Supplementary Material

Novel L-threonine-based ionic liquid supported organocatalyst for asymmetric syn-aldol reaction: activity and recyclability design

Vasiliy V. Gerasimchuk,^a Roman R. Romanov,^b Woo Hoi Teng Gladys,^c Igor A. Dmitriev,^a Alexander S. Kucherenko,^a and Sergei G. Zlotin^{*a}

^aZelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991, Moscow, Russia ^bMoscow Chemical Lyceum, Tamogeny proezd 4, 111033, Moscow, Russia ^cNational Junior College, 37 Hillcrest Road, 288913, Singapore Email: <u>zlotin@ioc.ac.ru</u>

Table of Contents

General information	S2
General scheme of catalyst 1c synthesis	S2
Synthesis and characterization of 4	S3
Synthesis and characterization of 1c	S8
General procedure for syn-aldol reaction	S13
General procedure for recycling experiment	S13
Characterization of (3R,4S)-4-(2,4-dimethoxyphenyl)-3,4-dihydroxybutan-2-one (7i)	S14
HPLC traces for 7	S17
References	S21

General information

¹H and ¹³C NMR spectra were recorded with a Bruker AM 300 spectrometer in CDCl₃ and DMSO-*d*₆. The chemical shifts of ¹H and ¹³C signals were measured relative to Me₄Si or CDCl₃, respectively. The high-resolution mass spectra (HRMS) were measured with a Bruker microTOF II spectrometer using electrospray ionization (ESI). The measurements were taken either in the positive ion mode (interface capillary voltage 4500 V) or in the negative ion mode (3200 V) in a mass range m/z = 50-3000 Da; external or internal calibration was done with electrospray calibrant solution (Fluka). Syringe injection was used for solution in MeCN/H₂O (1:1, v/v) (flow rate 3 µL/min). Nitrogen was applied as a dry gas, and the interface temperature was set at 180 °C. Silica gel 0.060–0.200 µm (Acros) was used for column chromatography. Threonineamide **2** and benzyl 5-(1*H*imidazol-1-yl)pentanoate **3** were synthesized according to known methods. Compounds **5** and **6** were purchased from Aldrich and used without purification. The solvents were purified by standard procedures. For experimental details and spectral or HPLC data see Supporting Information.

General scheme of catalyst 1c synthesis

Steps before compound 2 are described in ref [1].

Synthesis and characterization of 4

3-(5-(benzyloxy)-5-oxopentyl)-1-(5-(((2R,3S)-3-(((benzyloxy)carbonyl)amino)-4-(((S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)amino)-4-oxobutan-2-yl)oxy)-5-oxopentyl)-1H-imidazol-3-ium hexafluorophosphate

Benzyl 5-(1H-imidazol-1-yl)pentanoate 4 (0.22 g, 0.83 mmol) was gradually added to a solution of (2R,3S)-3-(((benzyloxy)carbonyl)amino)-4-(((S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)amino)-4-oxobutan-2-yl 5-bromopentanoate 3 (0.45 g, 0.69 mmol) in CH₃OH (2 mL). The reaction mixture was kept at ambient temperature for 10 min and evaporated under reduced pressure (20 Torr) at 40 °C. The residue was heated at the same pressure (rotary evaporator, 80 °C) for 5 min, cooled to ambient temperature and diluted with distilled water (3.0 mL). A solution of KPF₆ (128 mg, 0.69 mmol) in distilled water (1.5 mL) was added to the resulting aqueous solution and the reaction mixture was stirred for 1h at ambient temperature. The precipitate was filtered and washed successively with distilled water (3 x 3 mL) and then 2x1 mL of Et₂O, then dried on filter to obtain 0.612 g (90%) of white powder 3-(5-(benzyloxy)-5-oxopentyl)-1-(5-(((2R,3S)-3-(((benzyloxy)carbonyl)amino)-4-(((S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)amino)-4-oxobutan-2yl)oxy)-5-oxopentyl)-1H-imidazol-3-ium hexafluorophosphate **4**. White powder, m.p. = 97-100 °C,

¹H NMR (600 MHz, DMSO-*d*₆): 0.65 (d, *J* = 6.5 Hz, 3H, CH₃); 0.70 (d, *J* = 6.5 Hz, 3H, CH₃); 0.87 (d, *J* = 6.5 Hz, 3H, CH₃); 1.38-1.45 (m, 2H, CH₂); 1.48-1.55 (m, 2H, CH₂); 1.69-1.78 (m, 3H, CH₂ + C*H*(CH₃)₂); 1.78-1.85 (m, 2H, CH₂); 2.13-2.24 (m, 2H, CH₂); 2.40 (t, *J* = 7.3 Hz, 2H, CH₂); 3.99 (t, *J* = 8.2 Hz, 1H, CH); 4.11 (t, *J* = 6.9 Hz, 2H, CH₂); 4.18 (t, *J* = 6.9 Hz, 2H, CH₂); 4.84 (m, 1H, CH); 4.89 (d, *J* = 9.5 Hz, 1H, CH); 5.04 (2H, CH₂ AB system, J_{HH}=12.66 Hz); 5.10 (s, 2H, CH₂); 5.64 (s, 1H, OH); 7.08 (t, *J* = 7.2 Hz, 1H, CH); 7.13-7.21 (m, 3H, CH); 7.26-7.41 (m, 12H, CH); 7.46-7.55 (m, 4H, CH); 7.60 (d, *J* = 10.0 Hz, 1H, NH); 7.71 (d, *J* = 8.9 Hz, 1H, NH); 7.79 (d, *J* = 5.0 Hz, 2H, NCHCHN); 9.15-9.24 (m, 1H, NCHN);

¹³C NMR (125.76 MHz, DMSO-d6): 16.6, 18.2, 21.3, 21.4, 23.2, 29.05, 29.15, 33.1, 33.2, 48.9, 58.2, 59.2, 65.9, 69.8, 81.3, 122.9, 125.7, 125.8, 126.6, 128.0, 128.1, 128.3, 128.4, 128.5, 128.8, 128.9, 136.4, 136.6, 137.5, 146.5, 147.7, 156.5, 169.3, 172.1, 172.9;

Elemental analysis calcd for C₄₉H₅₉F₆N₄O₈P: C, 60.24; H, 6.09; N, 5.73; found: C, 60.06; H, 6.14, N, 5.79.

Issue in Honor of Prof. Oleg A. Rakitin

Synthesis and characterization of 1c

1-(5-(((2R,3S)-3-amino-4-(((S)-1-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)amino)-4-oxobutan-2-yl)oxy)-5-oxopentyl)-3-(4-carboxybutyl)-1H-imidazol-3-ium hexafluorophosphate

The 5% Pd/C (50 mg) was added to a solution of **4** (120 mg, 0.12 mmol) in freshly distilled methanol (3 mL) and the reaction mixture was vigorously stirred under H₂ atmosphere (~ 1 bar) for 5 h at ambient temperature. The reaction mixture was filtered and evaporated under reduced pressure (20 Torr). The residue was dried in vacuo (2 Torr) at 40 °C for 1 h to afford 89 mg (96%) of **1c**.

Light yellow powder, m.p. = 89-91 °C,

¹H NMR (600 MHz, DMSO-*d*₆): 0.58 (d, *J* = 3.2 Hz, 3H, CH₃); 0.68-0.73 (m, 3H, CH₃); 0.80-0.90 (m, 3H, CH₃); 1.40-1.53 (m, 4H, 2xCH₂); 1.62-1.74 (m, 1H, CH *i*-Pr); 1.71-1.87 (m, 4H, 2xCH₂); 2.18 (t, *J* = 7.1 Hz, 2H, CH₂); 2.28 (t, *J* = 7.2 Hz, 2H, CH₂); 3.64-3.72 (m, 1H, CH₃CHOH); 3.98 (t, *J* = 7.4 Hz, 1H, CH(NH)CONH); 4.13-4.24 (m, 4H, 2xCH₂); 4.50-4.62 (m, 1H, CH(*i*-Pr)NH); 4.87 (d, *J* = 9.5 Hz, 1H, OH); 5.67 (s, 1H, OH); 7.06-7.23 (m, 4H, CH); 7.29 (t, *J* = 7.7 Hz, 2H, CH); 7.42 (d, *J* = 10.1 Hz, 1H, NH); 7.49 (t, *J* = 6.7 Hz, 4H, CH); 7.81 (d, *J* = 11.7 Hz, 2H, NCHCHN); 7.94 (d, *J* = 8.4 Hz, 1H, NH); 9.24 (s, 1H, NCHN); 12.08 (s, 1H, COOH);

¹³C NMR (): 18.2, 19.9, 21.5, 22.2, 23.3, 28.9, 29.1, 29.3, 29.6, 33.3, 34.6, 49.0, 49.1, 57.9, 59.4, 66.1, 81.3, 122.9, 125.6, 126.0, 126.6, 128.1, 128.5, 136.4, 146.7, 170.8, 172.1, 174.5.

HRMS (ESI): *m/z* calcd. for C₃₄H₄₇N₄O₆⁺: 607.3490, found: 607.3493

		Displa	y Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\Zlo tune_wide.m /ZSGN VVCat-2 CH3OH 100 %, dil.	otin\Gerasimchuk\vvcat-2 200, no calibrant added	2d	Acquisition Date Operator Instrument / Ser#	21.12.2015 18:16:25 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	r 0.4 Bar er 180 °C 4.0 I/min Ive Waste
11- 1- 1-	607.3493		NH ₂ O ., ₀	PF ₆ ∽N ∽⊕ N ∽N	-+MS, 0.0-1.0min #(1-59)
ot		1215.7483	1500	2000	
Intens. x104 4 2- 2508 2000 1500 1000 500 2508 2000 1500 1000 1500 1000	607.3493	617.5125	621.3653	629.3310 / / . 629.3310	+MS, 0.0-1.0min #(1-59) 635.3764 <u>Å</u> C34H47N4O6, M ,607.35 C34H46N4O6, M+nNa ,629.33
500 0 Bruker Compass	5 610	615 6	20 6	25 630	

General procedure for syn-aldol reaction

Aldehyde **6a-i** (0.066 mmol) and catalyst **1c** (7.5 mg, 0.01 mmol) were dissolved in dry toluene (90 μL). Then, ketone **5a-c** (0.2 mmol) was added to the resulting solution. The reaction mixture was stirred at ambient temperature for 24-48 h (TLC-monitoring), filtered through a silica gel pad and evaporated (40 °C, 8 mbar). Conversions and *dr* values of aldol products **7a-I** were measured by ¹H NMR spectroscopy. The *ee* values of aldol products **7a-I** were measured by ¹H NMR spectroscopy. The *ee* values of aldol products **7a-I** were measured by ¹H NMR spectroscopy. The *ee* values of aldol products **7a-I** were measured by ¹H NMR spectroscopy. The *ee* values of aldol products **7a-I** were measured by ¹H NMR spectroscopy.

General procedure for recycling experiment

After 24 h, the mixture of hydroxyacetone (**5a**) (74 mg, 70 μ l, 1 mmol), 2-chlorobenzaldehyde (**6d**) (46.8 mg, 0.33 mmol), catalyst **1c** (37.5 mg, 0.05 mmol) and toluene (0.45 mL) was gently evaporated (40 °C, 8 mbar). Product **7d** and unchanged starting compounds were carefully extracted from the residue by Et₂O (3 x 0.7 mL). Fresh portions of reagents and toluene were added to the remaining catalyst **1c** and catalytic procedure was re-performed as described above.

ARKIVOC 2017 (iii) S1-S21

267.5 Bruker Compass DataAnalysis 4.0 11.11.2016 16:22:3 printed:

275.0

мин

0.0

262.5

265.0

HPLC traces (Chiralpak AD-H, 1 ml/min, hexane:*i*-PrOH=80:20, λ =254 nm):

RESULTS Quantitation method: Нормировка отклика Standard component: Her

No	Retention	Area	Area Name
	мин	mV*ceĸ	8
1	10.01	16.11	6.05
2	10.47	14.08	5.28
3	13.63	118.32	44.41
4	14.58	117.92	44.26

RESULTS Quantitation method: Нормировка отклика Standard component: Her

No	Retention	Area	Area Name
	мин	mV*ceĸ	8
1	9.36	3719.67	15.40
2	10.05	686.93	2.84
3	10.43	1264.35	5.23
4	13.9	14917.03	61.75

HPLC traces for 7

Chiralpak AD-H, 1.0 ml/min, Hexane:iPrOH = 70:30, λ =254 nm

RESULTS Quantititation method: Норынфовка отклика Standart component: Нет

No 1 2 3 4	Retention MMH 4.90 5.31 5.84 7.03	Area mV*cex 44.21 31.90 49.13 1630.79	Area % 2.52 1.82 2.80 92.87	Name
4	8.97	1756.03	100.00	

This report has been created by MyльтиXpom для Windows \odot 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 1 ml/min, Hexane:iPrOH = 85:15, λ =280 nm

RESULTS Quantitiation method: Норыкровка отклика Standart component: Нет

No	Retention	Area nV*cex	Area Name
1	9.86	177.41	11.78
2	10.10	139.80	9.28
3	11.17	587.13	38.98
4	13.72	602.01	39.96
4	15.89	1506.35	100.00

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Quantititation method: Нормировка отклика Standart component: Нет

No	Retention	Area	Area	Name
	MICH	nV*cex	*	
1	9.88	149.14	5.54	
2	10.12	101.31	3.77	
3	11.11	17.27	0.64	
4	13.79	2422.18	90.05	
4	15.95	2689.90	100.00	8

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 1ml/min, Hexane:iPrOH = 95:5, λ =220 nm

RESULTS Quantitation method: Нормировка отклика Standard component: Нат

angar	d component:	Her		
No	Retention	Area	Area Name	
	MICH	mV*cex	*	
1	20.63	929.08	8.45	
2	23.07	761.41	6.92	
3	26.59	8896.38	80.87	
4	28.84	413.94	3.76	
4	31.89	11000 81	100.00	

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 0.6ml/min, Hexane:iPrOH = 90:10, λ =254 nm

RESULTS Quantitation method: Нормировка отклика Standard component: Нет

No	Retention	Area mV*cex	Area	Name
1	33.16	294.41	5.74	
2	33.62	310.09	6.04	
3	39.71	4439.07	86.48	
4	40.59	89.73	1.75	
4	43.99	5133.30	100.00	

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 1.0 ml/min, Hexane:iPrOH = 85:15, $\lambda = 254$ nm

No	Retention	Area	Area Name
	MICH	mV*cex	*
1	9.01	449.67	1.71
2	9.55	392.12	1.49
3	10.49	481.90	1.83
4	13.51	24993.08	94.97
4	15.89	26316.77	100.00

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 1 ml/min, Hexane:iPrOH = 96:4, λ =254 nm, 24 °C

	MICH	mV*cex	8	
1	7.09	1281.73	50.06	
2	11.32	1233.90	48.19	
3	14.14	21.58	0.84	
4	14.59	23.11	0.90	
4	17.92	2560.32	100.00	

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

RESULTS Quantitation method: Нормировка отклика Standard component. Нор

scandar	d component:	Her	
No	Retention	Area	Area Name
1	7.01	nv*cex 112.97	5.12
2	10.60	1939.02	87.86
3	14.12	86.71	3.93
4	14.71	68.14	3.09
-4	18.93	2206.84	100.00

This report has been created by MyльтиXpom для Windows \odot 1993-2002 Ampersand Ltd.

Chiralpak AS-H, 1 ml/min, Hexane:iPrOH = 92:8, λ =220 nm

RESULTS Quantititation method: Standart component: Нормировка отклика Нет

No	Retention	Area	Area Name
	MICH	mV*cex	8
1	16.55	664.21	11.19
2	17.23	751.89	12.66
3	19.16	204.20	3.44
4	20.51	4318.04	72.71
4	22 92	5938 34	100.00

This report has been created by МультиХром для Windows © 1993-2002 Ampersand Ltd.

Chiralpak AD-H, 1 ml/min, Hexane:*i*PrOH=80:20, λ=254 nm

Standar	d component:	Her	
No	Retention	Area	Area Name
	мин	mV*ceĸ	8
1	10.01	16.11	6.05
2	10.47	14.08	5.28
3	13.63	118.32	44.41
4	14.58	117.92	44.26
4	18.97	266.43	100.00

This report has been created by МультиХром для Windows ϖ 1993-2002 Ampersand Ltd.

RESULTS Quantitation method: Нормировка отклика Standard component: Нет

No	Retention	Area	Area Name	
	мин	mV*cer	8	
1	9.36	3719.67	15.40	
2	10.05	686.93	2.84	
3	10.43	1264.35	5.23	
4	13.9	14917.03	61.75	
5	14.68	3569.38	14.78	
5	17.99	24157.36	100.00	

This report has been created by МультиХром для Windows \boxdot 1993-2002 Ampersand Ltd.

References

- 1. N.A. Larionova, A.S. Kucherenko, D.E. Siyutkun, S.G. Zlotin, *Tetrahedron*, **2011**, 67, 1948-1954
- 2. F. Wu, C. Da, Z. Du, Q. Guo, W. Li, L. Yi, Y. Jia, X. Ma, **2009**, 4812–4818
- 3. M. Raj, G. S. Parashari, V. K. Singh, Adv. Synth. Catal. 2009, 351, 1284–1288
- 4. L. Y. Li, D. C. Yang, Z. Guan, Y. H. He, Tetrahedron 2015, 71, 1659–1667
- 5. B. M. Trost, C. S. Brindle, Chem. Soc. Rev. 2010, 39, 1600–1632