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Abstract 

 

An efficient selective synthesis of methyl dithienyl-glycolates has been developed. The interest of this two 

steps protocol resides in the possibility of synthesized either methyl 2,2-dithienyl glycolate – the target 

intermediate for the preparation of anticholinergic agents – or its regio-isomer methyl 2,3-dithienyl glycolate – 

the most critical precursor of anticholinergic drug impurity.  
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Introduction 

 

Methyl 2,2-DiThienylGlycolate (1a, Figure 1) is a key intermediate for the preparation of a wide range of 

anticholinergic agents, as muscarinic receptor antagonists, used in the treatment of ‘Chronic Obstructive 

Pulmonary Disease’ (COPD). In particular, condensation of 1a with scopine or 3-quinuclidinol derivatives under 

basic conditions, followed by quaternization of the tertiary amino moiety to increase their lipophilicity, is a 

classical pharmaceutical process to obtain tiotropium bromide (Scheme 1; marketed as SPIRIVA® 

HANDIHALER®),1-7 aclidinium bromide (trade name: TUDORZA® PRESSAIR®),8 and their analogues.9-18  

 

 
 

Scheme 1. Synthesis of tiotropium bromide and aclidinium bromide starting from 1a. 

 

In general, synthesis of 1a is carried out via either Friedel—Crafts acylation of thiophene,19-29 or Grignard 

reactions.30 In our hands, reaction of the Grignard reagent derived from 2a with dimethyl oxalate 3 in diethyl 

ether at reflux afforded 1a in 54% yield, but in inseparable mixture with an impurity identified as the regio-

isomer 1b (12% yield, Scheme 2); 1b probably derived by equilibration of the initial 2-thienylmagnesium 

bromide.  

 

 
Reaction conditions: 2a (2.0 mmol), 3 (1.0 mmol), Mg (2.1 mmol), solvent (10 mL).  

 

Scheme 2. Reported synthesis of dithienylglycolate 1a-b [a].  
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Results and Discussion 
 

The difficult separation of 1a and 1b leads to pollute drugs, due to the formation of pharmacological regio-

isomer impurities.31 Thus, to find an alternative method to selectively obtain either 1a or 1b, we decided to 

modulate the reactivity of the thienyl anion species by changing the nature of the counter cation. To that aim 

2- thienyl lithium and 3- thienyl lithium (derived, respectively, from lithiation of 2-bromothiophene 2a and 3-

bromothiophene 2b), were reacted with oxalate 3 to obtain methyl 2-oxo-2-(thiophen-2-yl)acetate 4a and 

methyl 2-oxo-2-(thiophen-3-yl)acetate 4b. The latter compounds are intermediates for methyl dithienyl-

glycolate 1a and 1b production. Preliminary runs (entries 1–2, Table 1), evidenced that a mixture of regio-

isomers 4a and 4b could be obtained when oxalate 3 was added to 3-thienyl lithium: in according to the anion 

equilibration, the longer the metalation time of 2b, the higher the yield of 4a.  

 

Table 1. Reactivity of bromothiophene 2b a 

 

Entry Base solvent Base addition 4a%b 4b%b 

1 BuLi THF A 35 24 

2 BuLi THF B 61 -- 

3 BuLi THF C -- 48 

4 BuLi THF D -- 66 

5 BuLi Et2O D -- 35 

6 BuLi Toluene D -- 22 

7 LDA THF D <5 -- 

a Reaction conditions: 3 (1.5 mmol), 2b (1 mmol), Base (0.95 mmol), solvent (10 mL). b Isolated yields. 

A: Base was dropped in 5 min to a solution of 2b and stirred for 15 min before addition of a solution of 3; B: 

Base was dropped in 5 min to a solution of 2b and stirred for 30 min before addition of a solution of 3; C: 2b 

was added to a solution of BuLi and 3 in THF; D: Base was added to a solution of 2b and 3. 

 

In fact, a complete regio-selectivity in favor of 4b was reached by adding 2b to a cold mixture of base (n-

BuLi) and 3 (entry 4). Furthermore, the best yield of 4b (66%, entry 4) was achieved by adding the strong, non-

hindered base n-BuLi at – 78 °C, to a mixture of 2b and a slightly excess of 3 in THF as the solvent. Other 

solvents (entries 5–6), gave worst results while, the use of non-nucleophilic base LDA, resulted in the 

formation of a series of by-products (entry 7). Similarly, LDA induced on 2a a base catalyzed halogen-dance 

reaction, forming, as the main reactive intermediate, the 2- thienyl anion specie bearing the bromine atom in 

the C-3 position.32-36 This latter, in turn, evolves in the 4c product in presence of 3 (entry 1, Table 2). 

Furthermore, 1a reacted under the best reaction conditions found for 1b, giving 4a in good yield (entry 2); we 

were able to increase the yield of 4a by generating the stable lithium anion at the thiophene C-2 position and 

then adding oxalate 3 to the reaction mixture (entry 3).  
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Table 2. Reactivity of bromothiophene 2a.a 

 

Entry Base solvent Base addition 4a%b 4c%b 

1 

 

LDA THF A -- 36 

2 BuLi THF A 67 -- 

3 BuLi THF B 73 -- 

a Reaction conditions: 3 (1.5 mmol), 2b (1 mmol), Base (0.95 mmol), solvent (10 mL). b Isolated yields. A: Base 

was added to the mixture of 2a and 3; B: Base was dropped in 5 min to a solution of 2a and stirred for 30 min 

before addition of a solution of 3.  

 

Similar behavior (Scheme 3) was found when the 2-thienyl anion specie, generated by metalation of 2a at 

low temperature, was then trapped using as electrophiles 4a or 4b: under these reaction conditions, 

compounds 1a (derived from intermediate 4a, path a.) and 1b (derived from 4b, path b.) were isolated as pure 

isomers and fully characterized.  

 

 
a Reaction conditions: 2 (1.0 mmol), 4 (1.0 mmol), Base (0.95 mmol), solvent (10 mL), reaction time: 30 min. b 

Isolated yields.  

path A and B: BuLi was dropped in 5 min to 2a and the mixture was stirred for 30 min before addition of 4; 

path C: Base was added to the mixture of 2b and 4.  

 

Scheme 3. Synthesis of 1a and 1b.a  

 

On the contrary, our attempts to isolate 1b or its regio-isomer methyl 3,3-dithienylglycolate by 3-

bromothiophene 2b lithium halogen exchange in the presence of either oxo-acetate 4b or 4a, gave a mixture 

of degradation compounds (path c.). Comparison between 1H NMR spectra of compounds 1a and 1b (Table 3), 

exhibited a slightly highfield chemical shifts for almost all 1a signals (only 1a and 1b H3 protons resonate 

together at ~7.19 ppm); furthermore, 1b 1H NMR showed two additional signals at 7.39 ppm (H7) and 7.10 
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ppm (H9). Even for 13C NMR spectra, all the peaks of 1a and b are quite good shifted; the major difference 

arise in the presence on substrate 1b of both the isolated signal at 142.5 ppm (C6) and 123.2 ppm (C7). 

 

Table 3. 1H and 13C assignment for 1a and 1b 

 
 

 
1H 13C position 1H 13C 1H 13C 

CDCl3  CDCl3 d6-Acetone 

7.32 126.0 1 7.28 125.8 7.41 126.1 

7.00 126.1 2 6.97 126.7 

 
7.00 127.1 

7.19 126.8 3 7.18 125.9 7.12 126.2 

– – 145.7 4 – – 146.0 – – 147.9 

– – 76.6 5 – – 77.5 – – 77.5 

4.68 – – OH 4.47 – – 5.76 – – 

– – 172.8 CO – – 173.4 – – 173.3 

3.92 54.2 OCH3 3.87 53.9 3.83 53.3 

  6 – – 142.5 – – 144.7 

  7 7.39 123.2 7.47 123.2 

  8 7.28 125.8 7.44 126.0 

  9 7.10 126.8 7.22 127.6 

 

 

Conclusions 
 

We have described a complete regio-selective protocol for methyl 2,2-dithienylglycolate 1a and methyl 2,3-

dithienylglycolate 1b synthesis. Depending on both the nature of the bromothiophene derivative used and the 

condensation conditions, it was possible to obtain either 1a - the key starting material in the preparation of 

important anticholinergic agents - or 1b, precursor of pharmacological impurities. By this way 1b was fully 

characterized, giving the characteristic signals that permit its differentiation for the target compound. 

 

 

Experimental Section 
 

General. All available chemicals and solvents were purchased from commercial sources and were used 

without any further purification. Thin layer chromatography (TLC) was performed using 0.25 mm silica gel 

precoated plates Si 60-F254 (Merck) visualized by UV-254 light and CAM staining. Purification by flash column 

chromatography (FCC) was conducted by using silica gel Si 60, 230-400 mesh, 0.040-0.063 mm (Merck). 
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Melting points were determined on a Büchi B450 apparatus and are corrected. 1H and 13C NMR spectra were 

recorded on a Bruker Fourier 300 (recorded at: 300.13 MHz for 1H; 75.00 MHz for 13C) or Bruker Avance 

Spectrometer (recorded at: 400.13 MHz for 1H; 100.62 MHz for 13C); chemical shifts are indicated in ppm 

downfield from TMS, using the residual proton (CHCl3 7.28 ppm; acetone 2.05 ppm) and carbon (CDCl3 77.0 

ppm; acetone 207.1 and 30.9 ppm) solvent resonances as internal reference. Coupling constants values J are 

given in Hz.  

 

Preparation of methyl 2-oxo-2-(thiophen-3-yl)acetate (4b). In a flame-dried round flask, BuLi [1.6] (0.60 mL, 

0.95 mmol) was added by syringe under N2 to a solution of dimethyl oxalate (177 mg, 1.5 mmol) and 3-

bromothiophene (193 mg, 1.0 mmol) in anhydrous THF (25 mL) at -80 °C. The reaction mixture was stirred at -

80 °C until completion [30 min, TLC analysis - AcOEt/hexane (1:9)], then was quenched with saturated NH4Cl 

solution (5 mL). After extraction with AcOEt (2×20 mL), the collected organic phases were washed with brine 

(1×10 mL), dried over Na2SO4 and, after evaporation of the solvent in vacuum, the crude was purified by FCC - 

AcOEt/hexane (1:9) - on silica gel to afford the pure compound 4b (112 mg, 66%) as a slightly yellow waxy 

solid; 1H NMR (400 MHz, Acetone-d6) δ 8.67 (dd, 1H, J 2.7, 1.5 Hz), 7.67 – 7.65 (m, 2H), 3.96 (s, 3H); 13C NMR 

(75 MHz, Acetone-d6) δ 179.3, 164.0, 138.7, 138.2, 128.3, 127.7, 52.9. Anal. Calcd. for C7H6O3S: C, 49.40; H, 

3.55. Found: C, 49.01; H, 3.48. 

Lithiation of 2-Bromothiophene: preparation of oxo-acetate (4a,c) and glycolates (1a,b). In a flame-dried 

round flask, organolithium reagent (0.95 mmol) was added dropwise to a solution of 2-bromothiophene 1b 

(193 mg, 1.0 mmol) in anhydrous THF (15 mL) under N2 at -80 °C. After 20 min, a THF (5.0 mL) solution of 

oxalate 3 or oxo-acetate 4a−c was added. After the disappearing of the starting thiophene, the reaction was 

quenched by saturated aqueous NH4Cl and extracted with AcOEt (2×20 mL); the collected organic phases were 

washed with brine (1×10 mL), dried over Na2SO4 and the solvent was evaporated under vacuum (RV).  The 

resulting crude was purified by FCC - AcOEt/hexane (1:9) - on silica gel. Yield, physical, spectroscopic and 

analytical data of products 4a,c, 1a,b are as follows. 

Methyl 2-oxo-2-(thiophen-3-yl)acetate 4a. BuLi [1.6] (0.6 mL), dimethyl oxalate 3 (177 mg, 1.5 mmol). 4a (124 

mg, 73%, 40 min); slightly yellow waxy solid. 1H NMR (300 MHz, CDCl3) δ 8.18 (dd, 1H, J 3.9, 1.1 Hz), 7.84 (dd, 

1H, J 4.9, 1.1 Hz), 7.22 (dd, 1H, J 4.9, 3.9 Hz), 3.99 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 175.9, 162.0, 139.0, 

137.6, 137.4, 128.7, 53.2. Anal. Calcd. for C7H6O3S: C, 49.40; H, 3.55. Found: C, 49.01; H, 3.51.  

Methyl 2-(3-bromothiophen-2-yl)-2-oxoacetate (4c). LDA [1.0] (0.95 mL), dimethyl oxalate 2 (177 mg, 1.5 

mmol). 4c (90 mg, 36%, 30 min); yellow solid. 1H NMR (300 MHz, CDCl3) δ 7.94 (d, 1H, J 4.2 Hz), 7.19 (d, 1H, J 

4.2 Hz), 3.99 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 174.1, 161.4, 139.8, 137.6, 131.8, 127.4, 53.4. Anal. Calcd. for 

C7H5BrO3S: C, 33.75; H, 2.02. Found: C, 33.39; H, 1.99. 

Methyl 2-hydroxy-2-(thiophen-2-yl)-2-(thiophen-2-yl)acetate (1a). BuLi [1.6] (0.6 mL), oxo acetate 4a (187 

mg, 1.1 mmol). 1a (191 mg, 75%, 30 min), whitish solid, mp 94 – 95 °C. 1H NMR (300 MHz, CDCl3) δ 7.32 (d, 2H, 

J 4.9 Hz), 7.20 – 7.18 (m, 2H), 7.00 (dd, 2H, J 5.1, 3.6 Hz), 4.68 (s, 1H), 3.92 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 

172.3, 145.7 (2CAr), 126.8 (2CHAr), 126.0 (2CHAr), 125.9 (2CHAr), 76.4, 54.3. HPLC analyses were carried out on a 

Zorbax Rx-C8 column (5 μm, 4.6 × 150 mm) by using as eluent a mixture of solvents [solvent A H2O (with 1% 

trimethylamine and adjusting pH to 3.0 with perchloric acid) and solvent B CH3CN]. Gradient: 0 – 20 min, % B 

25 (isocratic); 20 − 36 min, % B 51 (gradient); 36 – 36.1 min, % B 25 (gradient). Flow rate 2 mL/min, T=25°C; UV 

detector λ 254 nm. Retention times: 1b, 13.20 min; 1a, 14.51 min. Anal. Calcd. for C11H10O3S2: C, 51.95; H, 

3.96. Found: C, 51.71; H, 3.89.  

Methyl 2-hydroxy-2-(thiophen-2-yl)-2-(thiophen-3-yl)acetate (1b). BuLi [1.6] (0.6 mL), oxo acetate 4b (187 

mg, 1.1 mmol). 1b (173 mg, 68%, 30 min), greyish waxy solid, mp 90 – 92 °C. 1H NMR (400 MHz, Acetone- d6) δ 
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7.47 (s, 1H), 7.44 (dd, 1H, J 5.1, 3.2 Hz), 7.41 (dd, 1H, J 5.2, 1.2 Hz), 7.22 (dd, 1H, J 5.0, 1.4 Hz), 7.12 (dd, 1H, J 

3.6, 1.2 Hz), 7.00 (dd, 1H, J 5.1, 3.6 Hz), 5.76 (bs, 1H), 3.83 (s, 3H); 13C NMR (101 MHz, Acetone-d6) δ 173.3, 

147.9, 144.7, 127.6, 127.1, 126.2, 126.1, 126.0, 123.2, 77.5, 53.3. Anal. Calcd. for C11H10O3S2: C, 51.95; H, 3.96. 

Found: C, 51.55; H, 3.90.  

 

 

Supplementary Material 
 

Supplementary material related to this article, including Nuclear Magnetic Resonance (1H and 13C NMR) figures 

for methyl dithienyl glycolates 1a,b and oxo-acetate 4a–c are available in the online version of the text.  
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