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Abstract 

A number of 6-aryl-5,6-dihydrophenanthridines were prepared in good yields via an intramolecular 

dehydrogenative coupling of biaryl tertiary amines promoted by t-BuOK/DMF. A reaction mechanism involving 

-aminoalkyl radical intermediates is suggested. 
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Introduction 

 

Recently, the construction of carbon-carbon bonds via cross-dehydrogenative coupling (CDC) from two simple 

C−H bonds has made great progress.1-10 This strategy, introduced by Li and other researchers, is demonstrated 

to be a superior alternative to classic coupling procedures using prefunctionalized starting materials. CDC 

reactions are generally achieved in the presence of transition-metal catalysts and sacrificial oxidants or H-

acceptors. In recent years, transition-metal-free CDC reactions have also been developed.11-16 In 2015, Wu and 

co-workers developed a t-BuOLi-promoted CDC reaction of quinolone N-oxides and 1,3-azoles without 

external oxidants.17 A t-BuOK/DMSO mediated intermolecular CDC reaction of nitroarenes and indoles in an 

open flask was also reported.18 These transformations usually proceed via oxidative SET (single electron 

transfer) C−H activation and the subsequent generation of radical intermediates.   

Recently, our group has developed a series of t-BuOK/DMF promoted coupling reactions of tertiary amines, 

amides and diphenylmethanes with alkenes, alkynes and ketones.19-25 The formation of α-amino alkyl radicals 

or diphenylmethyl radicals initiated by t-BuOK/DMF was proposed. We speculated that α-amino alkyl radicals 

would also react with arenes which could provide a new entry to the preparation of polycyclic heterocyclic 

compounds, such as 5,6-dihydrophenanthridine derivatives. Dihydrophenanthridine derivatives are present in 

the skeleton of a wide number of biologically active compounds, natural products and materials,26-29 however, 

only a few synthetic methods for this class of compounds have been reported.30-35 Furthermore, the reported 

methods generally suffer from limited functional group tolerance and undesired in situ oxidation. Herein, we 

report an intramolecular dehydrogenative coupling of biaryl tertiary amines promoted by t-BuOK/DMF. The 

reaction provides a new synthetic approach to 6-aryl-5,6-dihydrophenanthridines (Scheme 1). 
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Scheme 1. t-BuOK /DMF promoted carbon–carbon bond formations. 
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Results and Discussion 

 

Initially, we examined the reaction of 1a in DMF with 3.0 equiv. of t-BuOK at 120 °C. To our delight, 2a was 

obtained in a moderate yield. Furthermore, a number of bases and reaction solvents were examined and the 

results are summarized in Table 1. t-BuONa, t-BuOLi, and K2CO3 were tested, however, no 2a was obtained 

(Table 1, entries 2-4). The reaction in DMSO was also applicable, but a lower yield was observed (Table 1, entry 

5).  THF was found to be incompatible with the reaction and no product 2a was obtained. The effect of t-BuOK 

loading was also examined and the best yield was obtained with 3.0 equiv. of t-BuOK (Table 1, entries 7-8). 

The reaction was tested at 90, 150 and 180 °C respectively. The reaction at 150 °C gave the best result (Table 

1, entries 9-11). 

 

Table 1. Optimization of reaction conditionsa 

N

Base (n equiv.)

Solvent, T °C, 3 h
N

1a 2a  

Entry Solvent Base n (equiv.) T (°C) Yield (%)b 

1 DMF t-BuOK 3 120 50 

2 DMF t-BuONa 3 120 n.d.c 

3 DMF t-BuOLi 3 120 n.d.c 

4 DMF K2CO3 3 120 n.d.c 

5 DMSO t-BuOK 3 120 15 

6 THF t-BuOK 3 reflux n.d.c 

7 DMF t-BuOK 2 120 34 

8 DMF t-BuOK 4 120 47 

9 DMF t-BuOK 3 90 17 

10 DMF t-BuOK 3 150 64 (68) 

11 DMF t-BuOK 3 180 55 

a Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), base (n equiv.), solvent (2.0 mL), at the indicated temperature 

for 3 hours under nitrogen atmosphere. b Yields were obtained by GC with n-dodecane as the internal 

standard. The value in the parentheses is the isolated yield after column chromatography.c Not detected. 
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Scheme 2. Intramolecular cyclization of biaryl tertiary amines 1a-1q promoted by t-BuOK/DMF. 

Reaction conditions: 1a-1q (0.2 mmol), t-BuOK (0.6 mmol), DMF (2.0 mL), nitrogen atmosphere, 150 °C, 3 h. Isolated 

yields. 

 

With the optimal reaction conditions in hand, the reaction was extended to a variety of biaryl tertiary 

amines, and the results are summarized in Scheme 2. Substrates with electron-donating groups such as 

methoxyl and methyl groups on the aryl amine motif were well tolerated. Substrates with single and double 

methoxyl substitutions gave the products 2b–2e in good yields. The substrates with a methyl substitution gave 

the products 2f–2h in lower yields. Radical delocalization between the methyl group and amino alkyl group 

accounts for the poor yield of products. The ortho-methyl substituted substrate 1h gave a poor yield which 
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implies that this transformation is sensitive to steric hindrance. Substitution with an electron-withdrawing CF3 

group showed a detrimental effect. Although complete consumption of 1i was observed, no expected product 

2i could be isolated. A substrate with a naphthyl group was also examined and the product 2j was obtained in 

a moderate yield. The 2-thienyl substituted substrate 1k was found to be unreactive. 

The effect of the substitutions on the biaryl motif was also examined. The replacement of biaryl group with 

a naphthyl group (1l) led to the loss of the reactivity. The substrates with a methyl substitution gave the 

products 2m–2n in poor yields. However, the substrate with a pyridyl group (1o) gave a 68% yield. When the 

methyl group on the nitrogen was changed to ethyl, the product 2p was obtained in a 68% yield. However, the 

benzyl replacement (1q) proved to inhibit the reaction. 

To have a better understanding of the mechanism, radical trapping experiments were performed (Scheme 

3). The reaction was totally inhibited in the presence of oxygen and butylated hydroxytoluene (BHT). The 

results implicate a radical reaction pathway. 

 

 
 

Scheme 3. Radical trapping experiments. 

 

Based on our previous studies and the present results, a tentative reaction mechanism is proposed (Scheme 

3). DMF is deprotonated by t-BuOK to give the carbamoyl radical A. After a single-electron transfer (SET) step, 

the α-amino alkyl radical B is generated. B then undergoes an intramolecular radical addition to the phenyl 

ring. The resulting aryl radical C transfers an electron to DMF and is subsequently deprotonated by t-BuOK to 

give 2a. 
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Scheme 4. Proposed reaction mechanism. 

 

 

Conclusions 
 

In summary, we have developed an intramolecular dehydrogenative coupling of biaryl tertiary amines 

promoted by t-BuOK/DMF. A number of 6-aryl-5,6-dihydrophenanthridines were prepared in good yields. A 

radical reaction pathway is proposed. The finding provides a new synthetic approach to 

dihydrophenanthridine derivatives. 

 

 

Experimental Section 

 

General. 1H NMR and 13C NMR spectra were recorded on Bruker AVANCE 400 spectrometer. Chemical shifts of 

protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual 

protium in the NMR solvent (CDCl3: δ 7.26). Chemical shifts of carbon are referenced to the carbon resonances 

of the solvent (CDCl3: δ 77.0) unless otherwise stated. Peaks are labeled as singlet (s), broad singlet (br), 

doublet (d), triplet (t), double doublet (dd), multiplet (m). Melting points were measured on a WRS-2A melting 
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point apparatus and are uncorrected. GC spectra were taken on an Agilent-6890A instrument. All products 

were further characterized by HRMS (high resolution mass spectra). The t-BuOK was purchased from Alfa Aesar 

chemical company and used without further purification. THF, DMF were dried and redistilled according to 

standard methods. DMSO was dried over 4Å molecular sieves. 

 

General procedure for intramolecular dehydrogenative coupling. To a dried 10 mL reaction tube was added 

1a (54.3 mg, 0.2 mmol), t-BuOK (67.4 mg, 0.6 mmol) and DMF (2 mL). The mixture was stirred at 150 °C for 3 h 

under nitrogen atmosphere. Water (20.0 mL) was then added and the mixture was extracted with CH2Cl2 (15 

mL × 2). The combined organic layer was dried over anhydrous Na2SO4. After the solvent was removed, the 

crude product was obtained which was purification by column chromatography to give the product 2a (36.9 

mg, 68%) as a colorless oil. 

5-Methyl-6-phenyl-5,6-dihydrophenanthridine (2a).36 Colorless oil. 1H NMR (400 MHz, DMSO-d6): δ 7.54 (d, J 

7.9 Hz, 1H), 7.48 (dd, J 7.7, 1.3 Hz, 1H), 6.99–6.94 (m, 1H), 6.90–6.77 (m, 8H), 6.49–6.39 (m, 1H), 6.29 (d, J 8.1 

Hz, 1H), 5.20 (s, 1H), 3.02 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 149.9, 146.8, 140.7, 135.3, 134.8, 133.6, 

132.8, 132.6, 132.6, 132.2, 131.6, 128.29, 127.5, 126.5, 122.6, 117.4, 71.0, 41.9. HRMS (ESI) calculated for 

C20H18N (M+H)+: 272.1434, found: 272.1433. 

6-(4-Methoxyphenyl)-5-methyl-5,6-dihydrophenanthridine (2b).36 White solid, M.p. (153.4–156.6 °C). 1H 

NMR (400 MHz, CDCl3): δ 7.81 (d, J 7.5 Hz, 1H), 7.76 (dd, J 7.7, 1.4 Hz, 1H), 7.28 (td, J 7.7, 1.4 Hz, 1H), 7.22–

7.15 (m, 2H), 7.06–7.02 (m, 3H), 6.83 (td, J 7.5, 1.0 Hz, 1H), 6.71–6.67 (m, 2H), 6.59 (d, J 8.1 Hz, 1H), 5.31 (s, 

1H), 3.69 (s, 3H), 2.87 (s, 3H).  13C NMR (100 MHz, CDCl3): δ 159.0, 144.8, 136.0, 133.9, 130.6, 129.4, 128.0, 

127.5, 127.3, 127.0, 123.1, 122.5, 122.0, 117.7, 113.8, 112.5, 67.2, 55.1, 37.0. HRMS (ESI) calculated for 

C21H20NO (M+H)+: 302.1539, found: 302.1554. 

6-(3-Methoxyphenyl)-5-methyl-5,6-dihydrophenanthridine (2c).36 White solid, M.p. (133.4–146.2 °C). 1H 

NMR (400 MHz, CDCl3): δ 7.80 (d, J 7.5 Hz, 1H), 7.75 (dd, J 7.7, 1.4 Hz, 1H), 7.30–7.25 (m, 1H), 7.22–7.14 (m, 

2H), 7.10–7.05 (m, 2H), 6.82 (td, J 7.5, 1.1 Hz, 1H), 6.73 (dd, J 7.7, 1.1 Hz, 1H), 6.71–6.66 (m, 2H), 6.61 (d, J 8.2 

Hz, 1H), 5.32 (s, 1H), 3.60 (s, 3H), 2.88 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.6, 145.0, 143.2, 135.6, 130.65, 

129.5, 127.7, 127.3, 127.0, 123.2, 122.5, 122.0, 119.1, 117.8, 112.8, 112.5, 112.4, 67.9, 55.0, 37.2. HRMS (ESI) 

calculated for C21H20NO (M+H)+: 302.1539, found: 302.1550. 

6-(3,4-Dimethoxyphenyl)-5-methyl-5,6-dihydrophenanthridine (2d). Colorless oil. 1H NMR (400 MHz, CDCl3): 

δ 7.81 (d, J 7.9 Hz, 1H), 7.76 (dd, J 7.7, 1.5 Hz, 1H), 7.29 (td, J 7.7, 1.4 Hz, 1H), 7.23–7.20 (m, 1H), 7.19–7.16 (m, 

1H), 7.09–7.06 (m, 1H), 6.83 (td, J 7.5, 1.1 Hz, 1H), 6.71 (dd, J 8.2, 1.9 Hz, 1H), 6.69–6.66 (m, 1H), 6.63 (d, J 1.6 

Hz, 1H), 6.61 (d, J 0.6 Hz, 1H), 5.27 (s, 1H), 3.77 (s, 3H), 3.58 (s, 3H), 2.88 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 

148.9, 148.6, 145.1, 136.2, 134.3, 130.6, 129.5, 127.6, 127.3, 126.9, 123.1, 122.5, 122.3, 119.0, 117.8, 112.6, 

111.0, 109.9, 67.6, 55.8, 55.6, 37.1. HRMS (ESI) calculated for C22H22NO2 (M+H)+: 332.1645, found: 332.1643. 

6-(2,5-Dimethoxyphenyl)-5-methyl-5,6-dihydrophenanthridine (2e). Colorless oil. 1H NMR (400 MHz, CDCl3): 

δ 7.78 (d, J 7.8 Hz, 1H), 7.74 (dd, J 7.7, 1.4 Hz, 1H), 7.19 (m, 4H), 6.83–6.80 (m, 1H), 6.78 (s, 1H), 6.73–6.64 (m, 

1H), 6.62 (m, 1H), 6.57 (d, J 3.1 Hz, 1H), 6.05 (s, 1H), 3.86 (s, 3H), 3.40 (s, 3H), 2.87 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ 153.6, 149.7, 145.5, 136.2, 131.5, 130.8, 129.4, 127.4, 127.2, 126.8, 123.1, 122.4, 122.0, 117.5, 113.4, 

113.4, 112.1, 111.9, 58.9, 56.2, 55.2, 36.8. HRMS (ESI) calculated for C22H22NO2 (M+H)+: 332.1645, found: 

332.1639. 

5-Methyl-6-p-tolyl-5,6-dihydrophenanthridine (2f).36 Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.81 (t, J 6.5 

Hz, 1H), 7.75 (dd, J 7.7, 1.4 Hz, 1H), 7.29–7.25 (m, 1H), 7.23–7.18 (m, 1H), 7.18–7.14 (m, 1H), 7.07–7.04 (m, 

1H), 7.02 (dd, J 6.6, 4.8 Hz, 2H), 6.96 (d, J 8.1 Hz, 2H), 6.84–6.80 (m, 1H), 6.59 (d, J 8.0 Hz, 1H), 5.32 (s, 1H), 

2.87 (s, 3H), 2.22 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 144.9, 138.6, 137.2, 135.9, 130.7, 129.4, 129.2, 128.3, 
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127.5, 127.3, 127.0, 126.7, 123.1, 122.5, 117.6, 112.4, 67.6, 37.1, 21.0. HRMS (ESI) calculated for C21H20N 

(M+H)+: 286.1590, found: 286.1603. 

5-Methyl-6-m-tolyl-5,6-dihydrophenanthridine (2g). Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.83–7.72 (m, 

2H), 7.27 (d, J 7.3 Hz, 1H), 7.19 (m, 2H), 7.04 (m, 2H), 6.98–6.89 (m, 3H), 6.83 (dd, J 11.8, 7.7 Hz, 1H), 6.63–6.57 

(m, 1H), 5.32 (s, 1H), 2.87 (s, 3H), 2.21 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 145.0, 141.6, 138.0, 135.8, 130.6, 

129.5, 128.5, 128.4, 127.6, 127.5, 127.3, 127.1, 123.9, 123.2, 122.5, 121.9, 117.6, 112.4, 67.9, 37.2, 21.6. 

HRMS (ESI) calculated for C21H20N (M+H)+: 286.1590, found: 286.1585. 

5-Methyl-6-o-tolyl-5,6-dihydrophenanthridine (2h). Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J 7.5 

Hz, 1H), 7.76 (dd, J 7.7, 1.4 Hz, 1H), 7.23–7.20 (m, 1H), 7.20–7.16 (m, 1H), 7.16–7.11 (m, 2H), 7.11–7.06 (m, 

2H), 7.00 (dd, J 7.2, 6.0 Hz, 1H), 6.81 (dd, J 10.7, 4.3 Hz, 2H), 6.62 (d, J 7.9 Hz, 1H), 5.82 (s, 1H), 2.73 (s, 3H), 

2.48 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 145.6, 141.0, 136.1, 134.7, 130.9, 130.8, 129.5, 128.8, 127.5, 127.4, 

127.2, 126.8, 126.6, 123.1, 122.1, 121.4, 117.5, 112.1, 63.5, 36.3, 20.1. HRMS (ESI) calculated for C21H20N 

(M+H)+: 286.1590, found: 286.1580. 

5-Methyl-6-(naphthalen-2-yl)-5,6-dihydrophenanthridine (2j). Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.84 

(d, J 7.8 Hz, 1H), 7.79 (dd, J 7.7, 1.4 Hz, 1H), 7.75–7.71 (m, 1H), 7.71–7.68 (m, 1H), 7.63–7.58 (m, 2H), 7.39 (m, 

2H), 7.31–7.26 (m, 1H), 7.24–7.19 (m, 2H), 7.17–7.13 (m, 1H), 7.08 (dd, J 7.6, 1.1 Hz, 1H), 6.85 (td, J 7.6, 1.0 Hz, 

1H), 6.61 (d, J 8.0 Hz, 1H), 5.52 (s, 1H), 2.89 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 145.0, 139.3, 135.5, 133.2, 

133.0, 130.8, 129.6, 128.6, 128.1, 127.7, 127.6, 127.3, 126.1, 125.8, 125.2, 125.2, 123.2, 122.5, 121.82, 117.8, 

112.4, 68.1, 37.1. HRMS (ESI) calculated for C24H20N (M+H)+: 322.1590, found: 322.1592. 

5,10-Dimethyl-6-phenyl-5,6-dihydrophenanthridine (2m). Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J 

7.9 Hz, 1H), 7.77 (d, J 7.7 Hz, 1H), 7.24–7.13 (m, 4H), 7.12–7.07 (m, 2H), 7.00 (t, J 7.2 Hz, 1H), 6.83 (t, J 7.6 Hz, 

2H), 6.62 (d, J 8.2 Hz, 1H), 5.82 (s, 1H), 2.74 (s, 3H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 145.6, 141.0, 

136.1, 134.7, 131.8, 130.9, 129.5, 128.7, 127.5, 127.5, 127.2, 126.8, 126.6, 123.1, 122.2, 121.4, 117.5, 112.1, 

63.4, 36.3, 20.2. HRMS (ESI) calculated for C21H20N (M+H)+: 286.1590, found: 286.1580. 

5,8-Dimethyl-6-phenyl-5,6-dihydrophenanthridine (2n). Colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.75–7.68 

(m, 2H), 7.20–7.14 (m, 4H), 7.13–7.08 (m, 3H), 6.88 (s, 1H), 6.82 (td, J 7.5, 1.0 Hz, 1H), 6.57 (d, J 8.0 Hz, 1H), 

5.30 (s, 1H), 2.86 (s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 144.6, 141.7, 137.1, 135.6, 129.0, 128.6, 

128.5, 128.0, 127.6, 127.6, 126.8, 122.8, 122.5, 122.1, 117.6, 112.3, 68.0, 37.1, 21.2. HRMS (ESI) calculated for 

C21H20N (M+H)+: 286.1590, found: 286.1583. 

6-Methyl-5-phenyl-5,6-dihydrobenzo[c][2,7]naphthyridine (2o). Yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.45 

(d, J 5.4 Hz, 1H), 8.32 (s, 1H), 7.75 (dd, J 7.8, 1.3 Hz, 1H), 7.58 (d, J 5.3 Hz, 1H), 7.33–7.28 (m, 1H), 7.19 (dd, J 

6.3, 3.6 Hz, 3H), 7.14 (dd, J 6.6, 3.1 Hz, 2H), 6.84 (dd, J 10.9, 4.1 Hz, 1H), 6.65 (d, J 8.2 Hz, 1H), 5.45 (s, 1H), 2.92 

(s, 3H). 13C NMR (100 MHz, CDCl3): δ 148.6, 148.4, 146.0, 141.2, 137.9, 131.9, 130.1, 128.8, 128.0, 126.4, 124.1, 

118.8, 117.7, 116.0, 112.6, 65.1, 37.2. HRMS (ESI) calculated for C19H17N2 (M+H)+: 273.1386, found: 273.1364. 

5-Ethyl-6-phenyl-5,6-dihydrophenanthridine (2p). Yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.81–7.71 (m, 2H), 

7.27–7.23 (m, 1H), 7.21–7.17 (m, 3H), 7.14 (m, 3H), 7.10–7.01 (m, 2H), 6.79 (m, 1H), 6.72 (d, J 8.2 Hz, 1H), 5.49 

(s, 1H), 3.47 (m, 1H), 3.25 (m, 1H), 1.17 (t, J 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 144.2, 143.6, 135.7, 

130.6, 129.4, 128.5, 127.5, 127.4, 127.1, 127.0, 126.6, 123.5, 122.5, 121.7, 117.2, 112.4, 65.5, 44.1, 12.6. 

HRMS (ESI) calculated for C21H20N (M+H)+: 286.1517 286.1590, found: 286.1611. 
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