Supplementary Material

Activation of 6-bromoquinoline by nitration. Synthesis of morpholinyl and piperazinyl quinolines

Osman Çakmak^{*a}, Salih Ökten^b, Dilek Alımlı^c, Aisha Saddiqa^d, Cem Cüneyt Ersanlı^e

^aDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315, Avcılar, İstanbul, Turkey ^bDepartment of Mathematic and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey

^cDepartment of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey

^dDepartment of Chemistry, Faculty of Natural Science, Government College Women University, Sialkot, Pakistan

^eDepartment of Physics, Faculty of Arts and Science, Sinop University, 57010, Sinop, Turkey

Email: cakmak.osman@gmail.com

Table of Contents

1.	Figure 1. ¹ H-NMR (400 MHz, CDCl ₃) of 6-Bromo-5-nitroquinoline (14)	S2
2.	Figure 2. ¹³ C-NMR (100 MHz, CDCl ₃) of 6-Bromo-5-nitroquinoline (14)	S2
3.	Figure 3. ¹ H-NMR (500 MHz, CDCl₃) of 5-nitro-6-(piperazin-1-yl)quinoline (18)	S3
4.	Figure 4. ¹³ C NMR (125 MHz, CDCl ₃) of 5-nitro-6-(piperazin-1-yl)quinoline (18)	S3
5.	Figure 5. ¹ H-NMR (500 MHz, CDCl₃) of 5-nitro-6-(morpholin-1-yl)quinoline (17)	S4
6.	Figure 6. ¹³ C NMR (125 MHz, CDCl ₃) of 5-nitro-6-(morpholin-1-yl)quinoline (17)	S4
7.	Figure 7. ¹ H-NMR (400 MHz, CDCl ₃) of 6-bromoquinoline-1-oxide (20)	S5
8.	Figure 8. ¹³ C NMR (100 MHz, CDCl ₃) of 6-bromoquinoline-1-oxide (20)	S5
9.	Figure 9. ¹ H-NMR (500 MHz, CDCl ₃) of 6-bromo-5-nitroquinoline-1-oxide (23)	S6
10.	Figure 10. ¹³ C-NMR (125 MHz, CDCl ₃) of 6-bromo-5-nitroquinoline-1-oxide (23)	S6
11.	Figure 11. ¹ H-NMR (500 MHz, CDCl ₃) of 6-bromo-4-nitroquinoline-1-oxide (24)	S7
12.	Figure 12. ¹³ C-NMR (125 MHz, CDCl ₃) of 6-bromo-4-nitroquinoline-1-oxide (24)	S7
13.	Figure 13. ¹ H-NMR (500 MHz, CDCl₃) of 5-amino-6-bromoquinoline-1-oxide (25)	S8
14.	Figure 14. ¹ H-NMR (500 MHz, CDCl₃) of 5-amino-6-bromoquinoline (26)	S8
15.	Table 1. Experimental geometries of 25 in the ground state. Bond lengths (Å) and angles	
	(^o) with estimated standard deviations in parentheses.	S9
16.	Table 2. C-HBr and C-HO interactions parameters (Å, º) for 23	S9

General Papers

Figure 1. ¹H-NMR (400 MHz, CDCl₃) of 6-Bromo-5-nitroquinoline (14)

Figure 3. ¹H-NMR (500 MHz, CDCl₃) of 5-nitro-6-(piperazin-1-yl)quinoline (18)

Figure 4. ¹³C NMR (125 MHz, CDCl₃) of 5-nitro-6-(piperazin-1-yl)quinoline (18)

Figure 5. ¹H-NMR (500 MHz, CDCl₃) of 5-nitro-6-(morpholin-1-yl)quinoline (17)

Figure 6. ¹³C NMR (125 MHz, CDCl₃) of 5-nitro-6-(morpholin-1-yl)quinoline (17)

Figure 7. ¹H-NMR (400 MHz, CDCl₃) of 6-bromoquinoline-1-oxide (20)

Figure 9. ¹H-NMR (500 MHz, CDCl₃) of 6-bromo-5-nitroquinoline-1-oxide (25)

Figure 10. ¹³C-NMR (125 MHz, CDCl₃) of 6-bromo-5-nitroquinoline-1-oxide (**23**)

General Papers

Figure 11. ¹H-NMR (500 MHz, CDCl₃) of 6-bromo-4-nitroquinoline-1-oxide (24)

Figure 12. ¹³C-NMR (125 MHz, CDCl₃) of 6-bromo-4-nitroquinoline-1-oxide (24)

 $^1\text{H-NMR}$ (500 MHz, CDCl₃) of 4-nitro-6-bromoquinoline-1-oxide (26)

General Papers

Table 1. Experimental geometries of (23) in the ground state. Bond lengths (Å) and angles (°) with estimated standard deviations in parentheses.

Bond lengths (Å)		Bond lengths (Å)	
C1-N1	1.315(13)	C18-N3	1.404(8)
C5-N2	1.488(11)	N3-O3	1.310(8)
C6-Br1	1.861(9)	N4-O4	1.213(8)
C9-N1	1.425(13)	N4-O5	1.206(8)
N1-O1	1.277(10)	C19-N5	1.325(12)
N2-O2	1.197(6)	C27-N5	1.404(11)
N2-O2	1.197(6)	C24-Br3	1.898(8)
C10-N3	1.330(10)	C23-N6	1.482(11)
C14-N4	1.480(8)	N5-O6	1.299(10)
C15-Br2	1.889(7)	N6-O7	1.167(7)
Bond angle (°)		Bond angle (°)	
N1-C1-C2	122.9(10)	O4-N4-O4	117.6(7)
01-N1-C1	122.7(8)	C15-C14-N4	119.3(7)
01-N1-C9	119.5(8)	C13-C14-N4	117.6(7)
C1-N1-C9	117.8(8)	C14-C15-Br2	121.7(5)
C6-C5-N2	118.8(9)	C16-C15-Br2	118.3(5)
C4-C5-N2	115.8(9)	C17-C18-N3	119.5(6)
C5-C6-Br1	123.5(7)	N5-C19-C20	121.4(8)
C7-C6-Br1	119.5(7)	O6-N5-C19	121.3(7)
C8-C9-N1	117.9(9)	O6-N5-C27	118.8(8)
C4-C9-N1	120.1(8)	C24-C23-N6	119.6(8)
N3-C10-C11	121.9(7)	C23-C24-N6	118.4(8)
O2-N2-C5	118.2(4)	C23-C24-Br3	120.1(8)
O3-N3-C10	121.7(6)	C25-C24-Br3	119.3(7)
O3-N3-C18	118.0(6)	C22-C27-N5	119.3(8)
O5-N4-O4	124.7(7)	C26-C27-N5	118.5(8)
Torsion angles (°)		Torsion angles (°)	
C2-C1-N1-O1	180.0(2)	C14-C13-C18-N3	-179.8(6)
N2-02-C5-C6	-90.2(8)°		
N4-C14-C15-C16	-178.4(7)	C17-C18-N3-O3	-0.3(10)

 Table 2. C-H...Br and C-H...O interactions parameters (Å, °) for 23.

D–H··· A	D–H	Н…А	D····A	D-H···A
C8-H8Br1 ^{<i>i</i>}	0.93	2.74	3.665(9)	171.2
C17-H17Br2 ^{<i>ii</i>}	0.93	2.80	3.708(7)	166.3
C25-H25O7 ^{<i>i</i>}	0.93	2.52	3.376(11)	153.9
C25-H25O7 ^{<i>iii</i>}	0.93	2.52	3.376(11)	153.9

Symmetry codes: (*i*) -*x*+1, -*y*+2, *z*+1/2, (*ii*) *x*, -*y*+2, *z*-1/2, (*iii*) *x*+2, -*y*+1, *z*+1/2