Supplementary Material

Tert-Butylation of naphthalene-2,6-diol and 6-methoxynaphthalen-2-ol

Andrey A. Berezin*, Davide Marinelli

School of Chemistry, Cardiff University Main Building, Park Pl, Cardiff CF10 3AT, United Kingdom E-mail: <u>Berezina@cardiff.ac.uk</u>

Dedicated to Professor Oleg A. Rakitin on the occasion of his 65th birthday

Table of Contents

1H-NMR of compound 2	S2
13C-NMR of compound 2	S3
1H-NMR of compound 3	S4
13C-NMR of compound 3	S5
1H-NMR of compound 5	S6
13C-NMR of compound 5	S7
1H-NMR of compound 6	S8
13C-NMR of compound 6	S9
1H-NMR of compound 7	S10
13C-NMR of compound 7	S11
Crystal data for compound 2	S12
Crystal data for compound 3	S19
Crystal data for compound 5	S24

[©]ARKAT USA, Inc

[©]ARKAT USA, Inc

[©]ARKAT USA, Inc

3,7-di-tert-butyl-6-methoxynaphthalen-2-ol (5)

[©]ARKAT USA, Inc

[©]ARKAT USA, Inc

[©]ARKAT USA, Inc

X-ray measurements:

Single crystals of **2** and **3** were grown by slow evaporation of CHCl₃ solutions, while a single crystal of **5** was obtained by evaporation of a hexane solution. Crystallographic studies were undertaken on single crystal mounted in paratone, mounted on the goniometer head with a nylon loop and studied on an Agilent SuperNova Dual three-circle diffractometer using Cu-K α ($\lambda = 1.540598$ Å) or Mo-K α ($\lambda = 0.7093187$ Å) radiation and a CCD detector. Measurements were typically made at 150(1) K with temperatures maintained using an Oxford Cryostream unless otherwise stated. Data were collected, integrated and corrected for absorption using a numerical absorption correction based on Gaussian integration over a multifaceted crystal model within CrysAlisPro.^[1S]The structures were solved by direct methods and refined against F2 within SHELXL-2013.^[2S]A summary of crystallographic data are available as ESI and the structures deposited with the Cambridge Structural Database (CCDC deposition numbers 1558768 (2), 1558766(3), and 1558767 (5)). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for compound 2

 Table S1. Crystal data and structure refinement for 2.

Identification code	1558768 (2)
Empirical formula	C36 H52 O6
Formula weight	580.77
Temperature	150(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic

Space group	I 2/a	
Unit cell dimensions	a = 12.2515(4) Å	$\alpha = 90^{\circ}$.
	b = 11.0764(3) Å	$\beta = 104.115(4)^{\circ}.$
	c = 24.8986(10) Å	$\gamma = 90^{\circ}.$
Volume	3276.8(2) Å ³	
Z	4	
Density (calculated)	1.177 Mg/m ³	
Absorption coefficient	0.622 mm ⁻¹	
F(000)	1264	
Crystal size	0.260 x 0.182 x 0.068	3 mm ³
Theta range for data collection	3.661 to 73.864°.	
Index ranges	-15<=h<=14, -8<=k<	=13, -30<=l<=30
Reflections collected	9291	
Independent reflections	4729 [R(int) = 0.0329	9]
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	1.00000 and 0.52751	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	4729 / 0 / 206	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0897, wR2 =	0.2341
R indices (all data)	R1 = 0.1000, wR2 =	0.2576
Extinction coefficient	n/a	
Largest diff. peak and hole	0.738 and -0.338 e.Å	-3

	Х	у	Z	U(eq)	
C(1)	4045(2)	3711(2)	5591(1)	26(1)	
C(2)	4151(2)	3637(2)	5055(1)	26(1)	
C(3)	4754(2)	4512(2)	4830(1)	24(1)	
C(4)	4899(2)	4440(2)	4282(1)	25(1)	
C(5)	4510(2)	4722(2)	5941(1)	24(1)	
C(6)	4335(3)	4844(2)	6531(1)	29(1)	
C(7)	4902(3)	3778(3)	6885(1)	38(1)	
		64.2			

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for **2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Issue in Honor of Prof. Oleg A. Rakitin

C(8)	3074(3)	4881(2)	6514(2)	34(1)
C(9)	4863(3)	6013(3)	6811(1)	38(1)
C(10)	3458(2)	-1278(2)	4407(1)	26(1)
C(11)	4096(2)	-1366(2)	4942(1)	26(1)
C(12)	4919(2)	-491(2)	5170(1)	25(1)
C(13)	5616(2)	-574(2)	5716(1)	25(1)
C(14)	3573(2)	-271(2)	4061(1)	26(1)
C(15)	2825(3)	-132(2)	3470(1)	27(1)
C(16)	3040(3)	-1192(3)	3115(1)	38(1)
C(17)	1571(3)	-114(2)	3490(2)	34(1)
C(18)	3058(3)	1047(3)	3196(1)	37(1)
O(1)	3496(1)	2839(2)	5808(1)	33(1)
O(2)	2693(1)	-2156(2)	4188(1)	34(1)
O(3)	2500	1141(2)	5000	30(1)
O(4)	7500	3854(2)	5000	31(1)

1.362(3)
1.374(3)
1.447(3)
1.415(3)
0.9500
1.414(4)
1.421(3)
1.375(3)
0.9500
1.375(3)
1.541(4)
1.535(4)
1.535(5)
1.537(4)
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
1.368(3)
1.374(3)
1.438(3)
1.413(3)
0.9500
1.420(5)
1.421(3)
1.379(3)
0.9500
1.379(3)
1.539(4)
1.531(4)
1.532(4)
1.549(5)

Table S3. Bond lengths [Å] and angles [°] for **2**.

C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
O(1)-H(1A)	0.8400
O(2)-H(2A)	0.8400
O(3)-H(3)	0.85(4)
O(4)-H(4A)	0.87(4)
O(1)-C(1)-C(2)	121.00(19)
O(1)-C(1)-C(5)	118.0(2)
C(2)-C(1)-C(5)	121.0(2)
C(1)-C(2)-C(3)	121.7(2)
C(1)-C(2)-H(2)	119.1
C(3)-C(2)-H(2)	119.1
C(3)#1-C(3)-C(2)	118.4(3)
C(3)#1-C(3)-C(4)	118.8(2)
C(2)-C(3)-C(4)	122.9(2)
C(5)#1-C(4)-C(3)	123.5(2)
C(5)#1-C(4)-H(4)	118.2
C(3)-C(4)-H(4)	118.2
C(4)#1-C(5)-C(1)	116.6(2)
C(4)#1-C(5)-C(6)	122.3(2)
C(1)-C(5)-C(6)	121.1(2)
C(7)-C(6)-C(8)	110.3(3)
C(7)-C(6)-C(9)	107.8(3)
C(8)-C(6)-C(9)	107.4(3)
C(7)-C(6)-C(5)	109.3(2)
C(8)-C(6)-C(5)	110.5(3)
C(9)-C(6)-C(5)	111.5(2)
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5

H(7B)-C(7)-H(7C)	109.5
C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(6)-C(9)-H(9A)	109.5
C(6)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(2)-C(10)-C(11)	120.6(2)
O(2)-C(10)-C(14)	118.0(2)
C(11)-C(10)-C(14)	121.4(2)
C(10)-C(11)-C(12)	121.4(2)
C(10)-C(11)-H(11)	119.3
C(12)-C(11)-H(11)	119.3
C(11)-C(12)-C(12)#2	118.4(3)
C(11)-C(12)-C(13)	122.8(2)
C(12)#2-C(12)-C(13)	118.7(2)
C(14)#2-C(13)-C(12)	123.2(2)
C(14)#2-C(13)-H(13)	118.4
C(12)-C(13)-H(13)	118.4
C(13)#2-C(14)-C(10)	116.8(2)
C(13)#2-C(14)-C(15)	121.4(2)
C(10)-C(14)-C(15)	121.9(2)
C(18)-C(15)-C(16)	108.6(3)
C(18)-C(15)-C(14)	112.2(2)
C(16)-C(15)-C(14)	109.2(2)
C(18)-C(15)-C(17)	107.3(2)
C(16)-C(15)-C(17)	109.8(3)
C(14)-C(15)-C(17)	109.6(3)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

Issue in Honor of Prof. Oleg A. Rakitin

	100 -
C(15)-C(17)-H(17A)	109.5
C(15)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(15)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(15)-C(18)-H(18A)	109.5
C(15)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(15)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(1)-O(1)-H(1A)	109.5
C(10)-O(2)-H(2A)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+1,-y,-z+1

Table S4. Anisotropic displacement parameters (Å²x 10³)for **2**. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

-	U ¹¹	U ²²	U33	U ²³	U13	U ¹²
C(1)	25(1)	22(1)	32(1)	2(1)	7(1)	0(1)
C(2)	24(1)	21(1)	31(1)	-1(1)	6(1)	0(1)
C(3)	21(1)	21(1)	30(1)	-1(1)	5(1)	2(1)
C(4)	22(1)	22(1)	30(1)	-3(1)	5(1)	0(1)
C(5)	21(1)	27(1)	26(1)	0(1)	7(1)	4(1)
C(6)	31(2)	31(1)	24(1)	1(1)	8(1)	0(1)
C(7)	43(2)	41(2)	29(1)	5(1)	5(1)	5(1)
C(8)	33(2)	40(2)	35(2)	1(1)	16(1)	1(1)
C(9)	46(2)	39(2)	31(1)	-6(1)	13(1)	-8(1)
C(10)	24(1)	22(1)	32(1)	-4(1)	7(1)	-1(1)
C(11)	26(1)	22(1)	32(1)	1(1)	9(1)	0(1)
C(12)	23(1)	23(1)	29(1)	0(1)	8(1)	2(1)
C(13)	25(1)	22(1)	29(1)	0(1)	9(1)	1(1)
C(14)	24(1)	27(1)	27(1)	-3(1)	8(1)	2(1)
C(15)	26(1)	31(1)	24(1)	-4(1)	5(1)	2(1)
				S17		

Issue in Honor of Prof. Oleg A. Rakitin						ARKIVOC 2017 (iii) \$1-\$30
C(16)	47(2)	38(2)	29(1)	-7(1)	9(1)	3(1)	
C(17)	28(2)	42(2)	31(2)	-1(1)	2(1)	3(1)	
C(18)	42(2)	39(1)	27(1)	4(1)	1(1)	-2(1)	
O(1)	40(1)	28(1)	33(1)	0(1)	13(1)	-9(1)	
O(2)	37(1)	28(1)	35(1)	-1(1)	3(1)	-10(1)	
O(3)	28(1)	22(1)	41(1)	0	14(1)	0	
O(4)	23(1)	21(1)	47(1)	0	4(1)	0	

_

Crystal data for compound 3

1558766 (**3**) Identification code Empirical formula C14 H16 O2 Formula weight 216.27 293(2) K Temperature 0.71073 Å Wavelength Crystal system Monoclinic P 21/c Space group a = 6.4201(3) ÅUnit cell dimensions

 $\alpha = 90^{\circ}$.

	b = 7.1231(5) Å	$\beta = 94.017(6)^{\circ}$.	
	c = 25.2730(14) Å	$\gamma = 90^{\circ}.$	
Volume	1152.92(12) Å ³		
Z	4		
Density (calculated)	1.246 Mg/m ³		
Absorption coefficient	0.082 mm ⁻¹		
F(000)	464		
Crystal size	0.775 x 0.646 x 0.135 mm ³		
Theta range for data collection	2.972 to 29.635°.		
Index ranges	-6<=h<=8, -9<=k<=7, -33<=l<=34		
Reflections collected	5223		
Independent reflections	2724 [R(int) = 0.0187]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.340		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	2724 / 0 / 145		
Goodness-of-fit on F ²	1.037		
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.11	102	
R indices (all data)	R1 = 0.0707, wR2 = 0.1240		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.222 and -0.223 e.Å ⁻³		

Table S6. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O (1)	11338(2)	4645(2)	1190(1)	33(1)	
O(2)	4243(2)	2605(2)	3480(1)	39(1)	
C(5)	6799(2)	3215(2)	2225(1)	20(1)	
C(12)	9232(2)	1617(3)	528(1)	37(1)	
C(4)	6514(2)	2866(2)	1673(1)	21(1)	
C(3)	7961(2)	3323(2)	1318(1)	22(1)	
C(11)	7572(2)	2953(2)	721(1)	26(1)	
C(10)	8679(2)	4083(2)	2426(1)	22(1)	
C(2)	9848(2)	4192(2)	1535(1)	23(1)	

Issue in Honor of Pr	of. Oleg A. Rakitin			ARKIVOC 2017 (iii) S1-S30
C(9)	8974(2)	4437(2)	2978(1)	25(1)
C(1)	10174(2)	4554(2)	2065(1)	23(1)
C(6)	5270(2)	2723(2)	2579(1)	22(1)
C(7)	5613(2)	3077(2)	3109(1)	26(1)
C(14)	5447(2)	2025(3)	591(1)	32(1)
C(8)	7476(2)	3949(2)	3310(1)	27(1)
C(13)	7596(2)	4824(2)	419(1)	35(1)

_

Table S7. Bond lengths [Å] and angles $[\circ]$ for **3**.

O(1)-C(2)	1.3767(15)	
O(1)-H(1A)	0.8200	
O(2)-C(7)	1.3712(16)	
O(2)-H(10)	0.8200	
C(5)-C(4)	1.4168(18)	
C(5)-C(6)	1.4177(18)	
C(5)-C(10)	1.4184(19)	
C(12)-C(11)	1.534(2)	
C(12)-H(12A)	0.9600	
C(12)-H(12B)	0.9600	
C(12)-H(12C)	0.9600	
C(4)-C(3)	1.3747(18)	
C(4)-H(4)	0.9300	
C(3)-C(2)	1.4350(19)	
C(3)-C(11)	1.5331(19)	
C(11)-C(14)	1.5313(19)	
C(11)-C(13)	1.537(2)	
C(10)-C(1)	1.4106(18)	
C(10)-C(9)	1.4175(19)	
C(2)-C(1)	1.3647(19)	
C(9)-C(8)	1.365(2)	
C(9)-H(9)	0.9300	
C(1)-H(1)	0.9300	
C(6)-C(7)	1.3662(19)	
C(6)-H(6)	0.9300	
C(7)-C(8)	1.410(2)	
C(14)-H(14A)	0.9600	
C(14)-H(14B)	0.9600	
C(14)-H(14C)	0.9600	

C(8)-H(8)	0.9300
C(13)-H(13A)	0.9600
С(13)-Н(13В)	0.9600
С(13)-Н(13С)	0.9600
C(2)-O(1)-H(1A)	109.5
C(7)-O(2)-H(10)	109.5
C(4)-C(5)-C(6)	122.12(12)
C(4)-C(5)-C(10)	118.48(12)
C(6)-C(5)-C(10)	119.40(12)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(3)-C(4)-C(5)	123.69(12)
C(3)-C(4)-H(4)	118.2
C(5)-C(4)-H(4)	118.2
C(4)-C(3)-C(2)	116.33(12)
C(4)-C(3)-C(11)	121.98(12)
C(2)-C(3)-C(11)	121.69(12)
C(14)-C(11)-C(3)	111.59(11)
C(14)-C(11)-C(12)	106.97(13)
C(3)-C(11)-C(12)	110.57(11)
C(14)-C(11)-C(13)	107.85(12)
C(3)-C(11)-C(13)	109.42(12)
C(12)-C(11)-C(13)	110.38(12)
C(1)-C(10)-C(9)	123.01(12)
C(1)-C(10)-C(5)	118.22(12)
C(9)-C(10)-C(5)	118.78(13)
C(1)-C(2)-O(1)	120.71(12)
C(1)-C(2)-C(3)	121.61(12)
O(1)-C(2)-C(3)	117.67(12)
C(8)-C(9)-C(10)	120.63(13)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-H(9)	119.7
C(2)-C(1)-C(10)	121.67(12)
C(2)-C(1)-H(1)	119.2
C(10)-C(1)-H(1)	119.2

C(7)-C(6)-C(5)	120.19(13)
C(7)-C(6)-H(6)	119.9
C(5)-C(6)-H(6)	119.9
C(6)-C(7)-O(2)	123.90(13)
C(6)-C(7)-C(8)	120.59(13)
O(2)-C(7)-C(8)	115.51(12)
C(11)-C(14)-H(14A)	109.5
C(11)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(9)-C(8)-C(7)	120.41(13)
C(9)-C(8)-H(8)	119.8
C(7)-C(8)-H(8)	119.8
C(11)-C(13)-H(13A)	109.5
C(11)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(11)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

Symmetry transformations used to generate equivalent atoms:

_	U11	U ²²	U33	U ²³	U13	U ¹²	
_							
O (1)	21(1)	40(1)	37(1)	-6(1)	8(1)	-8(1)	
O(2)	48(1)	39(1)	30(1)	-4(1)	13(1)	-17(1)	
C(5)	20(1)	14(1)	27(1)	1(1)	-1(1)	2(1)	
C(12)	30(1)	43(1)	38(1)	-12(1)	3(1)	7(1)	
C(4)	17(1)	19(1)	27(1)	1(1)	-2(1)	0(1)	
C(3)	20(1)	17(1)	27(1)	1(1)	1(1)	4(1)	
C(11)	22(1)	29(1)	26(1)	-1(1)	3(1)	3(1)	
C(10)	21(1)	14(1)	28(1)	0(1)	-3(1)	3(1)	
				S22			

Table S8. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **3**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

Issue in H	lonor of Prot	f. Oleg A. Rakiti	in		Ļ	ARKIVOC 2017 (iii) S1	L-S30
C(2)	18(1)	19(1)	32(1)	1(1)	4(1)	2(1)	
C(9)	25(1)	19(1)	31(1)	-3(1)	-4(1)	1(1)	
C(1)	17(1)	18(1)	34(1)	-3(1)	-2(1)	-2(1)	
C(6)	22(1)	16(1)	28(1)	-1(1)	1(1)	-2(1)	
C(7)	31(1)	19(1)	29(1)	2(1)	7(1)	0(1)	
C(14)	26(1)	42(1)	26(1)	-4(1)	-1(1)	-2(1)	
C(8)	35(1)	21(1)	24(1)	-2(1)	-3(1)	1(1)	
C(13)	34(1)	41(1)	30(1)	6(1)	4(1)	2(1)	

Crystal data for compound 5

Identification code	1558767 (5)	
Empirical formula	C19 H26 O2	
Formula weight	286.40	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 21.420(2) Å	$\alpha = 90^{\circ}$.

	b = 6.4137(6) Å	β= 90°.
	c = 24.380(2) Å	$\gamma = 90^{\circ}$.
Volume	3349.3(6) Å ³	
Z	8	
Density (calculated)	1.136 Mg/m ³	
Absorption coefficient	0.557 mm ⁻¹	
F(000)	1248	
Crystal size	0.940 x 0.157 x 0.084 mm	3
Theta range for data collection	3.626 to 70.134°.	
Index ranges	-18<=h<=25, -7<=k<=7, -	-29<=l<=23
Reflections collected	8334	
Independent reflections	3165 [R(int) = 0.0777]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	1.00000 and 0.28053	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3165 / 0 / 198	
Goodness-of-fit on F ²	1.096	
Final R indices [I>2sigma(I)]	R1 = 0.0968, wR2 = 0.264	41
R indices (all data)	R1 = 0.1214, wR2 = 0.283	53
Extinction coefficient	n/a	
Largest diff. peak and hole	0.282 and -0.383 e.Å ⁻³	

Table S10. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³)for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	U(eq)	
C(1)	855(2)	9630(6)	1287(1)	38(1)	
C(2)	912(2)	8899(6)	766(2)	37(1)	
C(3)	1279(2)	9975(6)	363(1)	37(1)	
C(4)	1594(2)	11745(6)	539(1)	36(1)	
C(5)	1549(2)	12515(6)	1083(1)	34(1)	
C(6)	1864(2)	14336(6)	1260(1)	37(1)	
C(7)	1791(2)	15066(6)	1787(1)	36(1)	
C(8)	1393(2)	14034(6)	2176(1)	37(1)	
C(9)	1099(2)	12264(5)	1995(1)	36(1)	

Issue in Honor of Prof. Oleg A. Rakitin

_

C(10)	1168(2)	11461(6)	1460(1)	35(1)
C(11)	264(2)	5969(7)	971(2)	51(1)
C(12)	1304(2)	9254(7)	-233(2)	45(1)
C(13)	1559(3)	6991(10)	-263(2)	71(2)
C(14)	649(2)	9325(7)	-485(1)	44(1)
C(15)	1715(3)	10664(11)	-585(2)	79(2)
C(16)	1318(2)	14873(6)	2764(1)	42(1)
C(17)	1948(2)	14796(8)	3062(2)	56(1)
C(18)	855(2)	13527(7)	3090(2)	51(1)
C(19)	1057(3)	17098(6)	2754(2)	55(1)
O(1)	2097(2)	16822(4)	1963(1)	48(1)
O(2)	619(1)	7134(4)	583(1)	46(1)

Table S11. Bond lengths [Å] and angles [°] for **5**.

C(1)-C(2)	1.361(5)
C(1)-C(10)	1.417(5)
C(1)-H(1)	0.9500
C(2)-O(2)	1.368(5)
C(2)-C(3)	1.434(5)
C(3)-C(4)	1.389(5)
C(3)-C(12)	1.527(5)
C(4)-C(5)	1.419(5)
C(4)-H(4)	0.9500
C(5)-C(10)	1.402(5)
C(5)-C(6)	1.415(5)
C(6)-C(7)	1.376(5)
C(6)-H(6)	0.9500
C(7)-O(1)	1.373(4)
C(7)-C(8)	1.437(5)
C(8)-C(9)	1.371(5)
C(8)-C(16)	1.539(5)
C(9)-C(10)	1.409(5)
C(9)-H(9)	0.9500
C(11)-O(2)	1.424(5)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800

C(11)-H(11C)	0.9800
C(12)-C(15)	1.525(7)
C(12)-C(14)	1.532(6)
C(12)-C(13)	1.552(7)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(19)	1.532(6)
C(16)-C(17)	1.533(7)
C(16)-C(18)	1.536(6)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
O(1)-H(1A)	0.8400
C(2)-C(1)-C(10)	121.4(3)
C(2)-C(1)-H(1)	119.3
C(10)-C(1)-H(1)	119.3
C(1)-C(2)-O(2)	123.2(3)
C(1)-C(2)-C(3)	121.5(3)
O(2)-C(2)-C(3)	115.3(3)
C(4)-C(3)-C(2)	116.7(3)
C(4)-C(3)-C(12)	121.6(3)
C(2)-C(3)-C(12)	121.7(4)
C(3)-C(4)-C(5)	122.7(3)
C(3)-C(4)-H(4)	118.6
C(5)-C(4)-H(4)	118.6
C(10)-C(5)-C(6)	118.4(3)

C(10)-C(5)-C(4)	119.0(3)
C(6)-C(5)-C(4)	122.6(3)
C(7)-C(6)-C(5)	120.6(3)
C(7)-C(6)-H(6)	119.7
C(5)-C(6)-H(6)	119.7
O(1)-C(7)-C(6)	121.2(3)
O(1)-C(7)-C(8)	116.9(3)
C(6)-C(7)-C(8)	121.9(3)
C(9)-C(8)-C(7)	116.1(3)
C(9)-C(8)-C(16)	122.8(3)
C(7)-C(8)-C(16)	121.1(3)
C(8)-C(9)-C(10)	123.5(3)
C(8)-C(9)-H(9)	118.2
C(10)-C(9)-H(9)	118.2
C(5)-C(10)-C(9)	119.4(3)
C(5)-C(10)-C(1)	118.7(3)
C(9)-C(10)-C(1)	121.9(3)
O(2)-C(11)-H(11A)	109.5
O(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(15)-C(12)-C(3)	112.1(4)
C(15)-C(12)-C(14)	106.6(4)
C(3)-C(12)-C(14)	109.8(3)
C(15)-C(12)-C(13)	109.0(4)
C(3)-C(12)-C(13)	109.9(4)
C(14)-C(12)-C(13)	109.3(4)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5

H(14B)-C(14)-H(14C)	109.5
C(12)-C(15)-H(15A)	109.5
C(12)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(12)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(19)-C(16)-C(17)	111.0(4)
C(19)-C(16)-C(18)	107.3(4)
C(17)-C(16)-C(18)	107.7(3)
C(19)-C(16)-C(8)	110.4(3)
C(17)-C(16)-C(8)	109.7(3)
C(18)-C(16)-C(8)	110.7(3)
C(16)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(16)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(16)-C(18)-H(18A)	109.5
C(16)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(16)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(16)-C(19)-H(19A)	109.5
C(16)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(7)-O(1)-H(1A)	109.5
C(2)-O(2)-C(11)	117.6(3)

Symmetry transformations used to generate equivalent atoms:

Table S12. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **5**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

Issue in Honor of Prof. Oleg A. Rakitin

ARKIVOC 2017 (iii) S1-S30

_	U ¹¹	U ²²	U33	U ²³	U13	U12
C(1)	57(2)	37(2)	21(2)	3(1)	-1(2)	-2(2)
C(2)	48(2)	39(2)	26(2)	2(1)	-7(2)	2(1)
C(3)	38(2)	53(2)	20(2)	-4(1)	-4(2)	4(2)
C(4)	36(2)	52(2)	20(2)	1(1)	0(1)	1(1)
C(5)	39(2)	43(2)	20(2)	2(1)	-2(1)	2(1)
C(6)	46(2)	44(2)	21(2)	1(1)	2(2)	-1(1)
C(7)	45(2)	40(2)	22(2)	1(1)	0(1)	-1(1)
C(8)	54(2)	40(2)	17(2)	2(1)	1(2)	1(1)
C(9)	53(2)	36(2)	18(2)	4(1)	0(1)	0(1)
C(10)	46(2)	40(2)	20(2)	3(1)	-2(1)	0(1)
C(11)	68(3)	45(2)	38(2)	4(2)	-5(2)	-7(2)
C(12)	40(2)	73(3)	23(2)	-14(2)	1(2)	6(2)
C(13)	66(3)	104(4)	43(2)	-32(3)	-10(2)	34(3)
C(14)	49(2)	66(3)	17(2)	-7(2)	-4(2)	3(2)
C(15)	64(3)	152(6)	22(2)	-30(3)	14(2)	-39(3)
C(16)	64(3)	45(2)	18(2)	-1(1)	3(2)	1(2)
C(17)	75(3)	71(3)	23(2)	-6(2)	-3(2)	2(2)
C(18)	81(3)	54(2)	19(2)	1(2)	9(2)	1(2)
C(19)	88(3)	46(2)	29(2)	-2(2)	12(2)	6(2)
O(1)	67(2)	48(2)	28(1)	-6(1)	7(1)	-14(1)
O(2)	67(2)	41(1)	31(1)	-4(1)	-6(1)	-6(1)

_

References:

1S - CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET)

2S - G. M. Sheldrick, *SHELX-2013: Program for the Solution of Crystal Structures* **2013** University of Göttingen.