Supplementary Material

O-Benzyl-N-(9'-acridinyl)hydroxylamines

Alyssa L. Carlson, Nathan Duncan, Michael D. Mosher*

^aDepartment of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639 USA ^bDepartment of Biomedical and Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT 59812 USA Email: michael.mosher@unco.edu

Table of Contents

1.	General Procedures	S2
2.	General procedure for preparation of O-benzyl-N-(9'-acridinyl)-hydroxylamines (6a-I)	S2
3.	Data for O-(3-methoxybenzyl)-N-(9'-acridinyl)-hydroxylamine, 6a	S3
4.	Data for O-(2-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6c	S5
5.	Data for O-(3-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6d	S7
6.	Data for O-(4-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6e	S9
7.	Data for O-benzyl-N-(9'-acridinyl)-hydroxylamine, 6f	S11
8.	Data for O-(2-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6g	S14
9.	Data for O-(3-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6h	S16
10.	Data for O-(4-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6i	S18
11.	Data for O-(4-bromobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6j	S20
12.	Data for O-(3-nitrobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6k	S22
13.	Data for O-(4-nitrobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6l	S24

General Procedures

Benzyl chloride, substituted benzyl chlorides, N-hydroxyphthalimide, 9-chloroacridine (**5**) and other reagents were obtained commercially from Sigma Aldrich, and were used after a determination of purity via ¹H NMR spectroscopy. Compounds **3** and **4** were prepared using the method of Bonaccorsi and Giorgi (ref. 9). All solvents used were dried prior to use and their purity verified via spectroscopic methods. Hydrogen chloride gas was generated as needed through the addition of concentrated sulfuric acid to sodium chloride. Radial chromatography was performed using a Harrison Associates Chromatotron[®] on 2mm-thick silica gel plates containing fluorescent indicator that were pre-cleaned with methanol and stored at elevated temperatures prior to use. NMR spectra were obtained on a Bruker Avance II (400 MHz for ¹H) multinuclear FT-NMR. Infrared spectra were collected using a Thermo Scientific iD₅ ATR ZnSe cell. All UV-visible data were measured using an Agilent UV-visible diode-array spectrophotometer with a Peltier-temperature controller. MTT assay data were collected using published procedures (ref. 15).

General procedure for preparation of O-benzyl-N-(9'-acridinyl)-hydroxylamines (6a-l)

The appropriate salt, **4a-l**, $(7.02 \times 10^{-4} \text{ mol})$ was treated with commercially available 9-chloroacridine (**5**) (4.68×10⁻⁴ mol). The reaction was carried out in molten phenol using 3.0 grams of phenol per gram of 9-chloroacridine (**5**). The reaction was heated between 80-100 °C for a period of 6-8 hours, then cooled to room temperature and dissolved in CH₂Cl₂. The resulting orange or red organic solution was washed repeatedly with 0.25 M NaOH until greater than a 1:1 molar ratio of hydroxide to phenol was used. The organic phase was then washed with water (once) and brine (once). The organic layer was dried over anhydrous sodium sulfate, gravity filtered, and concentrated to a final volume of approximately 1 mL. This sample was then transferred to the top of a 5-cm column of silica gel constructed from a 10-mL syringe barrel and eluted with ethyl acetate. The orange filtrate was collected, concentrated to a final volume of 0.5-1.0 mL, and subjected to radial chromatography (2mm plate, silica gel, CH₂Cl₂:Et₂O 100:0 to 90:10 gradient elution). Compounds **6a-l** were obtained in pure form by evaporation of the solvent from the bands that eluted.

O-(3-methoxybenzyl)-N-(9'-acridinyl)-hydroxylamine, 6a

Yield: 64%. ¹HNMR (acetone-d₆) δ , in ppm: 9.32 (s, 1H); 9.03 (d, 1H); 8.10 (d, 1H); 7.34 (m, 3H); 7.13 (m, 4H); 6.97 (m, 2H); 6.88 (m, 1H); 5.30 (s, 2H); 3.78 (s, 3H). ¹³CNMR (acetone-d₆) δ , in ppm: 159.9; 143.5; 140.5; 140.4; 140.3; 138.1; 138.0; 131.9; 130.9; 129.8; 129.3; 124.6; 120.7; 120.0; 119.1; 118.1; 118.1; 115.4; 115.3; 115.0; 115.0; 114.9; 113.4; 113.0; 76.5; 54.5. IR (ATR-ZnSe) in cm⁻¹: 747.39; 964.12; 1157.11; 1265.46; 1474.23; 1598.05; 1614.45. Δ T_m = 9.1°C.

O-(2-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6c

Yield: 49%. ¹HNMR (acetone-d₆) δ , in ppm: 9.31 (s, 1H); 8.95 (m, 1H); 8.09 (d, 1H); 7.47 (d, 1H); 7.34 (m, 2H); 7.23 (m, 3H); 7.12 (m, 2H); 6.98 (m, 2H); 5.33 (s, 2H); 2.45 (s, 3H). ¹³CNMR (acetone-d₆) δ , in ppm: 143.3; 140.4; 140.3; 138.1; 138.0; 136.8; 136.4; 131.7; 130.9; 130.0; 129.7; 129.2; 127.9; 125.7; 124.6; 120.6; 119.1; 118.2; 118.1; 115.4; 115.3; 115.0; 114.9; 114.9; 75.2. IR (ATR-ZnSe) in cm⁻¹: 1473. HRMS: M-1, 315.1496 (C₂₁H₁₉N₂O). Δ T_m = 15.5°C. MTT IC₅₀ = 17.7±0.2µM

O-(3-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6d

Yield: 71%. ¹H NMR (acetone-d₆) δ , in ppm: 9.31 (s, 1H); 8.99 (d, 1H); 8.09 (d, 1H); 7.33 (m, 5H); 7.10 (m, 3H); 6.98 (m, 2H); 5.27 (s, 2H); 2.34 (s, 3H). ¹³C NMR (acetone-d₆) δ , in ppm: 143.3; 140.4; 140.4; 138.6; 138.1; 138.0; 137.7; 131.9; 130.9; 129.7; 128.7; 128.3; 128.2; 125.2; 124.6; 120.7; 119.1; 118.2; 118.1; 115.4; 115.3, 114.98, 115.0; 114.9; 76.8. IR (ATR-ZnSe) in cm⁻¹: 745; 770; 964, 1156; 1472; 1486; 1598; 1614. HRMS: M-1, 315.1477 (C₂₁H₁₉N₂O). $\Delta T_m = 19.0^{\circ}$ C. MTT IC₅₀ = 20.7±0.5µM

O-(4-methylbenzyl)-N-(9'-acridinyl)-hydroxylamine, 6e

Yield: 40%. ¹HNMR (acetone-d₆) δ, in ppm: 9.31 (s, 1H); 8.98 (m, 1H); 8.11 (m, 1H); 7.37 (m, 4H); 7.14 (m, 4H); 6.96 (m, 2H); 5.27 (s, 2H); 2.33 (s, 3H). ¹³CNMR (acetone-d₆) δ, in ppm: 143.2; 140.4; 138.1; 138.0; 137.1; 135.6; 131.8; 130.9; 129.7; 128.9; 128.2; 124.6; 120.7; 119.1; 119.1; 118.2; 115.4; 115.3; 115.0; 114.9; 76.6. IR (ATR-ZnSe) in cm⁻¹: 746, 965, 1157, 1472. HRMS: M-1, 315.1490 (C₂₁H₁₉N₂O). $\Delta T_m = 19.0^{\circ}$ C. MTT IC₅₀ = 22.2±1.7µM.

O-benzyl-N-(9'-acridinyl)-hydroxylamine, 6f

Yield: 16%. ¹H NMR (acetone-d₆) δ, in ppm: 9.33 (s, 1H); 9.00 (m, 1H); 8.09 (m, 1H); 7.54 (m, 2H); 7.35 (m, 5H); 7.14 (m, 1H); 7.08 (m, 2H); 6.95 (m, 2H); 5.31 (s, 2H).

¹³C NMR (acetone-d₆) δ, in ppm: 143.40; 140.45; 138.76; 138.14; 131.84; 130.91; 129.74; 128.28; 128.03; 127.57; 124.61; 120.68; 119.11; 118.12; 115.39; 115.30; 114.97; 114.89; 76.65. IR (ATR-ZnSe) in cm⁻¹: 1473. HRMS: M-1, 301.1341 (C₂₀H₁₇N₂O). UV λ_{max} : 259 nm, A₂₅₉ = 0.36471. ΔT_m = 6.6°C. MTT IC₅₀ = 33.2±0.6µM.

O-(2-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6g

Yield: 15%. ¹HNMR (acetone-d₆) δ , in ppm: 9.37 (s, 1H); 9.02 (m, 2H); 8.05 (m, 2H); 7.61 (m, 2H); 7.36 (m, 8H); 7.15 (m, 2H); 7.09 (m, 1H); 6.97 (m, 3H); 5.05 (s, 2H). ¹³CNMR (acetone-d₆) δ , in ppm: 143.9; 140.4; 140.4; 138.1; 138.0; 136.4; 132.9; 131.9; 131.0; 130.1; 129.8; 129.2; 129.2; 127.0; 124.6; 120.7; 119.2; 117.9; 115.5; 115.4; 115.0; 114.9; 114.8; 73.7. IR (ATR-ZnSe) in cm⁻¹: 746 1474. HRMS: M-1, 335.0952 (C₂₀H₁₆N₂OCl). $\Delta T_m = 18.2^{\circ}C$. MTT IC₅₀ = 17.4±0.2µM.

acridine w/O-(2-chlorobenzyl)hydroxylamine hydrochloride Before C2 crystals $\hfill \hfill \$

O-(3-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6h

Yield: 46%. ¹HNMR (acetone-d₆) δ , in ppm: 9.37 (s, 1H); 9.00 (m, 1H); 8.08 (m, 1H); 7.40 (m, 6H); 7.10 (m, 2H); 6.98 (m, 2H); 5.32 (s, 2H). ¹³CNMR (acetone-d₆) δ , in ppm: 143.8; 141.5; 140.4; 140.4; 138.1; 138.0; 133.6; 131.8; 131.0; 130.0; 129.8; 127.8; 127.5; 126.3; 124.6; 120.7; 119.2; 117.9; 117.9; 115.5; 115.4; 115.04; 115.0; 114.8; 114.8; 75.6. IR (ATR-ZnSe) in cm⁻¹: 747, 1474. HRMS: M-1, 335.0948 (C₂₀H₁₆N₂OCl). $\Delta T_m = 18.5^{\circ}$ C. MTT IC₅₀ = 18.0±0.2µM

O-(4-chlorobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6i

Yield: 30%. ¹HNMR (acetone-d₆) δ, in ppm: 9.34 (s, 1H); 8.98 (m, 1H); 8.06 (m, 1H); 7.54 (m, 2H); 7.40 (m, 4H); 7.14 (m, 1H); 7.08 (m, 1H); 6.97 (m, 2H); 5.30 (s, 2H). ¹³CNMR (acetone-d₆) δ, in ppm: 143.7; 140.4; 140.4; 138.1; 138.0; 137.8; 132.8; 131.8; 131.0; 129.8; 129.8; 128.3; 124.6; 120.7; 119.2; 118.0; 118.0; 115.4; 115.4; 115.0; 114.9; 114.8; 114.8; 75.6. IR (ATR-ZnSe) in cm⁻¹: 747; 964; 1473; 1489; 1598. HRMS: M-1, 335.0951 (C₂₀H₁₆N₂OCl). $\Delta T_m = 20.2^{\circ}$ C. MTT IC₅₀ = 17.0±0.4µM.

acridine w/O-(4-chlorobenzyl)hydroxylamine hydrochloride after chromatatron F 4-14 pure

O-(4-bromobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6j

Yield: 51%. ¹HNMR (acetone-d₆) δ , in ppm: 9.34 (s, 1H); 8.97 (m, 1H); 8.06 (m, 1H); 7.57 (m, 2H); 7.48 (m, 2H); 7.37 (m, 2H); 7.14 (m, 1H); 7.08 (m, 1H); 6.96 (m, 2H); 5.28 (s, 2H). ¹³CNMR (acetone-d₆) δ , in ppm: 143.7; 140.4; 140.4; 138.3; 138.1; 138.0; 131.8; 131.3; 131.0; 130.1; 129.8; 124.6; 121.0; 120.7; 119.2; 118.0; 117.9; 115.4; 115.4; 115.0; 114.9; 114.8; 75.7 ppm. IR (ATR ZnSe) in cm⁻¹: 747; 964; 1008; 1473; 1486. HRMS: M-1, 379.0421 (C₂₀H₁₆N₂OBr). $\Delta T_m = 18.1^{\circ}$ C. MTT IC₅₀ = 18.5±4.3µM

O-(3-nitrobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6k

Yield: 41%. ¹HNMR (acetone-d₆) δ , in ppm: 9.40 (s, 1H); 9.01 (s, 1H); 8.39 (s, 1H); 8.18 (m, 1H); 8.05 (m, 1H); 7.95 (m, 1H); 7.69 (m, 1H); 7.39 (m, 2H); 7.16 (m, 1H); 7.10 (m, 1H); 6.98 (m, 2H); 5.46 (s, 2H). ¹³CNMR (acetone-d₆) δ , in ppm: 148.36; 144.21; 141.46; 140.46; 138.10; 134.13; 131.83; 131.12; 129.93; 129.64; 124.60; 122.45; 122.34; 120.75; 119.25; 117.79; 117.76; 115.54; 115.46; 115.07; 114.99; 114.69; 114.65; 75.08. IR (ATR ZnSe) in cm⁻¹: 963; 1346; 1473; 1524; 1615. HRMS: M-1, 346.1194 (C₂₀H₁₆N₃O₃).. $\Delta T_m = 15.1^{\circ}$ C. MTT IC₅₀ = 31.8±0.1µM

O-(4-nitrobenzyl)-N-(9'-acridinyl)-hydroxylamine, 6l

Yield: 38%. ¹HNMR (acetone-d₆) δ , in ppm: 9.43 (s, 1H); 9.01 (m, 1H); 8.24 (m, 2H); 8.03 (m, 1H); 7.74 (m, 2H); 7.41 (m, 1H); 7.34 (m, 1H); 7.17 (m, 1H); 7.10 (m, 1H); 6.98 (m, 2H); 5.44 (s, 2H).¹³CNMR (acetone-d₆) δ , in ppm: 147.4; 146.9; 144.2; 140.5; 140.4; 138.1; 138.0; 131.8; 131.1; 129.9; 128.4; 123.4; 120.8; 119.3; 117.7; 117.7; 115.6; 115.5; 115.1; 115.0; 114.7; 114.6; 75.1. IR (ATR ZnSe) in cm⁻¹: 748; 1342; 1474; 1518. HRMS: M-1, 346.1172 (C₂₀H₁₆N₃O₃). MTT IC₅₀ = 30.3±1.4 μ M

