Supplementary Material

Reduction of phenylacetylenes using Raney Ni–Al alloy, Al powder in the

presence of noble metal catalysts in water

Ummey Rayhan,^{a,b} Zannatul Kowser,^a Md. Nurul Islam,^b Carl Redshaw^c and Takehiko Yamato^{a,*}

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1 Saga, 840-8502, Japan ^b Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur Gazipur-1700, Bangladesh ^c Chemistry, School of Mathematics & Physical Sciences, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK E-mail: <u>yamatot@cc.saga-u.ac.jp</u>

Table of Contents

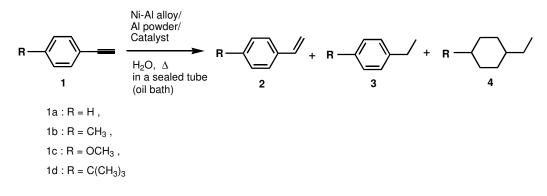
1. Experimental Section	S2
1.1 General remarks	S2
1.2 Reagent list	S2
1.3 Typical procedure	S2
2. Figure S1: GC of Table 2 Entry 3	S3
3. Figure S2: GC of Table 5 Entry 1	S3
4. Table for Figure 1	S4
5. Table for Figure 2	S4

Issue in honor of Prof. Kenneth K. Laali

1. Experimental Section

1.1 General remarks

All melting points are uncorrected. ¹H NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in CDCl₃ with Me₄Si as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on Shimadzu GCMS-QP5050A Ultrahigh Performance Mass Spectrometer AOC-20I, 100V using a direct-inlet system. GLC analyses were performed by Shimadzu gas chromatographer, GC-2010.

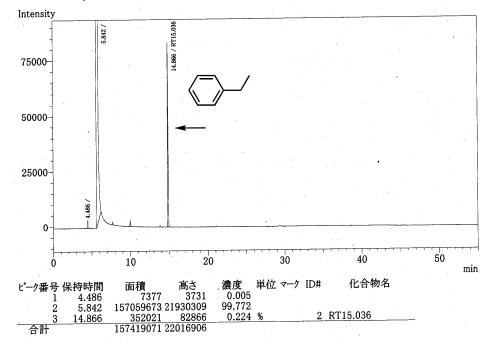

1.2 Reagent list

Raney Ni–Al alloy (500 wt%), Al powder (500 wt%) (53–150 μm, 99.5%) (Wako), Pt/C, Pd/C, Ru/C and Rh/C (5 wt%) (Wako), Distilled water (Wako).

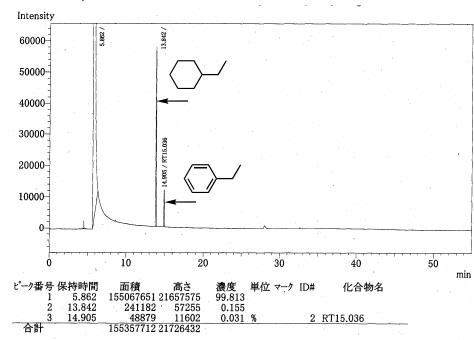
1.3 Typical procedure

The mixture of a substrate (20 mg, 0.20 mmol) (Wako), Raney Ni–Al alloy (500 wt%), Al powder (500 wt%) (53–150 µm, 99.5%) (Wako) and Pt/C, Pd/C, Ru/C or Rh/C (20 mg) (4.5 mole % metal) was added to water (0.5 mL) (Wako distilled water). After heating the mixture at 60–120 °C for 6–12 h, it was cooled to room temperature. The solution was then diluted with 1 mL water and stirred overnight at room temperature in a sealed tube. After 24 h, the solution was extracted with diethyl ether (3 × 2 mL) as per the reported procedure.³⁷ The combined organic layers were dried over anhydrous MgSO₄ and filtered through a porous cotton plug followed by concentrating in vacuum to afford the corresponding hydrogenated product. The yields were determined by GLC analysis using the standard compound (1,2,3,4-tetrahydronaphthalene), and the products were identified by GC–MS.

Reduction of phenylacetylenes (1)



Scheme S1. Reduction of phenylacetylene by using AI powder in the presence of catalyst in water. **GC Conditions:**


	Rate (°C/min)	Temperature (°C)	Hold (min)
1	-	35	-
2	2	100	10

Issue in honor of Prof. Kenneth K. Laali

Table 2 Entry 3

Reduction of phenylacetylene using Ni-Al and Al powder in H_2O at 120 °C for 6 h

Table 5 Entry 1

Reduction of phenylacetylene using Ni-Al, Al powder and Pt/C in H_2O at 60 °C for 12

Table for figure 1

Entry	Temp.	Pt/C	Pd/C	Ru/C	Rh/C
	(°C)				
1	120	30.9	4.5	0	37
2	90	31.3	7.5	16	27.5
3	60	33.7	3.4	25.9	26.3

Reduction of phenylacetylene (1a) using Raney Ni–Al, Al powder and noble metal catalysts in H₂O^{a,b}

^aSubstrate: 20 mg (0.20 mmol), Raney Ni–Al: 100 mg (500 wt%), Al powder: 100 mg (500 wt%), catalyst: 4.5 mol% (metal), H_2O : 0.5 mL.

^bConditions: time: 6 h.

^cThe yields were determined by GLC.

Table for figure 2

Reduction of phenylacetylene (1a) using Raney Ni–Al, Al powder and Pt/C in $H_2O^{a,b}$

Entry	Temp.	Yield (%) ^c 4	
	(°C)	3	
1	60	13.1	86.9
2	80	28.7	71.3
3	120	50	50

^aSubstrate: 20 mg (0.20 mmol), Raney Ni–AI: 100 mg (500 wt%), Al powder: 100 mg (500 wt%), catalyst: 4.5 mol% (metal), H_2O : 0.5 mL.

0.5 mL.

^bConditions: time: 12 h.

^cThe yields were determined by GLC.