Supplementary Material

New synthesis of heteroglycoclusters from p-^tBu-calix[4]arene tetraalkoxyheterohalides as key intermediates

Marwa Taouai,^{a,b} Khouloud Chakroun,^{a,b} Aurélie Vallin-Butruille,^a Christine Cézard,^a Moufida Romdhani,^c David Mathiron,^d David Lesur,^a Rym Abidi,^b Mohammed Benazza^a*

 ^a Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A-UMR7378 CNRS), 10 Rue Baudelocque 80039, Université de Picardie Jules Verne, Amiens Cédex, France
^bFaculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité «Interactions Moléculaires Spécifiques», Zarzouna-Bizerte, TN 7021 Université de Carthage, Tunisie.
^cLaboratoire de Chimie Organique Structurale : Synthèse et Etudes Physico-chimiques «LR99ES14 », Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire 2092-El Manar Tunis
^d Palteforme analytique, UFR des Sciences Bâtiment Serres-Transfert Rue Dallery-Passage du sourire d'Avril

80039 Amiens Cedex 1, Farnce

Table of Contents

1.	MS-ESI follow-up of the one-pot sequential bromination with free Br ⁻ and azidation of crude	S2
	product	
	1.1. Experiment 1: MS-ESI follow-up from rt to 50 °C reaction temperature.	S2
	1.2. Experiment 2: MS-ESI follow-up at 90 °C reaction temperature	S4
	1.3. MS-ESI of the crud product from azidation of 3-7 mixture at rt.	S4
2.	NMR data.	S5
	2.1. Spectra of crud product mixture 3-7	S5
	2.2. Spectra of compounds 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20 and 22 .	S6

General Papers

1. MS-ESI follow-up of the one-pot sequential bromination with free Br⁻ and azidation of crud product

1.1. Experiment 1: MS-ESI follow-up from rt to 50 °C reaction temperature.

In 250 mL one necked flask flushed with argon was allowed to react 2g (3.08 mmol) of p-tBucalix[4]arene (1) and 1.48 g (37 mmol) of NaH(60%) in DMF (50 mL) as solvent for 1h at rt under stiring. 1-Bromo-5-chloropentane (2) (11.43g, 61.64 mmol) was added and the reaction progress are followed up by MS-ESI in times of 1h and 2h at rt (Figure 1 and 2). Only tetrachloroalkoxy calixarene **3** (MNa+ = 1089.9) was detected with a little formation of monobromotrichloralkoxycalixarene **4** (Mna+ = 1133.7). The temperature had subsequently reached 50 °C and a second follow-up at 10 min, 4h, 7h and 24h (Figures 3, 4, 5, 6) was realized.

Figure 1. ES⁺ (ESI-MS): 1h reaction time at rt

Figure 2. ES⁺ (ESI-MS): 2h reaction time at rt

Figure 3. ES⁺ (ESI-MS):10 min reaction time at 50°C

Figure 4. ES⁺ (ESI-MS): 4h reaction time at 50°C

Figure 5. ES⁺ (ESI-MS): 7h reaction time at 50°C

Figure 6. ES⁺ (ESI-MS): 24h reaction time at 50°C

1.2 Experiment 2: MS-ESI follow-up at 90 °C reaction temperature

The reaction was reproduced at 90 °C with same amounts than experiment 1. The follow-up by MS-ESI at 5 min, 20 min and 2h times gave the spectrum of figures 7, 8 and 9 respectively.

Figure 7. ES⁺ (ESI-MS): 5 min reaction time at 90 °C

1.3. MS-ESI of the crud product from azidation of **3-7** mixture at rt.

Figure 8. ES⁺(ESI-MS) spectrum of the azido-chloro mixture 8-11 obtained from azidation of 3-7 crud product at rt.

2. NMR data.

2.1. Spectra of crud product mixture 3-7

Figure 9. HSQC(600/150 MHz,CDCl₃) spectrum of crud mixture 3-7.

Figure 10. COSY H-H(600/600MHZ, CDCl₃) spectrum of crud mixture 3-7.

2.2. Spectra of compounds 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20 and 22.

Figure 11. ¹H(300 MHz, CDCl₃) spectrum of compound 8.

Figure 12. ¹³C(75 MHz, CDCl₃) spectrum of compound 8.

Figure 13. ¹H(300 MHz, CDCl₃) spectrum of compound 9.

Figure 14. ¹³C(75 MHz, CDCl₃) spectrum of compound 9

General Papers

Figure 15. ¹H (300 MHz, CDCl₃) spectrum of compound 10a/10b.

Figure 16. $^{13}C(75 \text{ MHz}, \text{CDCl}_3)$ spectrum of compound 10a/10b.

Figure 17. ¹H (300 MHz, CDCl₃) spectrum of compound 11.

Figure 18. ¹³C (75 MHz, CDCl₃) spectrum of compound 11

Figure 19. ¹H (400 MHz, CDCl₃) spectrum of compound 13a/13b.

Figure 20. DeptQ(100MHz, CDCl₃) spectrum of compound 13a/13b.

Figure 21. HSQC(400/100MHz, CDCl₃) spectrum of compound 13a/13b.

Figure 22. ¹H(600MHz, CDCl₃) spectrum of compound 14a/14b.

Figure 23. DeptQ(75 MHz, CDCl₃) spectrum of compound 14a/14b.

Figure 24. ¹H (300 MHz, CDCl₃) spectrum of compound 15a/15b.

Figure 25. DEPT 135 (75 MHz, CDCl₃) spectrum of compound 15a/15b.

Figure 26. ¹H (600 MHz, CDCl₃) spectrum of compound 17a/17b.

Figure 27. DEPTQ (75 MHz, CDCl₃) spectrum of compound 17a/17b.

Figure 28. HSQC(600/150 MHz, CDCl₃) spectrum of compound 17a/17b.

Figure 29. ¹H (300 MHz, CDCl₃) spectrum of compound 18.

Figure 30. DeptQ (75 MHz, CDCl₃) spectrum of compound 18.

Figure 31. ¹H (300 MHz, CDCl₃) spectrum of compound 19.

Figure 32. DeptQ (75 MHz, CDCl₃) spectrum of compound 19.

Figure 33. ¹H (400 MHz, CDCl₃) spectrum of compound 20.

Figure 34. DeptQ (100 MHz, CDCl₃) spectrum of compound 20.

Figure 35. HSQC (400/100 MHz, CDCl₃) spectrum of compound 20.

Figure 36. ¹H (600 MHz, CDCl₃) spectrum of compound 22.

Figure 37. DeptQ (75 MHz, CDCl₃) spectrum of compound 22.