The Free Internet Journal for Organic Chemistry

Paper

Archive for
Organic Chemistry

Synthesis of pyrimido[2,1-b][1,3]benzothiazoles and [1,3]benzothiazolo [3,2-a]quinazolines via one-pot three-component reactions from 2-aminobenzothiazole, arylglyoxals and 1,3-dicarbonyl compounds

Farzaneh Alizadeh-Bami, Hossein Mehrabi,* and Reza Ranjbar-Karimi
Department of Chemistry, Vali-e-Asr University of Rafsanjan, 77176 Rafsanjan, Iran
E-mail: mehraby h@yahoo.com

Received 08-16-2019
Accepted 11-18-2019
Published on line 12-03-2019

Abstract

A simple and efficient synthesis of pyrimido[2,1-b][1,3]benzothiazoles and [1,3]benzothiazolo[3,2a]quinazolines has been developed by using a one-pot, three-component reaction between arylglyoxals, 2-aminobenzothiazole, and various 1,3-dicarbonyl compounds in acetic acid. All the products were obtained in good yields and their structures were established from their spectroscopic data.

Keywords: 2-Aminobenzothiazole, arylglyoxal, Meldrum's acid, dimedone, barbituric acid, fused pyrimidines, fused quinazolines, fused [1,3]benzothiazoles

Introduction

Fused pyrimidines heterocyclic compounds are ubiquitous in natural products, drug molecules, and functional materials. ${ }^{1}$ Among them, especially pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2a]quinazoline derivatives have been related to an extensive range of pharmacological activities, such as antibacterial $\mathbf{A},{ }^{2}$ antimicrobial $\mathbf{B},{ }^{3}$ antiallergy $\mathbf{C},{ }^{4}$ antifungal $\mathbf{D},{ }^{5}$ anticancer $\mathbf{E},{ }^{6}$ antihistaminic $\mathbf{F},{ }^{7}$ anticonvulsant $\mathbf{G},{ }^{8}$ and anti-inflammatory activity \mathbf{H} (Fig. 1). ${ }^{9}$ Moreover, these compounds have cytotoxic activity against kidney, lung, colon, prostate or breast cancer cell lines. ${ }^{10,11}$ As a result, the search for efficient syntheses of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2-a]quinazoline derivatives have received much attention.

(A)

(D)

(B)

(E)

(F)

(H)

Figure 1. Selected bioactive molecules containing the pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2-a]quinazoline moieties.

A variety of effective strategies for the synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzo-thiazolo[3,2-a]quinazoline derivatives have therefore been reported in literature. Most of the methods depict syntheses of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2-a]quinazoline derivatives from intermolecular cyclization of 2-aminobenzothiazoles with malonic ester derivatives, ${ }^{2,12}$ Meldrum's acid, ${ }^{13}$ and β-ketoesters. ${ }^{14}$ The reaction of 2 -aminobenzothiazoles with various Michael acceptors, such as acetylenic compounds, ${ }^{15,16}$ alkyl malonates, ${ }^{8,17}$ and enaminones. ${ }^{18}$ Moreover, organic and medicinal chemists have developed a series of multicomponent reactions (MCRs) for the synthesis of heterocyclic compounds and complex biologically-active compounds, ${ }^{19-20}$ such as multi-component reaction of 2 -aminobenzimidazole, benzaldehyde derivatives, and active methylene compounds, ${ }^{6,21-22}$ and various other methods. ${ }^{23-29}$ However, some of these modern methods have significant limitations such as tedious workup procedures, low yields, and longer reaction times. Therefore, a new and efficient method for synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2-a]quinazoline derivatives remains an attractive goal.

We herein describe a new and efficient method for synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[[3,2-a]quinazoline derivatives via a one-pot, three-component reaction of an arylglyoxal, 2amino benzothiazole, and 1,3-dicarbonyl compounds in acetic acid at reflux conditions.

Results and Discussion

To find the optimized conditions, we studied the synthesis of 2-(4-methylbenzoyl)-4H-benzo[4,5]thiazolo-[3,2-a]pyrimidin-4-one 4a via the three-component reaction of 4-methylphenylglyoxal 1a, 2-aminobenzothiazole 2, and Meldrum's acid $\mathbf{3}$ under a variety of conditions (Table 1).

Table 1. Optimization of the reaction conditions in the synthesis of 4a

Entry	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$	Mmol of 1a:2:3	Yield (\%) ${ }^{\mathrm{b}}$
1	$\mathrm{H}_{2} \mathrm{O}$	r.t.	$1: 1: 1$	N.R.
2	EtOH	r.t.	$1: 1: 1$	N.R.
3	MeOH	r.t.	$1: 1: 1$	N.R.
4	$\mathrm{CH}_{3} \mathrm{CN}$	r.t.	$1: 1: 1$	N.R.
5	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	r.t.	$1: 1: 1$	12
6	$\mathrm{H}_{2} \mathrm{O}$	Reflux	$1: 1: 1$	N.R.
7	EtOH	Reflux	$1: 1: 1$	N.R.
8	MeOH^{2}	Reflux	$1: 1: 1$	N.R.
9	$\mathrm{CH}_{3} \mathrm{CN}$	Reflux	$1: 1: 1$	N.R.
10	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Reflux	$1: 1: 1$	45
11	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Reflux	$0.9: 1: 1$	36
12	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Reflux	$1: 1: 0.9$	32
13	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Reflux	$1: 0.9: 1$	58
14	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Reflux	$1: 0.9: 1$	58

${ }^{\text {a }}$ Reaction conditions: solvent was 5 mL , reaction time was 3 h .
${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ Reaction time was 12 h .

The optimization of the reaction conditions, including the reaction solvent, the reaction temperature, and the equivalents of starting materials, was investigated. First, various solvents were examined (Table 1, entries $1-5)$, and acetic acid was proven to be the preeminent solvent for this reaction. Then, we examined the influence of different temperatures on this reaction. To our satisfaction, when the reaction was carried out at room temperature in 3 hr , the product was formed in only 12% yield, but under reflux conditions in the same time, the product was formed in 45% yield (Table 1, entries 5 and 10). Finally, we observed that the amount of starting materials also have an important influence on the reaction (Table 1, entries 10-13). A larger amount of 4-methylphenylglyoxal 1a, and Meldrum's acid $\mathbf{3}$ (for example, 1.0 mmol) in acetic acid at reflux conditions resulted in a higher yield, 58% (Table 1, entry 13). It was found that a longer time of the reaction in acetic acid at reflux conditions did not improve the yield (Table 1, entry 14). A series of experiments revealed that the optimal results were obtained when the reaction of 4-methylphenylglyoxal 1a (1.0 mmol) was conducted with

2-aminobenzothiazole $\mathbf{2}$ (0.9 mmol), and Meldrum's acid $\mathbf{3}(1.0 \mathrm{mmol})$ in acetic acid at reflux conditions. Under these optimized conditions, the yield of 4a reached 58%.

Table 2. Synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[3,2-a]quinazoline derivatives

 1					
Entry	Product	Ar	Reagent $3,5 \text { or } 7$	Time (min)	Yield (\%) ${ }^{\text {a }}$
1	4a	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	3	180	58
2	4b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	3	150	65
3	4c	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	3	155	63
4	4d	$\mathrm{C}_{6} \mathrm{H}_{5}$	3	170	55
5	4e	4-FC6 H_{4}	3	130	68
6	6a	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	5	75	73
7	6b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	5	62	79
8	6c	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	5	65	77
9	6d	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	5	80	70
10	6 e	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	5	58	81
11	$6 f$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	5	50	85
12	8 a	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	7	35	82
13	8 b	$4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	7	38	81
14	8 c	3,4-($\left.\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	7	40	80
15	8d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	7	21	89
16	8 e	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	7	25	87
17	8 f	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7	16	95
18	8 g	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	7	19	93
19	8h	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7	15	95
20	8 i	$\mathrm{C}_{6} \mathrm{H}_{5}$	7	30	85

[^0]Under the optimized reaction conditions, were then used to synthesize and explore the scope of this novel transformation with various 1,3-dicarbonyl compounds such as Meldrum's acid 3, dimedone 5 or barbituric acid 7 to give a series of pyrimido[2,1-b][1,3]benzothiazole derivatives (4a-e), (8a-i), and [1,3]benzo-thiazolo([3,2-a]quinazoline derivatives (6a-f) (Table 2). As can be seen from Table 2, the kind of products 4, 6 or 8 are dependent on the nature of the 1,3-dicarbonyl compounds. When the arylglyoxal especially with electron-withdrawing groups and the 1,3-dicarbonyl compounds such as barbituric acid were employed, a shorter reaction time was required, and also a higher yield was obtained.

All the synthesized compounds were previously unknown to the best of our knowledge and were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, CHN analysis and melting points. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound 4 a consisted of one singlet at $\delta=2.46 \mathrm{ppm}$ for the three hydrogens of the methyl group, and one signal at $\delta=6.87 \mathrm{ppm}$ for the alkenic hydrogen. The aromatic protons resonated in the region $\delta=7.32-$ 9.16 ppm . The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4 a exhibited 16 distinct signals in agreement with the proposed structure. In the IR spectrum, the carbonyl absorption was observed at $1676 \mathrm{~cm}^{-1}$. Partial assignments of these resonances for the other products are given in the experimental section.

Scheme 1. The proposed mechanisms for the synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[[3,2-a]quinazoline derivatives.

A proposed mechanism for the formation of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo-[3,2-a]quinazoline derivatives 4, 8, and 6 is described in Scheme 1. The reaction of Meldrum's acid 3, dimedone 5 or barbituric acid 7 with arylglyoxal 1 gave the intermediates A. After the addition of 2aminobenzothiazole 2, the formation of intermediate B occurred via a Michael addition reaction of the nitrogen at the $s p^{2}$ carbon atom of \mathbf{A}. Intermediate \mathbf{B} undergoes nucleophilic addition of the second nitrogen
to the carbonyl group affording the intermediates \mathbf{C}, \mathbf{D} or \mathbf{E}. In the last step, the natures of the 1,3-dicarbonyl compounds were different, so that 2-benzoyl-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one 4 is formed by the cycloaddition and loss of one molecule of acetone and carbon dioxide and oxidative dehydrogenation in acetic acid under reflux conditions, 5-[(hydroxy)(aryl)methylene]-2,2-dimethyl-3,4-dihydro-1H-[1,3]benzothiazolo-[3,2-a]quinazolin-4(5H)-one 6 is formed by intramolecular cyclization from the carbonyl group of dimedone and elimination of $\mathrm{H}_{2} \mathrm{O}$ and intramolecular H -shift in acetic acid under reflux, while 4-hydroxy-2-[(hydroxy)-(aryl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide 8 is formed via two step; at first, intermediate \mathbf{F} is formed by intramolecular cyclization from the carbonyl group of barbituric acid; then, nucleophilic addition of acetic acid solvent to carbonyl group and elimination of acetic carbamic anhydride and intramolecular H -shift in acetic acid at reflux conditions.

Conclusions

In summary, we have successfully developed an efficient and one pot, three-component reaction for synthesis of pyrimido[2,1-b][1,3]benzothiazole and [1,3]benzothiazolo[[3,2-a]quinazoline derivatives by treatment of 1,3-dicarbonyl compounds such as Meldrum's acid, dimedone or barbituric acid with arylglyoxals and 2aminobenzothiazole. Moreover, the method has advantages in terms of higher yields, low cost of the starting materials, shorter reaction time, easy work-up, and mild reaction conditions.

Experimental Section

General. All chemicals were purchased from Aldrich and Merck with high-grade quality, and used without any purification. All melting points were obtained by Barnstead Electrothermal 9200 apparatus and are uncorrected. The reactions were monitored by TLC and all yields refer to isolated products. NMR spectra were obtained on a Varian 500 MHz spectrometer (${ }^{1} \mathrm{H} N M R$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C} N M R$ at 125 MHz) in DMSO using TMS as an internal standard. Infrared spectra were recorded on a Bruker FT-IR Equinax-55 spectrophotometer in KBr with absorption in cm^{-1}. Elemental analyses were performed using a Carlo Erba EA 1108 instrument. All products were characterized by their spectral and physical data.

General procedure for the synthesis of compounds 4a-e. A mixture of arylglyoxal 1 (1.0 mmol), 2aminobenzothiazole $2(0.9 \mathrm{mmol})$, and Meldrum's acid $\mathbf{3}(1.0 \mathrm{mmol})$ was stirred in 5.0 mL of acetic acid under reflux conditions for $130-180 \mathrm{~min}$. After completion of the reaction, determined by TLC, the solvent was removed under reduced pressure, and the viscous residue was purified by plate chromatography ($20 \times 20 \mathrm{~cm}$) using n-hexane/EtOAc (2:1) as eluent to give the pure compounds 4a-e (55-68\%).
General procedure for the synthesis of compounds 6a-f. A mixture of arylglyoxal 1 (1.0 mmol), 2aminobenzothiazole $2(0.9 \mathrm{mmol})$, and dimedone $\mathbf{5}(1.0 \mathrm{mmol})$ was stirred in 5.0 mL of acetic acid under reflux conditions for $50-80 \mathrm{~min}$. After completion of the reaction, determined by TLC, the solvent was removed under reduced pressure, and the resulting crude product was recrystallized from ethanol to give the pure compounds 6a-f (70-85\%).
General procedure for the synthesis of compounds 8a-i. A mixture of arylglyoxal 1 (1.0 mmol), 2aminobenzothiazole $2(0.9 \mathrm{mmol})$, and barbituric acid $\mathbf{7}(1.0 \mathrm{mmol})$ was stirred in 5.0 mL of acetic acid under reflux conditions for 15-40 min. After completion of the reaction, determined by TLC, the solvent was removed
under reduced pressure, and the resulting crude product was recrystallized from ethanol to give the pure compounds 8a-i (80-95\%).
2-(4-Methylbenzoyl)-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one (4a). Yellow oil. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1676,1603$, 1495; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.32(\mathrm{~d}, \mathrm{~J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.55-7.61(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{A}-\mathrm{H}), 7.75(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.94(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.16(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO): $\delta 21.8,109.8,120.3,121.3,121.9,122.7,124.6,127.2,127.6,129.2,130.7,132.3,132.4,144.9$, 161.0, 191.5 ppm. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (320.37): C, 67.48; H, 3.78; N, 8.74. Found: C, 67.31; H, 3.75; N, 8.79\%.

2-(4-Chlorobenzoyl)-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one (4b). Yellow oil. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1682,1583$, 1494; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 6.93$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 7.50 ($\mathrm{d}, \mathrm{J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.56-7.62 (m, 2H, ArH), 7.77 (d, $J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.03 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.16(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): δ 109.9, 109.9, 117.8, 120.3, 121.9, 123.2, 127.3, 127.7, 128.8, 132.0, 133.1, 133.3, 140.2, 179.1, 190.3 ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}(340.78)$: C, $59.92 ; \mathrm{H}, 2.66 ; \mathrm{N}, 8.22$. Found: C, $60.07 ; \mathrm{H}, 2.68 ; \mathrm{N}, 8.19 \%$.
2-(4-Bromobenzoyl)-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one (4c). Yellow oil. $\mathrm{IR} \mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1669,1582$, 1493; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 6.93$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 7.57-7.62 (m, 2H, ArH), 7.67 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.76 (d, $J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.94 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.16$ (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): δ 109.9, 110.6, 119.1, 120.3, 121.9, 124.7, 127.3, 128.0, 129.5, 131.8, 132.0, 133.0, 139.0, 179.4, 191.6 ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (385.24): C, 53.00; H, 2.35; N, 7.27. Found: C, 53.11; H, 2.36; N, 7.24\%.
2-Benzoyl-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one (4d). Yellow oil. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1683,1596,1506 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O): ~ \delta 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.53$ (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.56-7.60 (m, 2H, ArH), 7.65 (t, J 7.5 1H, $\mathrm{Hz}, \mathrm{ArH}), 7.75(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.04(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.16(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO): $\delta 106.5,109.9,120.3,121.9,124.6,127.2,127.6,128.4,130.5,130.8,133.7,135.0,135.7,156.8$, 191.8 ppm.

2-(4-Fluorobenzoyl)-4H-pyrimido[2,1-b][1,3]benzothiazol-4-one (4e). Yellow oil. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1617,1594$, 1509; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 6.92$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), $7.20(\mathrm{~d}, \mathrm{~J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.76$ (d, $J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.12 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 9.15 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): δ 109.9, 115.6, 115.8, 120.3, 121.9, 124.6, 127.3, 127.7, 127.8, 131.4, 133.4, 133.4, 135.6, 167.1, 190.1 ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (324.33): C, 62.96; H, 2.80; N, 8.64. Found: C, 62.91; H, 2.77; N, 8.70\%.
5-[(Hydroxy)(\boldsymbol{p}-tolyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]quinazolin-4one (6a). White solid. $\mathrm{mp}=334-336{ }^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 1638,1506,1482 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 1.14$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}, 2.72\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.13(\mathrm{~d}, \mathrm{~J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})\right.$, $7.34(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.41 (t, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.44 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.53 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.98 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.42 (bs, 1H, OH) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 21.2,27.3,30.0,31.9,79.6,105.1$, 113.3, 116.3, 124.8, 125.1, 126.5, 126.9, 129.1, 129.6, 132.5, 133.2, 136.3, 144.5, 146.5, 191.1 ppm . Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (402.51): C, 71.62; H, 5.51; N, 6.96. Found: C, $71.57 ; \mathrm{H}, 5.50 ; \mathrm{N}, 6.93 \%$.
5-[(Hydroxy)(4-chlorophenyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]quin-azolin-4-one (6b). White solid. $\mathrm{mp}=333-335{ }^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 1657,1595,1509 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO})$: $\delta 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~d}, \mathrm{~J} 16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73\left(\mathrm{~d}, \mathrm{~J} 16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-7.48(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.65 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.98 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.51 (bs, $1 \mathrm{H}, \mathrm{OH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO): $\delta 27.5,29.8,31.9,77.9,104.7,113.5,117.3,125.1,125.2,127.0,128.2,128.6,129.6,131.7,133.1$, 134.2, 143.2, 146.9, 195.2 ppm.

5-[(Hydroxy)(4-bromophenyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]quin-azolin-4-one (6c). White solid. $\mathrm{mp}=331-333{ }^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 1658,1609,1493 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 1.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~d}, \mathrm{~J} 16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72\left(\mathrm{~d}, \mathrm{~J} 16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.36(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{ArH}$), $7.43(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.98 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.51 (bs, $1 \mathrm{H}, \mathrm{OH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 27.5,29.8,31.9,72.2$, 104.7, 113.5, 117.3, 120.2, 125.1, 125.2, 127.0, 128.5, 129.6, 131.5, 133.1, 134.5, 143.2, 146.9, 190.9 ppm. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (467.38): C, 59.11; H, 4.10; N, 5.99. Found: C, 59.17; H, 4.13; N, 5.97\%.
5-[(Hydroxy)(4-methoxyphenyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]-quinazolin-4-one (6d). White solid. $\mathrm{mp}=337-339{ }^{\circ} \mathrm{C} . \mathrm{IR} v / \mathrm{cm}^{-1}$ (KBr): 1657, 1609, 1493; ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$,
 $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.32-7.44$ (m, 3H, ArH), 7.56 (d, J $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.96 (d, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.36 (bs, 1H, $\mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 27.4,29.9,31.9,55.5,73.8,105.1,113.2,114.0,115.7,124.7,125.1$, 126.9, 127.8, 127.9, 129.5, 133.2, 144.3, 146.4, 158.6, 194.5 ppm. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (418.51): C, 68.88; H, 5.30; N, 6.69. Found: C, 68.71; H, 5.27; N, 6.65\%.

5-[(Hydroxy)(4-fluorophenyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]quin-azolin-4-one (6e). White solid. $\mathrm{mp}=339-341^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 1688,1595,1510 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO})$: $\delta 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17-7.98(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 11.52(\mathrm{bs}$, $1 \mathrm{H}, \mathrm{OH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 27.4,29.9,31.9,84.8,104.8,113.4,115.5,116.7,125.0,125.2$, 127.0, 128.5, 129.6, 131.8, 133.1, 143.5, 146.7, 160.6, 192.9 ppm.

5-[(Hydroxy)(4-nitrophenyl)methylene]-2,2-dimethyl-1,2,3,5-tetrahydro-4H-[1,3]benzothiazolo[3,2-a]quin-azolin-4-one (6f). White solid. $\mathrm{mp}=343-345{ }^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 1657,1595,1509 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO): $\delta 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.39(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{t}, \mathrm{J}$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.50 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.90 (d, J $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.02 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.22 (d, J 8.5 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 11.73 (bs, $1 \mathrm{H}, \mathrm{OH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 27.9,29.6,32.0,85.7,104.4,113.8,119.7$, 124.1, 125.3, 125.5, 126.9, 127.1, 129.8, 132.9, 141.8, 142.1, 146.1, 147.7, 195.8 ppm. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (433.48): C, 63.73; H, 4.42; N, 9.69. Found: C, 63.82; H, 4.42; N, 9.65\%.
4-Hydroxy-2-[(hydroxy(p-tolyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8a). White solid. $\mathrm{mp}=374-376^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3080,2949,1709,1573 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.18 (d, J $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.38 (t, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.48 (t, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.59-7.60 (m, 3H, ArH), 7.99 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 10.88 (bs, 2H, NH_{2}) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 21.2,79.7,113.7,125.2,125.2$, 126.3, 127.2, 129.3, 129.4, 129.6, 131.3, 133.3, 136.8, 146.7, 151.0, 163.3, 172.3 ppm . Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (365.41): C, 62.45; H, 4.14; N, 11.50. Found: C, 62.57; H, 4.17; N, 11.47\%.
4-Hydroxy-2-[(hydroxy(4-methoxyphenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8b). White solid. $\mathrm{mp}=385-387{ }^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3184,2946,1709,1568 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}): \delta 3.75$ (s, 3H, OCH3), 6.95 (d, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.38(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.60 (d, J 8.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.64(\mathrm{~d}, \mathrm{~J} 9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 10.81\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO): $\delta 55.5,79.5,109.9,113.7,114.3,125.2,125.2,126.5,127.3,127.7,129.5,133.3,146.5,151.1,159.0$, 163.4, 172.4 ppm. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (381.41): C, 59.83; H, 3.96; N, 11.02. Found: C, 59.77; H, 3.94; N, 11.07\%.

4-Hydroxy-2-[(hydroxy(3,4-dimethoxyphenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8c). White solid. $\mathrm{mp}=348-350^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3403,2835,1698,1590 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.49 (t, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.64\left(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$), $8.01(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 10.86\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 55.5,55.9,79.4,110.2,112.3,113.9,115.7,118.8,125.2,125.3,126.3,127.3$, $129.5,133.2,146.4,148.6,148.8,151.1,163.5,172.4 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ (411.43): $\mathrm{C}, 58.39 ; \mathrm{H}$, 4.16; N, 10.21. Found: C, 58.47; H, 4.17; N, 10.16\%.

4-Hydroxy-2-[(hydroxy(4-chlorophenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8d). White solid. $\mathrm{mp}=367-369^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3419,3072,1687,1588 ;{ }^{1} \mathrm{H}$ NMR (500 MHz DMSO): $\delta 6.52$ (bs, 2H, 2OH), 7.37-7.49 (m, 4H, ArH), 7.59 (d, J $10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.73 (d, J $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.01 (d, J 8.0 Hz , $1 \mathrm{H}, \mathrm{ArH}$), 11.07 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 79.9,113.6,116.0,125.2,125.3,127.2,127.9$, 128.9, 129.6, 132.0, 133.2, 133.4, 143.4, 147.3, 150.9, 163.2 ppm.

4-Hydroxy-2-[(hydroxy(4-bromophenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8e). White solid. $\mathrm{mp}=383-385{ }^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3307,2844,1695,1603 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}): \delta 7.38$ ($\mathrm{t}, \mathrm{J} 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.47 (t, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.57-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{AH}), 7.66$ (d, J $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.01 (d, J 8.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.30 (bs, 2H, NH2) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 79.9,113.6,116.0,120.6,125.2,127.2$, $128.2,129.7,131.8,133.2,133.8,143.4,147.3,150.9,163.1,172.4 \mathrm{ppm}$.
4-Hydroxy-2-[(hydroxy(4-nitrophenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8f). Yellow solid. $\mathrm{mp}=382-384{ }^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}$ (KBr): 3207, 3022, 1706, 1598 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 5.79$ (bs, $2 \mathrm{H}, 2 \mathrm{OH}$), $7.41(\mathrm{t}, J 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AH}), 7.49(\mathrm{t}, J 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, J 9.5 \mathrm{~Hz}, 2 \mathrm{H}$, AH), 8.03 (d, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.26 (d, J $9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 11.82 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO): $\delta 79.8,113.8,118.3,124.4,125.3,125.5,126.7,127.3,129.8,133.1,141.5,142.8,146.1,148.1,150.9$, 163.1 ppm. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (396.38): C, $54.54 ; \mathrm{H}, 3.05$; N, 14.14. Found: C, $54.58 ; \mathrm{H}, 3.06$; N, 14.08\%.

4-Hydroxy-2-[(hydroxy(4-fluorophenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8g). White solid. $\mathrm{mp}=371-373{ }^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 3408,3035,1704,1661 ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (500 MHz , DMSO): 4.58 (bs, 2H, 2OH), $7.23(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.39(\mathrm{t}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{t}, \mathrm{J} 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.74 (dd, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.02(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.84\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO): $\delta 79.8,113.6,115.8,125.2,127.2,128.2,128.3,129.6,131.1,133.3,143.6,147.0,150.9,160.7,162.7$, 163.2 ppm. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (369.37): C, 58.53; H, 3.27; N, 11.38. Found: C, 58.57; H, 3.29; N, 11.34\%.

4-Hydroxy-2-[(hydroxy(3-nitrophenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8h). Yellow solid. $\mathrm{mp}=375-377^{\circ} \mathrm{C}$. $\mathrm{IR} v / \mathrm{cm}^{-1}(\mathrm{KBr}): 3118,2961,1676,1574 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}): \delta 7.40$ (t, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.49(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.63(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.69(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AH}), 8.03$ (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.10 (d, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.14(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.57(\mathrm{t}, J 9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.18(\mathrm{bs}, 2 \mathrm{H}$, NH_{2}) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): 79.7, 113.8, 117.2, 120.4, 121.7, 125.2, 125.4, 127.2, 129.8, 130.6, $132.1,133.1,136.5,142.5,147.7,148.5,150.9,163.2$ ppm.
4-Hydroxy-2-[(hydroxy(phenyl)methylene]-2H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxamide (8i). White solid. $\mathrm{mp}=357-359^{\circ} \mathrm{C}$. IR $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{KBr}): 3390,2967,1684,1580 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 5.60(\mathrm{bs}, 2 \mathrm{H}$, 2 OH), 7.26 ($\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.37-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.73 (d, J $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.03 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.05 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): δ $79.9,113.6,116.0,125.2,125.2,126.3,127.2,127.5,128.8,129.6,133.3,134.4,144.1,147.0,151.0,163.2$ ppm. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (351.38): C, 61.53; H, 3.73; N, 11.96. Found: C, 61.62; H, 3.75; $\mathrm{N}, 11.94 \%$.

Supplementary Material

The experimental procedures and ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra associated with this article are available as supplementary data.

References

1. Wu, J.; Luo, H.; Wang, T.; Sun, H.; Zhang, Q.; \& Chai, Y. Tetrahedron 2019, 75, 1052. https://doi.org/10.1016/i.tet.2019.01.009
2. Harutyunyan, A. A.; Panosyan, G. A.; Chishmarityan, S. G.; Tamazyan, R. A.; Aivazyan, A. G.; Paronikyan, R. V.; Stepanyan, H. M.; Sukasyan, R. S.; Grigoryan, A.S. Russ. J. Org. Chem. 2015, 51, 711. https://doi.org/10.1134/S107042801505022X
3. Richardson, A.; McCarty, F. J. J. Med. Chem. 1972, 15, 1203.
https://doi.org/10.1021/jm00282a001
4. Yevich, J. P.; Temple, D. L.; Covington, R. R.; Owens, D. A.; Seidehamel, R. J.; Dungan, K. W. J. Med. Chem. 1982, 25, 864.
https://doi.org/10.1021/jm00349a020
5. Hilal, H. S.; Ali-Shtayeh, M. S.; Arafat, R.; Al-Tel, T.; Voelter, W.; Barakat, A. Eur. J. Med. Chem. 2006 41, 1017.
https://doi.org/10.1016/j.ejmech.2006.03.025
6. Nagarapu, L.; Vanaparthi, S.; Bantu, R.; Kumar, C. G. Eur. J. Med. Chem. 2013, 69, 817. https://doi.org/10.1016/i.ejmech.2013.08.024
7. Gupta, S. V.; Baheti, K. G.; Ganorkar, S. B.; Dekhane, D.; Pawar, S.; Thore, S. N. Med. Chem. Res. 2013, 22, 1065.
https://doi.org/10.1007/s00044-012-0100-4
8. Trapani, G.; Carotti, A.; Franco, M.; Latrofa, A.; Genchi, G.; Liso, G. Eur. J. Med. Chem. 1993, $28,13$. https://doi.org/10.1016/0223-5234(93)90074-O
9. Kim, D. H. J. Heterocyclic Chem. 1981, 18, 801. http://doi.org/ 10.1002/jhet. 5570180435
10. Gabr, M. T.; El-Gohary, N. S.; El-Bendary, E. R.; El-Kerdawy, M. M. Eur. J. Med. Chem. 2014, 85, 576. http://doi.org/10.1016/i.ejmech.2014.07.097
11. Gabr, M. T.; El-Gohary, N. S.; El-Bendary, E. R.; El-Kerdawy, M. M. Med. Chem. Res. 2015, 24, 860. https://doi 10.1007/s00044-014-1114-x
12. Trapani, G.; Franco, M.; Latrofa, A.; Genchi, G.; Liso, G. Eur. J. Med. Chem. 1992, 27, 39. https://doi.org/10.1016/0223-5234(92)90058-9
13. Yadav, A. K.; Sharma, G. R.; Dhakad, P.; Yadav, T. Tetrahedron Lett. 2012, 53, 859. https://doi:10.1016/j.tetlet.2011.12.024
14. Roslan, I. I.; Ng, K. H.; Chuah, G. K.; Jaenicke, S. Beilstein J. Org. Chem. 2017, 13, 2739. https://doi:10.3762/bjoc. 13.270
15. Dunwell, D. W.; Evans, D. Chem. Soc. C. 1971, 2094. https://doi.org/10.1039/J39710002094
16. Ogura, H.; Kawano, M.; Itoh, T. Chem. Pharm. Bull. 1973, 21, 2019. https://doi.org/10.1248/cpb.21.2019
17. Alaimo, R. J. J. Heterocyclic Chem. 1973, 10, 769. https://doi.org/10.1002/ihet. 5570100515
18. Alnajjar, A.; Abdelkhalik, M. M.; Riad, H. M.; Sayed, S. M.; Sadek, K. U. J. Heterocyclic Chem. 2018, 55, 2760. https://doi.org/10.1002/jhet. 3337
19. Chadegani, F.; Darviche, F.; Balalaie, S. Int. J. Org. Chem. 2012, 2, 31. http://doi.org/10.4236/ijoc.2012.21006
20. Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Chem. Rev. 2013, 113, 2958.
https://doi.org/10.1021/cr300176g
21. Domling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.
https://doi.org/10.1021/cr100233r
22. Bhoi, M. N.; Borad, M. A.; Pithawala, E. A.; Patel, H. D. Arab. J. Chem. 2016, 1-15.
https://doi.org/10.1016/j.arabjc.2016.01.012
23. Sakamoto, M.; Miyazawa, K.; Tomimatsu, Y. Chem. Pharm. Bull. 1977, 25, 3360.
https://doi.org/10.1248/cpb.25.3360
24. Liu, K. C.; Shih, B. J.; Tao, T. M. Arch. Pharm. 1985, 318, 84.
https://doi.org/10.1002/ardp. 19853180115
25. Kanno, H.; Yamaguchi, H.; Ichikawa, Y.; Isoda, S. Chem. Pharm. Bull. 1991, 3, 1099.
https://doi.org/10.1248/cpb.39.1099
26. Landreau, C.; Deniaud, D.; Evain, M.; Reliquet, A.; Meslin, J. C. J. Chem. Soc. Perkin Trans. 1. 2002, 741. https://doi.org/10.1039/B111639H
27. Toche, R. B.; Ghotekar, B. K.; Kazi, M. A.; Kendre, D. B.; Jachak, M. N. Tetrahedron 2007, 63, 8157. https://doi.org/10.1016/j.tet.2007.05.123
28. Modranka, J.; Pietrzak, A.; Wolf, W. M.; Janecki, T. Arkivoc 2017, (ii), 118. http://doi.org/10.3998/ark.5550190.p009.707
29. Nosova, E. V.; Lipunova, G. N.; Laeva, A. A.; Charushin, V. N. Russ. J. Org. Chem. 2005, 41, 1671. http://doi.org/10.1007/s11178-006-0017-9

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

[^0]: ${ }^{\text {a }}$ Isolated yields.

