

The Free Internet Journal for Organic Chemistry

Paper

Archive for Organic Chemistry

Arkivoc **2017**, part iii, 166-180

Electrochemical reduction, radical anions, and dehalogenation of fluorinated/chlorinated 2,1,3-benzothia/selenadiazoles

Leonid A. Shundrin,^{*a,b} Irina G. Irtegova,^a Pavel A. Avrorov,^a Tatiana F. Mikhailovskaya,^a Arkady G. Makarov,^a Alexander Yu. Makarov,^a and Andrey V. Zibarev^{*a,c}

^aInstitute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia ^bDepartment of Natural Sciences, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia

^cDepartment of Chemistry, National Research University – Tomsk State University, 634050 Tomsk, Russia E-mail: <u>zibarev@nioch.nsc.ru</u>, <u>shundrin@nioch.nsc.ru</u>

Dedicated to Prof. Oleg A. Rakitin on the occasion of his 65th birthday

Received 03-27-2017

Accepted 05-01-2017

Published on line 06-25-2017

Abstract

At the first stage of electrochemical reduction in DMF, fluorinated/chlorinated 2,1,3-benzothia/selenadiazoles formed long-lived radical anions characterized by EPR and DFT. Gas-phase electron affinities (EA₁) from DFT correlated well with the first-peak potentials separately for S and Se derivatives, and the latter were found to be better electron acceptors than the former in contrast to the atomic EA₁ and Allen electronegativity. At the second stage, chalcogen- and halogen-dependent dehalogenation proceeded: *non-hydro*defluorination of selenadiazoles through their n-electron activation ($n \ge 2$), and *hydro*dechlorination of thia/selenadiazoles through H⁺ addition to their dianions. These differ from dehalogenation of related (aza) aromatics (*e.g.* benzenes, naphthalenes, quinoxalines).

Keywords: 2,1,3-Benzothiadiazoles, 2,1,3-benzoselenadiazoles, chlorinated, cyclic voltammetry, dehalogenation, DFT, EPR, fluorinated, radical anions

Introduction

2,1,3-Benzothia/selenadiazoles are redox-active 10π -electron heteroaromatics – chalcogen-nitrogen analogs of naphthalene and chalcogen analogs of quinoxaline.^{1,2} Their chemistry is well-studied (for selected works, see refs. 3-10 and references therein). Similar to many other chalcogen-nitrogen π -heterocycles, they possess positive electron affinity (EA) making them effective electron acceptors³ – precursors of stable radical anions (RAs) isolated in the form of salts and characterized by X-ray diffraction.^{11,12} Also, they are luminophores. For these reasons, 2,1,3-benzothia/selenadiazoles found numerous applications as electron-acceptor or/and luminescent building blocks of real or potential molecular functional materials for electronics, optoelectronics and photovoltaics.^{4,5,13-25} Despite fluorinated (hetero) aromatics are promising for electronic and optoelectronic applications, ^{26,27} fluorinated 2,1,3-benzothia/selenadiazoles are less studied in this context.

Hydrogen replacement by fluorine affects many properties of (hetero) aromatics including (hetero) aromaticity itself.²⁸ Particularly, it enlarges EA₁ of 2,1,3-benzothia/selenadiazoles,^{2,3} *i.e.* their electron-acceptor ability, which can be used in the design of functional materials. Recently, our group suggested unified synthetic approach to fluorinated 2,1,3-benzothia/selenadiazoles.^{29,30} Since redox properties of compounds are of general significance for organic chemistry and its applications,³¹ in this work we report on electrochemical reduction (ECR) of new fluorinated 2,1,3-benzothia/selenadiazoles bearing also chlorine and some other substituents (**1**-**20**, Figure 1), studied by cyclic voltammetry (CV), as well as on their persistent RAs characterized by EPR spectroscopy and DFT calculations. Compounds **3** and **12** together with their RAs have been characterized earlier² as well as related fluorinated 1,4-benzodiazines (quinoxalines) and their RAs.³² For some derivatives, chalcogen- and halogen-dependent dehalogenation was observed being of special chemical interest.

Figure 1. Compounds and atom numbering. Results and Discussion

Electrochemical reduction and dehalogenation. Most of the studied compounds are known ones.^{29,30} Derivatives **1**, **2** and **4-9** were prepared by nucleophilic substitution of fluorine in 4,5,6,7-tetrafluoro-2,1,3-benzothiadizole **3**, and **10**, **11** and **13-19** in 4,5,6,7-tetrafluoro-2,1,3-benzoselenadiazole **12**. ECR peak potentials, CVs and some transformations of **1-20** under ECR in DMF in the potential range 0 > E > -2.2 V (vs. saturated calomel electrode, SCE) are represented in Table 1, Figures 2 and 3 (ESI: Figures S1 and S2, Table S1), and Schemes 1 and 2; for ECR of **3** in MeCN, see ref. 2. In E_p^{ij} designation of peak potentials, *i* is a number of peak and *j* = *C* or *A* indicates a cathode or an anode branches of CVs; designation of peak currents is the same.

Compound		1	2	3	4	5	6	7
$E_{\rm p}^{i_{\rm C}}$	<i>i</i> = 1	-1.00	-1.02	-1.11 ^c	-1.12	-1.20	-1.30	-1.34
P	<i>i</i> = 2	-1.94	-2.01		-2.27	~-2.4		
	<i>i</i> = 3	-2.19						
EA1		1.67	1.63	1.57	1.57	1.36	1.16	1.07
Compound		8	9	10	11	12	13	14
$E_{\rm p}^{i_{\rm C}}$	<i>i</i> = 1	-1.26	-1.39	-0.91	-0.94	-0.98	-1.08	-1.18
P	<i>i</i> = 2			-1.71	-1.78	-1.97	-2.17	-2.20
	<i>i</i> = 3			-2.00 ^d	-2.03	-2.05		
EA1		1.28	1.01	1.81	1.78	1.72	1.55	1.30
Compound		15	16	17	18	19	20	
$E_{\rm p}^{i_{\rm C}}$	<i>i</i> = 1	-1.38	-1.13	-1.28	-1.10 ^e	-1.20	-1.08	
Р	<i>i</i> = 2	-2.30		-2.14	-2.06	-1.80	-1.09	
	<i>i</i> = 3					-2.07	-2.00	
EA1		1.12	1.54	1.17	1.61	1.36	1.78	

Table 1. ECR peak potentials $E_{p}^{i_{\rm C}}$ (V) in DMF^a and gas-phase EA₁ (eV)^b of compounds 1-20

^a Measured with v = 0.1 V.s⁻¹. ^b The first adiabatic EA calculated at the (U)B3LYP/6-31+G(d) level of theory. ^c Recalculated from the data of ref. 2: E_p^{1C} (DMF) = E_p^{1C} (MeCN) + 0.1 (V). ^d An additional peak was observed at E_p^{4C} = -2.08 V (ESI, Figure S2). ^e ESI, Figure S2.

The first stage of the ECR of thiadiazoles **1-9** is one-electron transfer forming long-lived RAs characterized by EPR (see below). It features reversible and diffusion-controlled peaks in the CVs ($I_p^{IC} \cdot v^{-1/2} = \text{const}$; ESI: Figures S1 and S2, Table S1). The ECR of **2** (Figure 2) is characterized by two peaks 1C and 2C at the first cycle of the CV, 0 > E > -2.2 V, the first of which is one-electron and reversible; no additional peaks were observed in the range 0 > E > -1.5 V covering the first step of the ECR only. The irreversible one-electron peak 2C corresponds to the formation of unstable dianion (DA) which can undergo an addition of two H⁺ to N atoms (*cf.* ref. 33) or one H⁺ to the carbocycle with subsequent hydrodechlorination. For **2**, the latter process seems to be slow because the reversible peaks 3C and 3A ($E_p^{3C} = -1.12$, $E_p^{3A} = -1.07$ V) corresponding to the formation of the RA of hydrodechlorinated product **4** (detected by EPR) were observed at the second and subsequent potential sweep cycles only with v > 0.3 V·s⁻¹ in the range 0 > E > -2.2 V (Figure 2). The ECR of **1** is similar except that an additional peak 3C was observed (Table 1; ESI: Figure S2). Overall, in interesting contrast to related quinoxalines whose

hydrodechlorination proceeds via RAs,³² that of studied thiadiazoles involves DAs and their protonation (Scheme 1).

Figure 2. CV of **2** in DMF in the potential ranges 0 > E > -2.2 V (left) and 0 > E > -1.5 V (right) at different sweep rates indicated by color.

Scheme 1. Two-electron ECR hydrodechlorination of 2 followed by one-electron ECR of its product 4.

Similarly, peak 1C of selenadiazoles **10-20** (Table 1) is one-electron, diffusion-controlled and reversible, *i.e.* corresponding to the formation of long-lived RAs (for **11** and **12**, see Figure 3; for the other, ESI: Figures S1 and S2, Table S1). Peaks 2C and 3C, however, are essentially irreversible for all **10-20**, and peak 2C is more than one-electron ($I_p^{2C}/I_p^{1C} > 1$, Figure 3; ESI, Figure S2).

For **12** in the range 0 > E > -2.2 V, reversible one-electron peaks 4C and 4A ($E_p^{4C} = -1.45$, $E_p^{4A} = -1.39$ V) were observed at the second cycle of potential sweep, whereas no additional peaks were detected in the range 0 > E > -1.7 V (Figure 3). The peaks were attributed to one-electron ECR of the product resulted from defluorination of **12**. Importantly, no additional peaks in the second sweep cycle in the range $E_p^{2C} < E < E_p^{1C}$ were detected for **14-17** with non-halogen substituents in the positions 5 and 6, whereas weak ones were observed in anode branches of the CVs of **13**, **18** and **19** with F atoms in the position 6 (ESI: Figure S2). Altogether, these suggest that defluorination of **12** occurs regioselectively at equivalent positions 5 / 6 not involving the positions 4 / 7 (note that in fluorinated selenadiazoles the positions 5 and 6 are much more active in nucleophilic substitution than the positions 4 and 7).²⁹ This is, however, only minor process because peaks 4C and 4A are characterized by substantially lower currents as compared with the first peaks in CVs (Figure 3).

Figure 3. Left: CVs of **11** in the potential ranges 0 > E > -1.5 V (solid lines) and 0 > E > -2.2 V (dotted lines) at different sweep rates indicated by color. Right: CV of **12** in the potential ranges 0 > E > -1.7 V at different sweep rates, and 0 > E > -2.2 V at 100 mV·s⁻¹ (black solid and dotted lines correspond to the first and second cycles, respectively).

Under conditions of stationary electrolysis of **12** at the E_p^{2C} potential, a RA was detected whose EPR hyperfine splitting (hfs) featured two nuclei with spin 1 and three with spin ½ thus indicating the absence of either H or F atom in the position 5/6. As compared with EPR spectra of RAs of **1-20** in DMF at T = 295 K (below), the spectrum of this RA revealed broadened high-field lines in nitrogen hfs suggesting modulation of ¹⁴N anisotropic hyperfine interaction caused by its slower rotational diffusion. The latter can be associated with the presence of a multi-atom substituent R in the position 5/6 of the RA. The nature of R is unclear, it is not HO or Me₂N Special experiments shown that with HO⁻ (*e.g.* originated from protonation of DA of **12** by H₂O; *cf.* ref. 33) nucleophilic substitution in **12** does not proceed even under much drastic conditions; with Me₂NH (from decomposition of DMF under basic conditions), RA of **16** should be seen with EPR. Therefore, only structure **21** can be assigned to the discussed RA in tentative explanation of the chemistry observed (Scheme 2) requiring further investigation. In any way, one can conclude that ECR defluorination of **12** differs from that of its S congener **3** proceeded as *hydro*defluorination.²

Scheme 2. Tentative explanation of defluorination of **12** with the formation of **21** followed by its one-electron reduction; $R \neq H$, F, HO, Me₂N.

First electrochemical potentials and gas-phase electron affinities. The E_p^{IC} values of selenadiazoles are *ca.* 0.1 \pm 0.03 V less negative, and EA₁ *ca.* 0.17 eV more positive, than those of thiadiazoles with the same substitution patterns (Table 1, pairs **1/10, 2/11, 3/12, 5/13, 6/14, 8/16** and **9/17**). They form two independent linear regressions EA₁ = $a E_p^{IC} + b$ (Figure 4) with *a, b* and r^2 equal to 1.79 eV·V⁻¹, 3.50 eV and 0.972, respectively, for thiadiazoles **1-9**; and to 1.61 eV·V⁻¹, 3.30 eV and 0.948 for selenadiazoles **10-19**; *r* is correlation coefficient. The values of *a* and *b* for both regressions are comparable with those for related compounds whose E_p^{IC} were measured in MeCN.²

Figure 4. Correlation between EA₁ and E_p^{1C} for thiadiazoles **1-9** (left) and selenadiazoles **10-19** (right); **20** (red point) is not included due to another scaffold topology.

Altogether, these findings indicate that, in spite of lesser atomic EA₁ and Allen electronegativity of Se (2.02 and 2.42) vs. S (2.08 and 2.59), selenadiazoles are better electron acceptors than their S congeners. Earlier, this property was pointed with B3LYP calculations, and with MP2 ones it was shown that the result is not an artifact of the DFT approach.³ Now this non-trivial trend (covering also Te congeners of compounds under discussion)³ received experimental electrochemical confirmation. Tentatively, it might be explained by better charge/spin delocalization in the RAs of Se derivatives caused by more diffuse 4p-AO of Se as compared with 3p-AO of S.

For compounds with electron-donating substituents MeO and Me₂N, E_p^{1C} and EA₁ values reveal additivity under their accumulation. Thus, for MeO-substituted thiadiazoles **5** and **6**, the negative shifts of the E_p^{1C} relative to that of the parent **3** are -0.09 (one MeO) and -0.19 V (two MeO), respectively; for Me₂N-substituted thiadiazoles **8** and **9** the corresponding shifts are -0.15 and -0.28 V (Table 1). For selenadiazoles, the additivity of such shifts is more exact to be -0.10, -0.20, -0.40 V for MeO-substituted **13**, **14** and **15** in relation to E_p^{1C} of the parent **12**; and -0.15 and -0.30 V for Me₂N-substituted **16** and **17** (Table 1). Previously, the additivity of E_p^{1C} was observed for benzenes and naphthalenes on accumulation of electron-withdrawing substituents CF₃.³⁴ The present work, therefore, generalizes the trend.

EPR of radical anions. The EPR and DFT data of ECR generated (DMF, 295 K) RAs **1-21** are represented in Table 2 and Figs. 5 and 6; the EPR spectrum of product of ECR of **3** in MeCN was reported earlier.² Experimental and DFT-calculated isotropic hyperfine coupling (hfc) constants are in reasonable agreement.

Table 2. Experimental in DMF and gas-phase DFT-calculated isotropic hfc constants (G) of RAs 1-21^a

RA	Experiment	(U)B3LYP/6-31+G(d)
1	4.30 (N ¹), 5.56 (N ³), 6.92 (F ⁴), 3.62 (F ⁶), ~0.09	4.60 (N ¹), 6.06 (N ³), 8.02 (F ⁴), 2.61 (F ⁶)
	(Cl ⁵), ~0.18 (Cl ⁷)	
2	4.80 (N ¹), 5.65 (N ³), 5.41 (F ⁴), 2.86 (F ⁶), 4.19 (F ⁷),	5.20 (N ¹), 6.16 (N ³), 6.48 (F ⁴), 1.26 (F ⁶), 4.70 (F ⁷)
	~0.19 (Cl ⁵)	
3 ^b	5.46 (N ^{1,3}), 4.82 (F ^{4,7}), 4.78 (F ^{5,6})	5.75 (N ^{1,3}), 5.04 (F ^{4,7}), 2.49 (F ^{5,6})
4	4.81 (N ¹), 5.97 (N ³), 4.25 (F ⁴), 1.54 (H ⁵), 2.67 (F ⁶),	5.10 (N ¹), 6.45 (N ³), 5.85 (F ⁴), -1.71 (H ⁵), 1.69 (F ⁶),
	3.20 (F ⁷)	4.02 (F ⁷)
5	5.28 (N ¹), 5.52 (N ³), 4.06 (F ⁴), 3.86 (F ⁶), 4.06 (F ⁷)	5.49 (N ¹), 6.03 (N ³), 5.25 (F ⁴), 2.14 (F ⁶), 4.47 (F ⁷)
6	5.47 (N ^{1,3}), 3.37 (F ^{4,7}), 2.05 (¹³ C ^{3a,7a}), 2.03 (¹³ C ^{4,7})	5.74 (N ^{1,3}), 4.69 (F ^{4,7}), -5.14 (¹³ C ^{3a,7a}), 5.07 (¹³ C ^{4,7})
7	5.29 (N ¹), 5.65 (N ³), 3.37 (F ⁴), 2.99 (F ⁷), ~0.10	5.40 (N ¹), 6.20 (N ³), 5.73 (F ⁴), 3.95 (F ⁷), −0.20
	(N ^{NMe2})	(N ^{NMe2})
8	5.12 (N ¹), 5.73 (N ³), 4.06 (F ⁴), 3.39 (F ⁶), 3.52 (F ⁷),	5.12 (N ¹), 6.31 (N ³), 5.72 (F ⁴), 1.43 (F ⁶), 4.16 (F ⁷),
	0.11 (N ^{NMe2})	-0.31 (N ^{NMe2})
9	5.49 (N ^{1,3}), 3.04 (F ^{4,7}), 0.18 (N ^{NMe2})	5.80 (N ^{1,3}), 4.95 (F ^{4,7}), -0.19 (N ^{NMe2})
10 ^{c,d}	4.92 (N ¹), 6.26 (N ³), 5.94 (F ⁴), 3.73 (F ⁶)	4.73 (N ¹), 6.21 (N ³), 6.99 (F ⁴), 2.89 (F ⁶)
11	5.44 (N ³), 6.30 (N ¹), 4.56 (F ⁴), 2.94 (F ⁶), 3.27 (F ⁷),	5.30 (N ¹), 6.24 (N ³), 5.58 (F ⁴), 1.52 (F ⁶), 3.82 (F ⁷)
	~0.06 (Cl)	
12	5.96 (N ^{1,3}), 4.37 (F ^{4,7}), 3.70 (F ^{5,6})	5.84 (N ^{1,3}), 3.36 (F ^{4,7}), 2.61 (F ^{5,6})
13	5.90 (N ¹), 6.13 (N ³), 4.04 (F ⁴), 2.98 (F ⁶), 3.25 (F ⁷)	5.58 (N ¹), 6.12 (N ³), 4.40 (F ⁴), 2.34 (F ⁶), 3.61 (F ⁷)
14	6.05 (N ^{1,3}), 2.06 (F ^{4,7})	5.83 (N ^{1,3}), 3.84 (F ^{4,7})
15	5.964 (N ^{1,3})	5.69 (N ^{1,3})
16	5.73 (N ¹), 6.31 (N ³), 3.66 (F ⁴), 2.54 (F ⁶), 3.27 (F ⁷),	5.22 (N ¹), 6.40 (N ³), 4.88 (F ⁴), 1.80 (F ⁶), 3.28 (F ⁷),
	0.17 (N ^{NMe2})	-0.28 (N ^{NMe2})
17	6.04 (N ^{1,3}), 2.33 (F ^{4,7}), 0.20 (2N ^{NMe2})	5.84 (N ^{1,3}), 4.01 (F ^{4,7}), -0.22 (2N ^{NMe2})
18	5.68 (N ¹), 6.33 (N ³), 3.57 (F ⁴), 2.64 (F ⁶), 3.45 (F ⁷), 0.13 (N ^{NC4H8O})	5.21 (N ¹), 6.45 (N ³), 5.48 (F ⁴), 1.77 (F ⁶), 3.22 (F ⁷), -0.23 (N ^{NC4H8O})
19	5.79 (N ¹), 6.23 (N ³), 3.88 (F ⁴), 2.61 (F ⁶), 3.07 (F ⁷)	5.17 (N ¹), 6.40 (N ³), 5.02 (F ⁴), 1.74 (F ⁶), 3.27 (F ⁷), -0.33 (N ^{NC4H8)}
20	5.77 (N ¹), 5.34 (N ³), 3.24 (F ⁴), 0.67 (F ⁵), 0.33 (F ⁶),	5.34 (N ¹), 5.25 (N ³), 4.39 (F ⁴), 1.63 (F ⁵), -0.69 (F ⁶),
21 ^e	2.41 (F), 2.04 (F), 2.02 (F) 6.09 (N) 6.06 (N) 4.35 (F) 1.67 (F) 1.56 (F)	1.07 (F), 3.23 (F), -2.03 (F)

^a Numbers of RAs correspond to those of their neutral precursors; numbers of atoms H and F are the same as for C atoms they are bound with (Figure 1). ^b The EPR spectrum of RA **3** for MeCN was reported earlier.² ^c Hfc constants with ^{35,37}Cl nuclei are small and result only inhomogeneous line broadening. ^d EPR spectrum was simulated as a superposition of spectra of RA **10** (90%) and RA of its 5-H congener from hydrodechlorination (10%); hfs: $3N \times 3N \times 2F \times 2F \times 2H \times 4Cl$; hfc constants (G): $a_{N(1,3)} = 6.42$, 4.53; $a_{F(4)} = 4.92$; $a_{F(6)} = 2.06$; $a_{H(5)} = 1.16$; $a_{Cl(7)} \approx 0.2$. ^e RA **21** was obtained from ECR defluorination of **12** (Scheme 2).

Figure 5. (a) The EPR spectrum of RA **2** in DMF and (b) its transformation when the stationary electrolysis potential is decreased to E_p^{2C} .

Figure 6. EPR spectra of RAs **1**, **2** and **4-21** in DMF, experiment (black) and simulation (blue). For RA **6**, green arrows indicate hfs from ¹³C nuclei (the positions 3a, 4, 7 and 7a) at their natural abundance. EPR spectrum of RA **21** was obtained under ECR of **12** at the potential of peak 2C (Figure 3); that of RA **3** in MeCN was reported.²

Except for **2** and **12**, EPR spectra were measured under conventional conditions and attributed to primary RAs of the compounds. EPR spectrum of RA **2** (Figure 5, Table 2) was obtained with stationary electrolysis in the potential range $E_p^{1C} > E > -1.8 V$ (Figure 2); at the electrolysis potential decreased to E_p^{2C} or more, the spectrum was assigned as superposition of spectra of RAs **2** (90%) and **4** (10%). This proves the suggested two-electron mechanism of the hydrodechlorination of **2** in DMF with the participation of corresponding DA (Scheme 1). RAs of the other chlorine containing compounds **1**, **10** and **11** (Table 2), possessing more positive EA₁ than **2** (Table 1), were much stable; in any way, their possible transformations associated with the dechlorination were not detected. Stationary electrolysis of **12** at the potential E_p^{1C} (Figure 3) resulted in its RA whose identity was confirmed by EPR and DFT (Figure 6, Table 2). The decrease of the potential to E_p^{2C} afforded RA **21** (Scheme 2; Figure 6, Table 2).

In some cases, the (U)B3LYP calculations overestimated Fermi-contact spin densities at ¹⁹F nuclei but practically quantitatively reproduced hfc constants with ¹⁴N nuclei (Table 2). According to the calculations, all RAs are planar as expected for the π -species (Figure 7, examples for RAs **2** and **11**). Due to this, the hfc constants with ^{35,37}Cl nuclei are determined by spin-polarization mechanism of hyperfine interaction and, therefore, small in magnitude (Table 2, RAs **1**, **2**, **10** and **11**).

Figure 7. Spin density distributions in RAs **2** and **11** from the (U)B3LYP/6-31+G(d) calculations, color code: blue positive, red negative.

For RA **6**, the most long-lived among the studied RAs, the hfs from ¹³C nuclei was observed at their natural abundance (Figure 6). The resolved hfc constants with ¹³C nuclei in the positions 3a, 4, 7 and 7a are practically equal, whereas those with nuclei in the positions 5 and 6 are small and not resolved. DFT suggests negative hfc constants with ¹³C nuclei for the positions 3a and 7a and positive ones for the positions 4 and 7 for all studied RAs (for typical examples, see Figure 7). It should be noted that the hybrid functional B3LYP *ca.* 2.5 times overestimates Fermi-contact spin densities at ¹³C nuclei, and that the calculated hfc constants with ¹³C nuclei are almost equal which agrees with the experimental data (Table 2).

Conclusions

In DMF, the first stage of ECR of fluorinated/chlorinated 2,1,3-benzothia/selenadiazoles 1-20 (bearing also substituents MeO or R₂N) is one-electron reversible process giving long-lived RAs whose authenticity is

confirmed by EPR spectroscopy and DFT calculations at the (U)B3LYP/6-31+G(d) level of theory. The ECR firstpeak potentials correlate well with gas-phase calculated EAs forming independent linear regressions for S and Se compounds. The potentials of selenadiazoles are less negative, and EAs more positive, than those of thiadiazoles; in contrast to the atomic EAs and Allen electronegativities, this suggests better electron-acceptor ability of Se derivatives which may be used in the design and synthesis of molecular functional materials.

At the second stage of ECR, *hydro*dechlorination of thia/selenadiazoles proceeds via corresponding DAs and their protonation. *Non-hydro*defluorination of selenadiazoles at the same stage, involves reductive activation by two or more transferred electrons. These dehalogenations differ from those of related aromatics (benzenes, naphthalenes)^{35,36} and aza-aromatics (quinoxalines)³² controlled by instability of their RAs, and therefore are of interest to organic chemistry.

Experimental Section

General. ¹H (300.13 MHz) and ¹⁹F (282.36 MHz) NMR spectra were measured with Bruker AV-300 spectrometer for solutions in CDCl₃; standards were TMS and C₆F₆ (δ^{19} F = -162.9 with respect to CFCl₃). High-resolution MS spectra (EI, 70 eV) were obtained with DFS Thermo Electron instrument. UV-Vis spectra were collected with Varian Cary 5000, and fluorescence (FL) spectra with Varian Cary Eclipse, spectrophotometers, respectively, for solutions in heptane. Elemental analyses for C, H and N were performed with Carlo Erba Model 1106 instrument, and those for F by standard spectrophotometric method with Ln complex of alizarin complexone. Studied compounds **1-17** and **20** were synthesized by known methods (Scheme 3)^{29,30,37} and compounds **18** and **19** in a similar way (below).

Scheme 3. Synthesis of non-chlorinated studied compounds by nucleophilic substitution of fluorine in the archetypal **3** (E = S) and **12** (E = Se). Chlorinated derivatives were prepared by cyclizing corresponding 1,2-diaminobenzenes with SOCl₂ or SeO₂.^{29,30,37}

Cyclic voltammetry. The CV measurements on compounds **1-20** in DMF (1–2.6 mM solutions) were performed at 295 K in an argon atmosphere. The supporting electrolyte was 0.1 M Et₄NClO₄. A PG 310 USB potentiostat (HEKA Elektronik GmbH, Germany) was used for the measurements. A standard electrochemical cell with solution volume of 5 ml connected to the potentiostat with a three-electrode scheme was employed. A stationary Pt electrode (S = 0.064 cm²) was used as a working electrode, and Pt helix as an auxiliary electrode. Peak potentials were quoted with reference to a saturated calomel electrode (SCE). The potential sweep rates were 0.05–1.3 V·s⁻¹.

EPR spectroscopy. The EPR spectra of RAs were recorded with an ELEXSYS E-540 spectrometer (X-band, MW frequency ~9.87 GHz, MW power 1 mW, modulation frequency 100 kHz, and modulation amplitude 0.006 mT) equipped with a high-Q cylindrical resonator ER4119HS. For the EPR measurements, stationary ECR of compounds **1-20** at corresponding potentials of the first reduction peaks was carried out at 295 K under anaerobic conditions. Electrochemical cell for EPR measurements equipped with Pt working electrode was placed into the EPR cavity. Electrolysis was performed in a dry DMF with 0.1 M Et₄NClO₄ as a supporting

electrolyte. Simulations of the experimental EPR spectra were accomplished with the *Winsim 2002* program.³⁸ The *Simplex* algorithm was used for optimization of hfc constants and line widths.

DFT calculations. The DFT calculations on compounds **1-20** and their RAs were performed with full geometry optimization at the (U)B3LYP/6-31+G(d) level of theory using the *GAMESS* program.³⁹ For all studied RAs the value S^2 did not exceed 0.76.

5-(Morpholin-4-yl)-4,6,7-trifluoro-2,1,3-benzoselenadiazole (18). Stirred solution of 100 mg (0.39 mmol) of **12** and 86 mg (0.39 mmol) of morpholine in 6 ml of toluene was kept at 70 °C for 12 h, cooled to ambient temperature and passed through silica column, eluent toluene. The eluate was evaporated under reduced pressure, and the residue recrystallized from 2:1 hexane / toluene. Compound **18** was obtained in the form of yellow crystals, yield 82 mg (65%), mp 234-235 °C. Elemental analysis for C₁₀H₈F₃N₃OSe (%): found: 37.74 (C); 2.18 (H); 12.89 (N); 17.24 (F); calculated: 37.28 (C); 2.50 (H); 13.04 (N); 17.69 (F). MS, *m/z*: 322.9776 [C₁₀H₈F₃N₃O⁸⁰Se]⁺ (calculated 322.9779). NMR (ESI, Figure S3), δ: ¹H: 3.22 (m, 4H), 3.84 (m, 4H); ¹⁹F: 22.1 (d, F-4, *J* 19 Hz), 19.8 (d, F-6, *J* 13.8 Hz), 11.1 (dd, F-7, *J* 19, *J* 13.8 Hz). UV-Vis, λ_{max}, nm, (log ε): 326 (4.12). FL, λ_{max} (λ_{ex}), nm: 454 (372).

5-(Pyrrolidin-1-yl)-4,6,7-trifluoro-2,1,3-benzoselenadiazole (19). Stirred solution of 100 mg (0.39 mmol) of **12** and 28 mg (0.39 mmol) of pyrrolidine in 5 ml of toluene was kept at 65 °C for 15 h, cooled to ambient temperature and passed through silica column, eluent toluene. The eluate was evaporated under reduced pressure, and the residue recrystallized from 5 ml of toluene. Compound **19** was obtained in the form of yellow crystals, yield 89 mg (74%), mp 178-179 °C. Elemental analysis for C₁₀H₈F₃N₃Se (%): found: 38.99 (C); 2.59 (H); 13.48 (N); 18.87 (F); calculated: 39.23 (C); 2.63 (H); 13.73 (N); 18.62 (F). MS, *m/z*: 306.9831 [C₁₀H₈F₃N₃⁸⁰Se]⁺ (calculated 306.9830). NMR (ESI, Figure S4), δ : ¹H: 1.96 (m, 4H), 3.71 (m, 4H); ¹⁹F: 21.6 (m, F-4), 14.2 (m, F-6), 10.2 (dd, F-7; *J* 16.8, *J* 12.1 Hz). UV-Vis, λ_{max} (log ε): 258 (4.11), 340 (3.86), 444 (3.70). FL, λ_{max} (λ_{ex}), nm: 510 (445). **Interaction of 12 with KOH in DMF**. At ambient temperature, a stirred solution of 100 mg (0.39 mmol) of **12** and 22.4 mg (0.39 mmol) of KOH in 5 ml of DMF was kept for 72 h. Despite dark color of the reaction mixture, NMR revealed only starting **12** (δ^{19} F: 13.0, 5.6). After 8 h at 80 °C, compound **16**²⁸ (*i.e.* product of substitution of F with Me₂NH from decomposition of DMF) was detected (δ^{19} F: 21.7, 19,7, 10.2) together compound **12**; product of the substitution with HO⁻ was not observed.

Acknowledgements

The authors are grateful to the Multi-Access Center *Chemical Service*, Siberian Branch of the Russian Academy of Sciences, for instrumental facilities.

Supplementary Material

See **Figure S1.** Linear dependences I_p^{1C} vs. $v^{1/2}$ proving diffusion-controlled nature of the first peaks of ECR of **1**, **2** and **4-20**. **Table S1.** Parameters of linear regressions $I_p^{1C} = A \cdot v^{1/2} + B$ for **1**, **2** and **4-20**^{*a*}. **Figure S2.** CVs of **1**, **4-10** and **13-20** at different potential sweep rates. **Figure S3.** NMR spectra of the compound **18. Figure S4.** NMR spectra of the compound **19.**

- 1. Boere, R. T.; Roemmele, T. L. *Coord. Chem. Rev.* **2000**, *210*, 369-445. https://doi.org/10.1016/S0010-8545(00)00349-0
- Vasilieva, N. V.; Irtegova, I. G.; Gritsan, N. P.; Lonchakov, A. V.; Makarov, A. Yu.; Shundrin, L. A.; Zibarev, A. V. J. Phys. Org. Chem. 2010, 23, 536-543. https://doi.org/10.1002/poc.1637
- 3. Lonchalov, A. V.; Rakitin, O. A.; Gritsan, N. P.; Zibarev, A. V. *Molecules* **2013**, *18*, 9850-9900. <u>https://doi.org/10.3390/molecules18089850</u>
- 4. Neto, B. A. D.; Lapis, A. A. M.; de Silva Junior, E. N.; Dupont, J. *Eur. J. Org. Chem.* **2013**, *2013*, 228-255. https://doi.org/10.1002/ejoc.201201161
- 5. Todress, Z. V. *Chalcogenadiazoles: Chemistry and Applications*. CCR Press / Taylor & Francis: London, 2012.
- Koutentis, P. A. Comprehensive Heterocyclic Chemistry III. Eds. Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Elsevier: Oxford, 2008; Vol. 5, pp 516-564.
- 7. Koutentis, P. A. *Science of Synthesis.* Eds. Storr, R. C.; Gilchrist, T. L.; Thieme: Stuttgart, 2003; Vol. 13, pp 297-348.
- Semenov, N. A.; Bagryanskaya, I. V.; Alekseev, A. V.; Gatilov, Yu. V.; Lork, E.; Mews, R.; Roeschentaler G.V.; Zibarev A. V. J. Struct. Chem. 2010, 51, 552-557. https://doi.org/10.1007/s10947-010-0080-5
- Bashirov, D. A.; Sukhikh, T. S.; Kuratieva, N. V.; Chulanova, E. A.; Yushina, I. V.; Gritsan, N. P.; Konchenko, S. N.; Zibarev A. V. *RSC Advances* 2014, *4*, 28309-28316. <u>https://doi.org/10.1039/c4ra03342f</u>
- Bashirov, D. A.; Sukhikh, T. S.; Kuratieva, N V.; Naumov, D. Yu.; Konchenko, S. N.; Semenov, N. A.; Zibarev, A. V. *Polyhedron* 2012, *42*, 168-174. https://doi.org/10.1016/j.poly.2012.05.015
- 11. Konchenko, S. N.; Gritsan, N. P.; Lonchakov, A. V.; Radius, U.; Zibarev, A.V. *Mendeleev Commun.* **2009**, *19*, 7-9.

https://doi.org/10.1016/j.mencom.2009.01.003

- Semenov, N. A.; Pushkarevsky, N. A.; Suturina, E. A.; Chulanova, E. A.; Kuratieva, N. V.; Bogomyakov, A. S.; Irtegova, I.G.; Vasilieva, N. V.; Konstantinova, L. S.; Gritsan N. P.; Rakitin, O. A.; Ovcharenko, V. I.; Konchenko, S. N.; Zibarev, A. V. *Inorg. Chem.* **2013**, *52*, 6654-6663. https://doi.org/10.1021/ic400659q
- Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Antopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Nature Commun. 2013, 4, 2238.
- Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinsky, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Muellen, K. *J. Am. Chem. Soc.* 2011, *133*, 2605-2612.
 https://doi.org/10.1021/ja108861q
- 15. Nielsen, C. B.; Schoeder, B. C.; Hadipour, A.; Rand, B. P.; Watkins, S. E.; McCulloch, I. *J. Mater. Chem.* **2011**, *21*, 17642-17645.

https://doi.org/10.1039/c1jm13393d

- 16. Mancilha, P. S.; Barloy, L.; Rodembusch, F. S.; Dupont, J.; Pfeffer, M. *Dalton Trans.* **2011**, *40*, 10535-10544. https://doi.org/10.1039/c1dt10666j
- 17. Thomas, K. R. J.; Lin, J. T.; Velusamy, M.; Tsao, Y. T.; Chuen, C. H. *Adv. Funct. Mater.* **2004**, 14, 83-90. <u>https://doi.org/10.1002/adfm.200304486</u>

- Zang, X.; Gorohmaru, H.; Kadowaki, M.; Kobayashi, T.; Ishii, T.; Tiemann, T.; Mataka, S. J. Mater. Chem.
 2004, 14, 1901-1904. https://doi.org/10.1039/B402645D
- 19. Hou, Q.; Zhou, Q.; Zhang, Y.; Yang, W.; Yang, R.; Cao, Y. *Macromolecules* **2004**, *37*, 6299-6305. https://doi.org/10.1021/ma049204g
- Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, R. S. Adv. Funct. Mater. 2006, 16, 957-965. https://doi.org/10.1002/adfm.200500761
- Uchiyama, S.; Kimura, K.; Gota, C.; Okabe, K.; Kawamoto, K.; Inada, N.; Yoshihara, T.; Tobita, S. *Chem. Eur. J.* 2012, 18, 9552-9563. <u>https://doi.org/10.1002/chem.201200597</u>
- 22. Neto, B. A. D.; Carvalho, P. H. P. R.; Correa, J. R. *Acc. Chem. Res.* **2015**, *48*, 1560-1569. https://doi.org/10.1021/ar500468p
- Sukhikh, T. S.; Bashirov, D. A.; Ogienko, D. S.; Kuratieva, N. V.; Sherin, P. S.; Rakhmanova, M. I.; Chulanova, E. A.; Gritsan, N. P.; Konchenko S. N.; Zibarev, A. V. *RSC Advances*, **2016**, *6*, 43901-43910. <u>https://doi.org/10.1039/C6RA06547C</u>
- Sukhikh, T. S.; Bashirov, D. A.; Kuratieva, N. V.; Smolentsev, A. I.; Bogomyakov, A. S.; Burilov, V. A.; Mustafina, A. R.; Zibarev, A. V.; Konchenko, S. N. *Dalton Trans.* 2015, 44, 5727-5734. <u>https://doi.org/10.1039/C4DT03878A</u>
- Sukhikh, T. S.; Bashirov, D. A.; Kolybalov, D. S.; Andreeva, A. Yu.; Smolentsev, A. I.; Kuratieva, N. V.; Burilov, V. A.; Mustafina, A. R.; Kozlova, S. G.; Konchenko, S. N. *Polyhedron* 2017, *124*, 139-144. <u>https://doi.org/10.1016/j.poly.2016.12.041</u>
- 26. Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. *Chem. Commun.* **2007**, 1003-1022. https://doi.org/10.1039/B611336B
- 27. Nielsen, C. B.; White, A. J. P.; McCulloch, J. J. Org. Chem. **2015**, *80*, 5045-5048. <u>https://doi.org/10.1021/acs.joc.5b00430</u>
- Wu, J. I.; Puehlhofer, F. G.; von Rague Schleyer, P.; Puchta, R.; Kiran, B.; Mauksch M.; van Eikema Hommes, N. J. R.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2009, 113, 6789-6794. <u>https://doi.org/10.1021/jp902983r</u>
- Mikhailovskaya, T. F.; Makarov A. G.; Selikhova N. Yu.; Makarov, A. Yu.; Pritchina, E. A.; Bagryanskaya, I. Yu.; Vorontsova, E. V.; Ivanov, I. D.; Tikhova, V. D.; Gritsan N. P.; Slizhov Yu. G.; Zibarev, A. V. J. Fluorine Chem. 2016, 183, 44-58. https://doi.org/10.1016/j.jfluchem.2016.01.009
- Makarov, A. G.; Selikhova, N. Yu.; Makarov, A. Yu.; Malkov, V. S.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Knyazev, A. S.; Slizhov, Yu. G.; Zibarev, A. V. J. Fluorine Chem. 2014, 165, 123-131. https://doi.org/10.1016/j.jfluchem.2014.06.019
- 31. Organic Redox Systems: Synthesis, Properties, and Applications. Ed. Nishinaga, T.; Wiley, 2016.
- Shundrin, L. A.; Vasilieva, N. V.; Irtegova, I. G.; Avrorov, P. A.; Selikhova, N. Yu.; Makarov, A. G.; Makarov, A. Yu.; Slizhov, Yu. G.; Zibarev, A. V. J. Phys. Org. Chem. 2017. https://doi.org/10.1002/poc.3667
- Konstantinova, L. S.; Knyazeva, E. A.; Obruchnikova, N. V.; Vasilieva, N. V.; Irtegova, I. G.; Nelyubina, Yu. V.; Bagryanskaya, I. Yu.; Shundrin, L. A.; Zibarev, A. V.; Rakitin, O. A. *Tetrahedron* 2014, *70*, 5558-5568. <u>https://doi.org/10.1016/j.tet.2014.06.096</u>

- 34. Dunyashev, V. S.; Polenov, E. A.; Minina, N. E.; Kazakova, V. M.; Grigorev, G. A.; Yagupolskii, L. M. Zh. Obshch. Khim. (Russ. J. Gen. Chem.) **1988**, 58, 200-201 (in Russian).
- 35. Rossi, R. A.; Pierini, A. B.; Penenory, A. B. *Chem. Rev.* **2003**, *103*, 71-167. https://doi.org/10.1021/cr9601340
- 36. Saveant, J. M. *Acc. Chem. Res.* **1980**, *13*, 323-329. <u>https://doi.org/10.1021/ar50153a005</u>
- 37. Zibarev, A. V.; Miller, A. O. *J. Fluorine Chem.* **1990**, *50*, 359-363. <u>https://doi.org/10.1016/S0022-1139(00)85001-0</u>
- R. D. Duling, J. Magn. Reson. 1994, 104, 105-115. <u>https://doi.org/10.1006/jmrb.1994.1062</u>
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347-1363.

https://doi.org/10.1002/jcc.540141112