3-\text{NO}_2\text{C}_6\text{H}_4, 4-\text{BrC}_6\text{H}_4, 2-\text{NaphthylC}_6\text{H}_4} \\
\text{Ar}' = \text{Ph, 4-MeC}_6\text{H}_4, 4-\text{ClC}_6\text{H}_4, 4-\text{OMeC}_6\text{H}_4} \\
\text{R} = \text{Me, Ph} \)
\]

Scheme 11. Three-component synthesis of multifunctionalized pyrroles.
The polysubstituted pyrrole derivatives 35-38 were prepared by Choudhury and co-workers in four-component reactions between cyclic 1,3-dicarbonyl compounds 31-34, β-keto esters 22, arylglyoxals 4 and amines 8 under catalyst-free conditions as shown in Scheme 12.\(^8\)

![Scheme 12. One-pot synthesis of substituted pyrroles.](image)

A one-pot multicomponent process has been developed by Dommaraju and Prajapati for the formation of poly-functionalized pyrimidin-5-yl-pyrroles 40 and 41 by reacting equimolar amounts of various anilines 8, barbituric acid derivatives 39, arylglyoxals 4 and ethyl acetoacetate 22 or dialkyl acetylenedicarboxylates 3, in ethanol as solvent under reflux conditions (Scheme 13).\(^9\)
In addition, when 1,2-diaminoethane 42 was used as a substrate, the 1,2-bispyrrole derivative 43 was obtained in moderate yield (Scheme 14). When the reaction was performed with the reactants in stoichiometric ratios under same conditions the desired product was obtained in good yield.

Other bispyrroles formed from a diamine are compounds 44, prepared by Choudhury et al.85 from \(p\)-phenylenediamine with ethyl or methyl acetoacetate, phenylglyoxal 4, and 4-hydroxycoumarin 34.
Chen et al. reported a highly efficient one-pot regioselective synthesis of pyrrole derivatives 48 by a sequential reaction of nitriles with α-bromoesters and arylglyoxals 4 (Scheme 15). The Blaise reaction intermediate 47 was generated *in situ* from the reaction of benzonitrile 45 with the bromoester 46 in THF under catalyst-free condition. The tandem reaction of the intermediate 47 with arylglyoxals proceeded smoothly in THF under room temperature for 30 min to afford the corresponding pyrroles 48 in good yields.

Scheme 15. Two-step synthesis of pyrroles via the Blaize reaction.

Liu et al. have reported the synthesis of indolyl-substituted pyrroles 50 by the reaction of arylglyoxals 4 with the dithioacetal 49, aniline 8 and 2-methylindole 25 in nitromethane using AlCl₃ as catalyst in a four-component reaction (Scheme 16).

Scheme 16. Four-component synthesis of multifunctionalized pyrroles.
A convenient method for the synthesis of polysubstituted pyrrole scaffolds has been reported by Kolos and co-workers. \(^8^9\) Refluxing of arylglyoxals 4, acetoacetic ester or its derivatives 52, and substituted anilines 8 in methanol with added catalytic amounts of acetic acid was found to result in precipitation of substituted pyrroles 51 or 53 from the hot reaction mixture after 30 min (Scheme 17).

![Scheme 17](image)

Scheme 17. One-pot reaction of substituted pyrroles. \(^8^9\)

Liu et al. reported the highly efficient annulation of enaminones 27 with arylglyoxals 4 and indoles 25', thiophenol 54 or arylamines 8'', yielding fully substituted pyrroles 55-57 via three-component domino reactions involving indolisation and thiolation processes (Scheme 18). \(^9^0\)

![Scheme 18](image)

Scheme 18. Three-component pyrrole synthesis of Liu et al. \(^9^0\)
The synthesis of pyrrole derivatives 58 was accomplished by Masoudi and Anary-Abbasinejad using the reaction between arylglyoxals 4 with 4-phenylamino-3-pentene-2-one 27 in acetonitrile (Scheme 19).\(^9^1\) Triphenylphosphine 1 was added after 10 min of stirring, to form substituted pyrrole 58 and triphenylphosphine oxide.

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{NHR} & \quad \text{OH} \\
\text{Ar} & \quad \text{OH} \\
\text{27} & \quad 4 & \quad 1 & \quad \text{MeCN} \\
\text{MeOOC} & \quad \text{R.T.,30min} \\
& \quad \text{58}
\end{align*}
\]

\[\text{Ar = Ph, 4-MeC}_6\text{H}_4, 4-\text{FC}_6\text{H}_4, 2-\text{Naphyl, 4-ClC}_6\text{H}_4} \]
\[\text{R = Ar (Ph, 4-MeC}_6\text{H}_4, 4-\text{ClC}_6\text{H}_4, 4-\text{MeOC}_6\text{H}_4, \text{C}_6\text{H}_5\text{CH}_2^-), n-\text{Bu}} \]

Scheme 19. Anary-Abbasinejad’s three-component synthesis of polyfunctionalized pyrroles.\(^9^1\)

Considering the significance of iodine-mediated oxidation of methyl ketones, Jalani et al. investigated the one-pot synthesis of substituted pyroles under the influence of a co-product promoted Povarov reaction of acetophenone 18, arylamines 8, and a-keto esters 59. They used enamine such as methyl-3-aminobut-2-enoate instead of a-keto esters to permit the nucleophilic addition of enamines to the C-acylimine ion, which could then be followed through intramolecular cyclization to the formation of 4-aminopyrroles 60 (Scheme 20).\(^9^2\)

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{Ar} & \quad 8 \\
\text{R}^1 & \quad \text{NH} \\
\text{R}^2 & \quad \text{CO} \\
\text{R}^3 & \quad \text{HN} \\
\text{R}^4 & \quad \text{N} \\
\text{12} & \quad 8 & \quad 59 & \quad \text{I}_2/\text{DMSO} \\
\text{R}^1 & \quad \text{H, 4-MeO, 3,5-Cl}_2, 4-\text{NO}_2, 4-\text{Cl, 4-Me, 2-Py, 3,5-(i-Bu)}_2, 1-\text{Naphthyl} \\
\text{R}^2 & \quad \text{MeO, Eto, }^1\text{BuO} \\
\text{R}^3 & \quad \text{Me, 3-MeC}_6\text{H}_4, \text{Ph, 2-FC}_6\text{H}_4, 4-\text{MeOC}_6\text{H}_4, \text{i-Bu, 2-Thienyl, Diphenyl} \\
\text{R}^4 & \quad \text{H, 4-MeOC}_6\text{H}_4}
\end{align*}
\]

Scheme 20. Multicomponent syntheses of pyrroles reported by Jalani et al.\(^9^2\)

2.2 Synthesis of 1,5,6,7-dihydro-4H-indol-4-ones and other indoles

Recently, a four-component reaction leading to the fused pyrrole derivatives 61 and 64 was reported: the reaction of dimeredone 31 and various anilines 8 proceeds by one-pot reaction under solvent-free conditions at 80 °C to produce the enamimone adduct intermediate 63. The sequential addition of arylglyoxals 4 and malononitrile 14 or ethyl cyanoacetate or methyl cyanoacetate 62 in ethanol successfully gave the desired product in good yields. It is noteworthy that when malononitrile 14 was used, the reaction led to the
formation of 64 in excellent yield, whereas using and using ethyl or methyl cyanoacetate 62 led to product 61 (Scheme 21).\(^\text{93}\)

![Scheme 21](image)

Scheme 21. Four-component synthesis of fused pyrroles developed by Bayat *et al.*\(^\text{93}\)

Recently, Indian researchers have reported that the domino condensation of arylglyoxals 4, enamiones 63, and malononitrile 14 can produce highly substituted pyrrole and tetrahydroindole derivatives, *e.g.* 64', in high yield by a one-pot reaction (Scheme 22).\(^\text{94}\)

![Scheme 22](image)

Scheme 22. Synthesis of tetrahydroindoles from arylglyoxals, enamines and malononitrile.\(^\text{94}\)

Wang and Shi studied the three-component reaction of 1,3-dicarbonyl compounds 10, arylglyoxals 4, and enamione 63 (Scheme 23) for the synthesis of functionalized dihydro-1H-indol-4(5H)-ones 65 via one-pot three-component reactions under catalyst-free conditions.\(^\text{95}\) The reaction mixture was tested under a variety of different conditions to study the effects of solvent and temperature.
Scheme 23. Three-component synthesis of 6,7-dihydroindol-4(5H)-ones.\(^\text{95}\)

During another study of this topic, there was reported the three-component domino [3+2] heterocyclization of arylglyoxals 4, N-arylenaminones 63, and 4-hydroxy-6-methyl-2H-pyran-2-one 66, providing fused pyrroles 65 on microwave irradiation in the presence of acetic acid (Scheme 24).\(^\text{96}\) The attractive aspect of this reaction is the fact that the construction of the pyrrole skeleton and the direct C3 pyranation were readily achieved in an intermolecular fashion in a single process.

Scheme 24. Three-component synthesis of fused pyrroles.\(^\text{96}\)
Further, Jiang et al. developed related novel domino reactions for the synthesis of polyfunctionalized fused pyrroles 67 and 68 that allows the incorporation of nucleophilic moieties into the pyrrole C-4 position. This method is based on the microwave-promoted reaction between various N-substituted enaminones 63 and arylamines 8 with arylglyoxals 4 in the presence of acetic acid (Scheme 25).\(^7\)

\[
\begin{align*}
R^1 & = H, Me \\
R^2 & = Aryl (Ph, 4-MeC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4, 3,4-Cl_2C_6H_3), carboxyethyl \\
Ar & = Ph, 4-MeC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4, 3,4-Cl_2C_6H_3, 4-MeOC_6H_4 \\
Ar' & = Ph, 4-MeC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4, 3,4-Cl_2C_6H_3, 4-NO_2C_6H_4, 3-ClC_6H_4, 4-FC_6H_4
\end{align*}
\]

Scheme 25. Jiang's synthesis of polyfunctionalized fused pyrroles.\(^7\)

Recently, Jiang's group has reported a series of three-component reaction between arylglyoxals 4, enaminones 63, and an arylamine 8 to form 3-arylaminoindole derivatives 68 (Scheme 26).\(^8\)

\[
\begin{align*}
Ar & = Ph, 4-MeC_6H_4, 4-MeOC_6H_4, 4-FC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4 \\
Ar' & = Ph, 4-MeC_6H_4, 3,4-Cl_2C_6H_3, 4-FC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4, 4-NO_2C_6H_4 \\
R^1 & = Me, H \\
R^2 & = Ph, 4-MeC_6H_4, 4-FC_6H_4, 4-ClC_6H_4, 4-BrC_6H_4, 3,4-Cl_2C_6H_3
\end{align*}
\]

Scheme 26. Three-component dihydroindolone synthesis of Jiang et al.\(^8\)
The pseudo-four-component reaction between one equivalent of enaminones 63 with aryglyoxals 4, phenylhydrazine 70, and dialkyl acetylenedicarboxylates 3 was reported by Tu et al. to afford multifunctionalized fused indole derivatives 71 selectively in good yields (Scheme 27). The mixture of enaminones 63 and aryglyoxals 4 in HOAc was firstly heated at 120 °C under microwave irradiation, and then phenylhydrazine 70 and dialkyl acetylenedicarboxylates 3 were added into the mixed system at 150 °C, to form substituted pyrrole 71.

Scheme 27. Tu’s synthesis of polysubstituted tetrahydroindol-4-ones.

The three-component reaction of enamones 63, aryglyoxals 4, and indoles 25, in HOAc under microwave irradiation to give 72 and 73 in high yields has also been reported (Scheme 28).

Scheme 28. Three-component synthesis of pyrroles starting from enamones, aryglyoxals and indoles.

Recently a new, green protocol was investigated for the construction of bis-isoxazolylamino dihydro-1H-indol-4(5H)-one derivatives 74, 78, and 80. The generality of the reaction was established by employing N-isoxazolyl enamnone 76 with aryglyoxals 4 and a series of isoxazoles 75, 77, and 79 in the reaction process to produce the desired products in good to excellent yields in water and AcOH as catalyst under metal-free and refluxing conditions (Scheme 29).
Scheme 29. The synthesis of bis-isoxazolyl-1H-indol-4(5H)-one derivatives of Reddy and Kumar.101

Maity’s group has reported the simple reaction of arylglyoxals 4 and enaminones 63, for the synthesis of fused pyrrole derivatives 81 through microwave-assisted reactions under neutral conditions and in a non-nucleophilic solvent, without the use of any catalyst (Scheme 30).102

Scheme 30. Maity’s synthesis of fused pyrroles.102
Continuing these investigations, Maity observed that heating a mixture of 3-arylaminocyclohex-2-enones 63 and arylglyoxals 4 at reflux in a non-nucleophilic solvent such as acetonitrile produced indol-4-ol derivatives 82 within 6–8 h in moderate-to-good yields. Surprisingly, completely different products were formed in a nucleophilic solvent such as ethanol; heating arylglyoxals 4 and enamine 63 in ethanol at reflux produced tetrahydroindol-4-one derivatives 81 in 6–8 h in good yields (Scheme 31). In this case a solvent molecule is incorporated into the product.

\[
\begin{align*}
\text{Scheme 31. The synthesis of indole derivatives.}^{103}
\end{align*}
\]

Lin’s group found that when anilines 8, arylglyoxals 4, and cyclic 1,3-dicarbonyl compounds 10 in a mixture of ethanol and water were subjected to microwave irradiation (MW), a regioselective three-component domino reaction proceeded to give 3-functionalized indole derivatives 83 (Scheme 32).

\[
\begin{align*}
\text{Scheme 32. Three-component synthesis of multifunctionalized indoles.}^{104}
\end{align*}
\]
Naidu has developed an efficient method for the synthesis of highly functionalized indoles 84 and bisindoles 85 by reductive alkylation of \(\alpha \)-keto imines, followed by cyclization process (Scheme 33). Similarly the one-pot reaction of aniline 8, arylglyoxals 4, and cyclic diketones 10/indoles 25 gave a large number of compounds (Scheme 33).

![Scheme 33](image)

Scheme 33. Three-component syntheses of substituted indoles described by Naidu.

2.3 Synthesis of other fused pyrrole heterocycles

In some very interesting reactions related to those of the previous subsection, but where an additional ring fused to the indole \([hi]\) bonds is formed, Jiang and coworkers established a new three-component domino reaction for the synthesis of fused indole derivatives. The reaction is performed simply by mixing \(N \)-aryl enaminones and arylglyoxal 4 in acetic acid as solvent and applying microwave irradiation. Under such conditions, 1,2-diaryl dihydroindolones are formed, but with the aminoacid-derived enaminones 86 the tricyclic 1,4-oxazine-fused indole derivatives 87 are formed (Scheme 34).
Scheme 34. Synthesis of oxazino-indoles.106

Yang, Zhong and coworkers described a method for the synthesis of polysubstituted fused pyrroles 88 and 90 in moderate to high yields (Scheme 35).107 The synthetic strategy was based on a one-pot procedure involving condensation of 3-aminocoumarins 89 and arylglyoxals 4 in refluxing ethanol in the presence of catalytic p-TSA to give 88, or in toluene to give 90.

Scheme 35. Zhong’s synthesis of polysubstituted pyrroles.107

In another study by this group, the synthesis of polyfunctionalized fused pyrroles 92 was accomplished by intermolecular cycloaddition of arylglyoxals 4 with 4-aminocoumarins 91 and cyclic diketones 10 as the key step using readily available starting materials. Various arylglyoxals 4 were found to be compatible in this reaction and their electronic nature and substitution pattern had little influence on the reaction efficiency; the corresponding products 92 were formed in moderate to good yields (Scheme 36).108
Scheme 36. Yang’s three-component synthesis of polyfunctionalized fused pyrroles.108

Su et al. studied the three-component reactions of 4-aminocoumarins 91, arylglyoxals 4, and anilines 8 in toluene at reflux using KHSO\textsubscript{4} as a catalyst, to give the products 93 in moderate to excellent yields (Scheme 37).109

Scheme 37. Synthesis of fused pyrroles from 4-aminocoumarins, arylglyoxals and anilines.109

Javahershenas and Khalafy reported a new method for the synthesis of pyrrolo[2,3-d]pyrimidine derivatives 95 through the one-pot, the three-component reaction of 4-hydroxycoumarin 34, arylglyoxals 4 and 6-aminouracil or 1,3-dimethyl-6-aminouracil 94 catalyzed by L-proline (Scheme 38).110
In another study, this group reported an efficient procedure for the reaction of arylglyoxals 4 with 6-amino-1,3-dimethyluracil 94 and barbituric acid derivatives 39 in the presence of TBAB (5 mol%) in ethanol at 50 °C, affording polyfunctionalized pyrrolo[2,3-d]pyrimidine derivatives 96 in high yields (Scheme 39).111

\begin{center}
 \includegraphics[width=\textwidth]{scheme38.png}
\end{center}

\textbf{Scheme 38.} Javahershenas and Khalafy’s three-component synthesis of polyfunctionalized fused pyrroles.110

Recently, the synthesis of polyfunctionalized pyrrolo[2,3-d]pyrimidine derivatives was reported in a review.70

Chen and coworkers have reported the multicomponent synthesis of N-bridgehead-fused pyrroles 98 and 99 by reaction of arylglyoxals 4, cyclohexane-1,3-diones 31, and heterocyclic ketene aminals (HKA) 97 under two different reflux conditions in high yield (Scheme 40).112

\begin{center}
 \includegraphics[width=\textwidth]{scheme39.png}
\end{center}

\textbf{Scheme 39.} Three-component pyrrolopyrimidine synthesis developed by Javahershenas and Khalafy.111

In further work of Chen \textit{et al.}, the reaction between one equivalent of an HKA 97 with arylglyoxals 4 and 1,3-diphenylpropane-1,3-dione 100 is reported to proceed selectively, providing multifunctionalized fused pyrrole derivatives 101 in high yields, as shown in Scheme 41.113
Scheme 40. Chen's synthesis of N-bridgehead fused pyrroles.\(^{112}\)

Scheme 41. Three-component synthesis of further fused pyrroles.\(^{113}\)

In other research, Chen developed a method to synthesize pyrrolo[1,2-a]pyrimidine and pyrrolo[1,2-a][1,3]diazepine rings 102 in good to excellent yields by simply heating the HKA 97, indoles 25, and arylglyoxals 4, catalyzed by HOAc in ethanol under reflux. (Scheme 42).\(^{114}\)

Scheme 42. A three-component synthesis of polyfunctionalized fused pyrroles by Chen et al.\(^{114}\)
Jiang et al. observed that, considering the presence of two carbonyl groups in arylglyoxals, these species sometimes react only at the aldehyde functionality, while in other reactions both the functional groups are involved in the formation of heterocycles. Therefore they studied the outcome of the reaction of arylglyoxals 4 with 5-aminopyrazoles 103 in a 1:2 molar ratio; dihydropyrrolopyrazoles 104 were formed in DMF using p-TSA as a promoter under microwave irradiation conditions (Scheme 43). \(^{115}\)

\[
\begin{align*}
&\text{OOH} \quad \text{OH} \\
&\text{Ar} \\
&\text{Ar} \\
&\text{O} \\
&\text{O} \\
&\text{Ar} \\
&\text{N} \\
&\text{N} \\
&\text{N} \\
&\text{N} \\
\end{align*}
\]

\[
\begin{align*}
&\text{R}^1 \quad \text{R}^2 \\
&\text{Me} \quad \text{Cyclopropyl} \\
&\text{2-Thienyl} \\
&\text{R}^2 = \text{Aryl} (\text{Ph}, 4-\text{MeC}_6\text{H}_4) \\
\end{align*}
\]

Scheme 43. One-pot synthesis of substituted pyrrolo-pyrazoles. \(^{115}\)

3. Conclusions

Pyrrole synthesis has attracted the attention of synthetic researchers because of their promising properties and applications in medicinal and natural products chemistry. Arylglyoxals, with two active functional groups, are a unique synthon in multicomponent reactions (MCRs) leading to substituted pyroles and related compounds. This review has detailed how arylglyoxals can play an important and key role for the rapid assembly of complex molecules proven to exhibit diverse biological activities, and are extremely useful synthons in the total synthesis of natural products. In addition, this review covers more than ninety percent of the protocols published in the last two decades for the synthesis of pyrrole based compounds using arylglyoxals via multicomponent reactions.

4. Acknowledgement

The authors are grateful for support of this work from the University of Urmia.

References

 https://doi.org/10.1111/j.1365-2958.2005.04602.x
 https://doi.org/10.1016/s0960-894x(01)00624-2
 https://doi.org/10.1021/acs.jmedchem.8b00812
 https://doi.org/10.2217/17460913.2.6.605
 https://doi.org/10.1016/0223-5234(93)90005-Y
 https://doi.org/10.1038/cdd.2013.45
 https://doi.org/10.1016/S0014-827X(01)01178-8
 https://doi.org/10.1016/s0960-894x(01)00624-2
 https://doi.org/10.1021/jm0512490
 https://doi.org/10.1002/jps.2600611205
 https://doi.org/10.1021/jm048997u
 https://doi.org/10.1021/jm00020a002
 https://doi.org/10.1016/j.bmc.2013.04.031
 https://doi.org/10.1002/ardp.200600116

 https://doi.org/10.1128/AAC.48.11.4349-4359.2004

 https://doi.org/10.1021/np100625a

 https://doi.org/10.3390/md8072162

 https://doi.org/10.1016/j.ijcard.2017.11.016

 https://doi.org/10.1021/jm00386a019

 https://doi.org/10.1016/S0960-894X(97)00340-5

 https://doi.org/10.1016/j.bmc.2007.06.004

 https://doi.org/10.3987/REV-10-686

 https://doi.org/10.1016/j.bmc.2003.11.003

 https://doi.org/10.1016/S0960-894X(01)00624-2

 https://doi.org/10.1016/j.jopr.2013.04.046

 https://doi.org/10.1016/j.tetlet.2010.03.036

 https://doi.org/10.1016/j.ejmech.2007.05.004

 https://doi.org/10.1002/cmdc.200600119

 https://doi.org/10.1021/cr0505728

 https://doi.org/10.1007/7081_2009_23

https://doi.org/10.1039/C5NJ03444B

https://doi.org/10.1007/s10593-011-0669-4

https://doi.org/10.1016/j.tetlet.2013.07.153

https://doi.org/10.1016/j.tetlet.2018.06.043

https://doi.org/10.1007/s11030-019-09984-x

https://doi.org/10.1007/s11030-014-9547-1

https://doi.org/10.1055/s-0036-1588168

88. Liu, J.-Y.; Li, Q.-Y.; Jiang; B.; Tu, S.-J. *RSC Advan.* **2013**, *3*, 5056.
https://doi.org/10.1039/c3ra40252e

https://doi.org/10.1016/j.tetlet.2015.11.075

https://doi.org/10.1007/s10593-016-1869-8

91. Liu, J.-Y.; Li, Q.-Y.; Jiang; B.; Tu, S.-J. *RSC Advan.* **2013**, *3*, 5056.
https://doi.org/10.1039/c3ra40252e

https://doi.org/10.1002/adsc.201800492

https://doi.org/10.1016/j.tet.2017.02.005

https://doi.org/10.1002/ejoc.201402085

https://doi.org/10.1021/co3001428

https://doi.org/10.1007/s11164-013-1396-5

https://doi.org/10.1021/jo301323r

https://doi.org/10.1016/j.tet.2013.02.026

https://doi.org/10.1016/j.tet.2013.05.063

https://doi.org/10.1021/co3001428

https://doi.org/10.1016/j.tetlet.2017.11.027
https://doi.org/10.1055/s-0033-1339651

https://doi.org/10.1002/ejoc.201402085

https://doi.org/10.1021/acscombsci.7b00126

https://doi.org/10.1021/acs.joc.5b00533

https://doi.org/10.1021/ol203166c

https://doi.org/10.1002/ejoc.201700054

https://doi.org/10.1080/00397911.2018.1430237

https://doi.org/10.1016/j.tetlet.2015.03.095

https://doi.org/10.1515/hc-2017-0187

https://doi.org/10.29356/jmcs.v62i1.340

https://doi.org/10.1021/sc500170d

https://doi.org/10.1016/j.tet.2015.05.067

https://doi.org/10.1021/jo500823z

Authors’ Biographies

Ramin Javahershenas was born in Urmia, Iran in 1971. He received his B.Sc. degree in Applied Chemistry from
Tabriz University, Tabriz, Iran, in 1993, his M.Sc. degree in Organic Chemistry from the Urmia University, Urmia, Iran, under the supervision of Professor Naser Ardabilchi in 1999 and his Ph.D. degree in Organic chemistry from Urmia University, Urmia, Iran under the supervision of Professor Jabbar Khalafy, in 2017. His research interests include organic synthesis, heterocyclic synthesis, asymmetric synthesis, natural products synthesis, synthetic methodology and applications of various catalysts in multicomponent reactions.

Fatemeh Majidi Arlan was born in Urmia, Iran in 1984. She received her B.Sc. degree in pure Chemistry from Urmia University, Urmia, Iran, in 2007, her M.Sc. degree in analytical Chemistry from the Urmia University, Urmia, Iran, under the supervision of Professor Khalil Farhadi in 2010 and her Ph.D. degree in Organic chemistry from Urmia University, Urmia, Iran under the supervision of Professor Jabbar Khalafy, in 2018. Currently she is working as a researcher on Research Department of Chemistry, Iranian Academic Center for Education, Culture and Research.

Rolf Herman Prager was born in Australia in 1937, and is a graduate of the University of Sydney and Imperial College, London. He is now Emeritus Professor in Chemistry at Flinders University, Adelaide. He has published widely in the fields of natural products, structure determination and synthesis, and in medicinal chemistry, particularly associated with pain relief.
Jabbar Khalafy was born in Marand, Iran in 1952. He received his B.Sc. degree in Chemistry from Tabriz University, Tabriz, Iran, in 1975, his M.Sc. degree in Organic Chemistry from Manchester University, Manchester, England, in 1977 and his Ph.D. degree in Organic Chemistry from Manchester University, Manchester, England under the supervision of Professor J.M. Bruce, in 1979. He is Full Professor in the faculty of Chemistry at Urmia University, Urmia, Iran. His research interests include organic synthesis, heterocyclic synthesis, asymmetric synthesis, natural products synthesis, FVP, synthetic methodology and applications of various catalysts in multicomponent reactions.

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).