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Abstract  

Recent development in the trifluoromethylation and difluoromethylation of organic compounds employing 

fluoroform is reviewed. Eight approaches to trifluoromethylation and difluoromethylation are summarized: (i) 

trifluoromethylation or difluoromethylation of carbonyl compounds, (ii) trifluoromethylation of sulfonyl 

fluorides, (iii) trifluoromethylation of epoxides, (iv) nucleophilic trifluoromethylation of silicon, boron, and 

sulfur-based compounds, (v) CuCF3 derived from fluoroform for the trifluoromethylation of aryl or heteroaryl 

halides, aryl boronic acids, arenediazonium salts and alkynes, (vi) difluoromethylation of alkynes, (vii) 

difluoromethylation of phenols, thiophenols and heterocyclic compounds, and (viii) difluoromethylation of 

nitriles. 
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1. Introduction 
 

In recent years, the organic fluorine compounds, such as trifluoromethylated and difluoromethylated 

molecules, have been widely concerned in pharmaceutical and agrochemical research,1-3 because the 

trifluoromethyl and difluoromethyl groups can improve the binding selectivity, lipophilicity and metabolic 

stability of these compounds.4 Recently, a series of fluorine reagents, such as Umemoto’s reagents,5-10 

NaSO2CF3,11-15 CF3SiMe3,16 Togni’s reagents,17-19 and TMSCF2H,20,21 were employed in the transformations of 

these fluorine functional groups. However, reports on the application of fluoroform (a cheap, nontoxic and not 

an ozone-depleting gas22) in trifluoromethylation and difluoromethylation reactions are rare.23 This review 

provides an overview of trifluoromethylation and difluoromethylation using fluoroform over the period from 

2010 to the present. Several approaches will be reviewed and divided into (i) trifluoromethylation or 

difluoromethylation of carbonyl compounds, (ii) trifluoromethylation of sulfonyl fluorides, (iii) 

trifluoromethylation of epoxides, (iv) nucleophilic trifluoromethylation of silicon, boron, and sulfur-based 

compounds, (v) CuCF3 derived from fluoroform for the trifluoromethylation of aryl or heteroaryl halides, aryl 

boronic acids, arenediazonium salts and alkynes, (vi) difluoromethylation of alkynes, (vii) difluoromethylation 

of phenols, thiophenols and heterocyclic compounds, and (viii) difluoromethylation of nitriles. 

On the basis of a large amount of research literature,24-26 a proposed mechanism for trifluoromethylation 

and difluoromethylation reactions employing fluoroform is depicted in Scheme 1. Due to the weak acidity of 

HCF3,27 in the presence of the strong bases, such as t-BuOK, [(Me2N)3PN]3PNCMe3, MeSOCH2K, n-BuLi and so 

on, fluoroform can produce the trifluoromethyl anion (CF3
-), which is a very important intermediate in 

trifluoromethylation reactions.16 The trifluoromethyl anion, as an unstable intermediate, can undergo 

decomposition to generate fluoride anion (F-) and difluorocarbene,28 which can then react with substrates to 

afford difluoromethylated products.29,30 
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Scheme 1. A proposed mechanism for trifluoromethylation and difluoromethylation reactions employing 

fluoroform. 

 

2. Application of Fluoroform in Trifluoromethylation and Difluoromethylation 
 

2.1. Trifluoromethylation or difluoromethylation of carbonyl compounds 

As early as 1998-2000, an effective nucleophilic trifluoromethylation of carbonyl compounds employing 

fluoroform as a CF3 source in the presence of a common base [t-BuOK, MeSOCH2K, electrogenerated or 

silicon-containing base] was developed by the research groups of Roques, Normant, Troupel and Langlois.26,31-

34 A series of aldehydes and ketones were tested for trifluoromethylation, and gave moderate to good yields 

of the target products 2 in most cases.  
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Scheme 2. Trifluoromethylation of aldehydes and ketones. 

 

In 2012, 2013 and 2015, some new type bases, such as [(Me2N)3PN]3PNCMe3 and KHMDS, applied in the 

nucleophilic trifluoromethylation of aldehydes, ketones, carboxylic acid esters or halides were developed by 

the research groups of Prakash, Shibata and Mikami (Schemes 2 and 3).24,35-37 In these studies, various 

carbonyl compounds were scrutinized, giving moderate to good yields of products 2, 4 or 5 in most cases. 

Prakash et al. showed that all the trifluoromethylation reactions, performed in THF or ether instead of DMF as 

solvent in the presence of fluoroform as a CF3 source and KHMDS or t-BuOK as a base, afforded the desired 
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products 2 in 0-81% yields (Scheme 2).35 When the chalcone containing a nitro group in the para position of 

the benzoyl group was employed for this transformation, however the target product 2 was not obtained.35 

The other two research groups, such as Shibata and Mikami, both reported that in the effect of 

[(Me2N)3PN]3PNCMe3 as base, fluoroform was used for difluoromethylation reaction at lower temperature (-

30 oC or -40 oC) or room temperature, and produced the compounds 2 in moderate to excellent yields (Shibata: 

52-92% and 64-99%, Mikami: 48-99%, respectively).24,36,37 

In addition, the carboxylic acid esters and halides 3 were also employed for trifluoromethylation by 

Mikami and co-workers (Scheme 3).36 It is very interesting that when benzoyl chloride and 1.2 equiv 

[(Me2N)3PN]3PNCMe3 were used for this transformation, the reaction time had no effect on the yield of the 

product 4 (72% yield). However, in the presence of 2.4 equiv. [(Me2N)3PN]3PNCMe3, as the reaction time was 

prolonged, the yield of the product 4 decreased gradually, while the yield of the product 5 gradually increased. 

 

[(Me2N)3PN]3PNCMe3  (Y equiv)X

O

CF3

O

HCF3

CF3

CF3HO

+

X = Cl                       Y= 1.2                       1.5 h                       72%                        trace
X = Cl                       Y= 1.2                          3 h                       72%                        14%
X = Cl                       Y= 2.4                          1 h                       81%                          7%
X = Cl                       Y= 2.4                        10 h                       13%                        60%
X = Cl                       Y= 2.4                        24 h                         0%                        90%
X = OMe                   Y= 1.2                        24 h                       58%                         0%

+

3 4

THF, -40 oC

5

 
 

Scheme 3. Trifluoromethylation of the carboxylic acid esters and halides. 

 

A proposed catalytic cycle for the trifluoromethylation using fluoroform as a CF3 source in the presence of 

[(Me2N)3PN]3PNCMe3 and N(SiMe3)3, was described by Shibata and co-workers,37 as shown in Scheme 4. The 

stabilized ion pair A, arising from the reaction between substrate 1 and fluoroform in the presence of 

[(Me2N)3PN]3PNCMe3, reacted with N(SiMe3)3 to produce the ion pair C and intermediate B, which underwent 

a process of removing TMS to afford the desired product 2 in the effect of TBAF. The fluoroform, as a weak 

acid, would suffer a deprotonation reaction in the presence of the ion pair C to produce the trifluoromethyl 

anion (CF3
-), which can react with compound 1 and H[[(Me2N)3PN]3PNCMe3]+ also to give the stabilized ion pair 

A. In the entire reaction, H[[(Me2N)3PN]3PNCMe3]+ should play an important role in the trifluoromethylation.37 
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Scheme 4. A proposed catalytic cycle for the trifluoromethylation using fluoroform. 

 

In 2013, Vugts and co-workers reported an efficient method for the synthesis of [18F] trifluoromethyl-

containing compounds 7 via a trifluoromethylation process using [18F] fluoroform in the presence of t-BuOK as 

a base (Scheme 5).38 A series of aldehydes and ketones were found to undergo the desired transformations to 

give moderate to excellent yields of the corresponding products 7 in most cases. However, when the 

substrates 6 bearing an electron-withdrawing group such as 4-NO2 and 3-NO2 in the aromatic ring, only trace 

amounts of the desired products 7 were afforded under the action of a smaller amount of t-BuOK. 
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Scheme 5. An efficient method for the synthesis of [18F] trifluoromethyl containing compounds. 

 

In 2012, a direct α-difluoromethylation of ketones for the synthesis of α-difluoromethyl products 9 using 

fluoroform as a difluoromethylating reagent in the presence of LHMDS was developed by Mikami and co-

workers (Scheme 6).39 Not only protected lactams 8a, b, d-f but also the lactones 8g-i, ketone 8j and acyclic 

substrates 8k-m were all examined for α-difluoromethylation, and afforded the α-difluoromethyl products 9 in 

moderate to excellent yields (9a-b: 45-69%, 9d-f: 37-64%, 9g-i: 33-47%, 9j: 36%, 9k-m: 35-82%). However, the 

α-difluoromethylation of the α-unsubstituted lactam 8c did not proceed well with 99% of the raw material 8c 

being recovered. 
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Scheme 6. A direct α-difluoromethylation of ketones using fluoroform. 

 

2.2. Trifluoromethylation of sulfonyl fluorides 

In 2015, Shibata and co-workers developed an effective trifluoromethylation of sulfonyl fluorides 10 

employing N(SiMe3)3 and excess HCF3, in the presence of a catalytic amount of [(Me2N)3PN]3PNCMe3 (Scheme 

7).37 A series of sulfonyl fluorides 10a-g bearing an electron-withdrawing or electron-donating group located 

on the aromatic ring, underwent the desired transformations, and afforded the aryl triflones 11 in good to 

high yields (11a-g: 50-84%). Beyond that, the naphthyl-substituted sulfonyl fluorides 10h,i were also employed 

for the synthesis of aryl triflones, and give 60-78% yields of the the desired products 11h, i. 

 

Ar SO2F Ar SO2CF3

HCF3 (excess)

N(SiMe3)3 (1.5 equiv)

DMF, 0 oC, 5-17 h
10 11

50-84%

[(Me2N)3PN]3PNCMe3

 

SO2CF3

11a
84%

Cl SO2CF3

11b
57%

Br SO2CF3

11c
62%

SO2CF3

11d
50%

Br

I SO2CF3

11e
79%  

SO2CF3

11f
54%

SO2CF3

11g
78%

SO2CF3

11h
78%

11i
60%

SO2CF3

 
 



Arkivoc 2017, i, 67-83 Zhang, C. 

 

 Page 73  ©ARKAT USA, Inc 

Scheme 7. Trifluoromethylation of sulfonyl fluorides. 

 

2.3. Trifluoromethylation of epoxides 

In 2013, an organocatalysis approach to trifluoromethylation of epoxides with fluoroform at 40 ºC was 

developed by Mikami and co-workers (Scheme 8).36 The epoxides 12 or 14 containing not only electron-

withdrawing but also electron-donating groups, afforded the internal or terminal trifluoromethylation 

products 13 or 15 in 37-69% yields. A suggested reaction mechanism, shown in Scheme 9, for the 

trifluoromethylation of epoxides was proposed by Mikami and co-workers.36 First of all, the 

[(Me2N)3PN]3PNCMe3 reacts with epoxides 12 at the terminal carbon to afford the intermediates A, which 

would undergo a hydrogen transfer process to produce methyl ketones B. Then the ketones B are attacked by 

trifluoromethyl anion (CF3
-), arising from the reaction between fluoroform and [(Me2N)3PN]3PNCMe3, to give 

the intermediates C, which finally form the observed products 13, by proton transfer from 

H[[(Me2N)3PN]3PNCMe3]+. 
O
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H3C OH
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HCF3+

O CF3

CH3

OH
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53%14 15  
 

Scheme 8. Trifluoromethylation of of epoxides. 
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Scheme 9. A suggested reaction mechanism for the trifluoromethylation of epoxides. 
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2.4. Nucleophilic trifluoromethylation of silicon, boron, and sulfur-based compounds 

In 2012, Prakash and co-workers also reported a nucleophilic trifluoromethylation of silicon, boron, and sulfur-

based compounds with HCF3 in the presence of KHMDS as base (Scheme 10).35 It was found that when CF3H 

was used for trifluoromethylation of silicon-based substrates 16, the desired products 17 were obtained in 42-

80% yields. In the effect of KHMDS, the boron-based compounds 18 can react with fluoroform, then followed 

by 48% aqueous HF to afford CF3BF3K 19 in 53% or 66% yield. The trifluoromethanesulfonic acid (CF3SO3H) 20, 

a widely used and widely available organic acid, can be obtained in modest 18% conversion, in the presence of 

CF3H, S8, KHMDS, 30% H2O2 and H2SO4.35 Because of  low conversion rate of this synthesis procedure, we think 

that this preparation method of trifluoromethanesulfonic acid is not going to be economically viable. 
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Scheme 10. Nucleophilic trifluoromethylation of silicon, boron, and sulfur-based compounds. 

 

2.5. CuCF3 derived from fluoroform for the trifluoromethylation of aryl or heteroaryl halides, aryl boronic 

acids, arenediazonium salts and alkynes 

In 2011, 2013, 2014 and 2016, CuCF3 derived from fluoroform for the trifluoromethylation of aryl boronic 

acids, arenediazonium salts, alkynes, aryl and heteroaryl halides was developed by the research groups of 

Grushin, Daugulis and Tsui (Scheme 11).40-45 All these research groups showed that HCF3 can react with CuCl in 

the presence of t-BuOK and DMF, or zinc bis-2,2,6,6-tetramethylpiperidide (TMP)2Zn, 1,3-

dimethylpropyleneurea (DMPU) and phenanthroline to produce fluoroform-derived CuCF3, which was a good 
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trifluoromethylating reagent for the trifluoromethylation,5,46,47 and afforded the desired products 25-27 in 

moderate to excellent yields.40-45 
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and Tsui's

 groups

X1 Het

CF3

+
22

21

26

25

CuCF3

HCF3

CuCl
t-BuOK

DMF

b) Daugulis's 
group

HCF3

CuCl

TMP2Zn

DMPU 27-99%

30-99%

X1= Br, I, B(OH)2

R1= 4-Ac, 3-CHO, 2-CONH2, 4-Br, 2-Br, 2-CO2H, 4-Ph, 2-CO2Et, H, 4-CH3,

4-Cl, 4-CH3O, 4-F, 4-CO2H, 4-NO2, 4-NHCOCH3, 4-COCH3, 4-CO2CH3, 

4-I, 3-NO2, 3-I, 2-CO2CH3, 2-COCH3, 2-Cl, 2-CO2H
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Ph, 4-FC6H4, 4-BrC6H4, 4-IC6H4, 4-TMSC6H4, 3-CH3OC6H4, 2-CH3OC6H4, 

2-CH3C6H4, 2-NH2C6H4, 3-C5H4N, n-C10H21, C6H5CH2OCH2

N2
+ F-

R1

23

R2 X2 R2 CF3

24 27
40-96%

 
 

Scheme 11. Trifluoromethylation of aryl or heteroaryl halides, aryl boronic acids, arenediazonium salts and 

alkynes. 

 

In 2014, a valuable method for the [18F] trifluoromethylation of aryl iodides and aryl boronic acids in situ by 

use of HCF2
18F as the precursor of CuCF2

18F was described by Vugts and co-workers (Scheme 12).48 Under the 

optimized reaction conditions, a broad range of aryl iodides and aryl boronic acids can be converted 

successfully into the desired products 28 in moderate to excellent yields in many cases. From the experimental 

results, it can be seen that electronic effects seem to have no influence on the yields. However, the 

unprotected alcohol, carboxylic acid and amine did not perform well for the [18F] trifluoromethylation reaction, 

and gave poor yields of the products 28k-m. When the substrates 28n, 28p, 28q and 29h were employed for 

the [18F] trifluoromethylation, only 2-41% yields of the [18F] trifluoromethyl arenes 30n, 30p, 30q and 30h 

were obtained.  
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N
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Scheme 12. [18F] trifluoromethylation of aryl iodides and aryl boronic acids. 

 

2.6. Difluoromethylation of alkynes 

In 2015 and 2016, an effective difluoromethylation of alkynes under a fluoroform atmosphere in the presence 

of t-BuOK or LHMDS as base was developed by the research groups of Shibata and Mikami (Scheme 13).49,50 A 

variety of arynes bearing either electron-donating or electron-withdrawing groups, such as methoxy (31a, 31e, 

31g, 31k), phenyl 31c, dimethylamino 31b,  bromo 31d, benzyloxy 31f and ester 31m were all tolerated, and 

afforded the desired products 32a-g, 32k, 31m in moderate yields. The heterocyclic alkynes 31h and 31n were 

also examed, and gave the products 32h, 32n in 48% and 45% yields. In addition, the aliphatic alkynes 31l and 

31o have also been well transformed to the difluoromethylated compounds (32l: 38%, 32o: 72%).  
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Scheme 13. Difluoromethylation of alkynes. 

 

2.7. Difluoromethylation of phenols, thiophenols and heterocyclic compounds 

In 2013 and 2014, the conversion of a series of substrates such as phenols, thiophenols, imidazoles, 

benzotriazoles and hydroxypyridines into their difluoromethylated derivatives 34, 36 and 38, with fluoroform 

as a difluorocarbene source in the presence of KOH as base, was demonstrated by the research group of 

Dolbier (Scheme 14).51,52 They showed that the phenols and thiophenols 33 containing either electron 

withdrawing or electron donating groups, performed well under the conditions of synthetic methods A and B, 

and afforded the products 34 in moderate to excellent yields.51 Dolbier and co-workers found that, under the 

conditions of method B, difluoromethylation of heterocyclic compounds, such as imidazoles, benzimidazoles, 

indazoles and benzotriazoles (35) and hydroxypyridines (37), proved satisfactory, with moderate to good 

yields of the difluoromethylated products 36, 38 being obtained.52 
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Scheme 14. Difluoromethylation of phenols, thiophenols and heterocyclic compounds. 

 

2.8. Difluoromethylation of nitriles 

In 2015, Mikami and co-workers reported a valuable difluoromethylation of nitrile compounds with fluoroform 

as a CF2H source in the presence of nBuLi as base (Scheme 15).53 It was found that higher yields (40a-f: 75-96%) 

were generally observed for the substrates 39a-f containing either an electron withdrawing or electron 

donating group in the position of the benzene ring. However, when the acyclic or cyclic α-monoalkylated and 
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vinylic substituted nitriles 39h-n were employed for the difluoromethylation reactions, the difluoromethylated 

products 40h-n were obtained in moderate yields (39-53%). 
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Scheme 15. Difluoromethylation of nitriles. 

 

3. Conclusions 
 

In summary, recent developments in trifluoromethylation and difluoromethylation by use of fluoroform are 

presented. In the presence of the strong bases, fluoroform can produce the trifluoromethyl anion, which is an 

unstable intermediate undergoing a decomposition reaction to generate difluorocarbene. Both the 

trifluoromethyl anion and difluorocarbene are very important intermediates in the trifluoromethylation or 

difluoromethylation reactions. In this review, we classified trifluoromethylation and difluoromethylation 

reactions under eight headings: (i) trifluoromethylation or difluoromethylation of carbonyl compounds, (ii) 

trifluoromethylation of sulfonyl fluorides, (iii) trifluoromethylation of epoxides, (iv) nucleophilic 

trifluoromethylation of silicon, boron, and sulfur-based compounds, (v) CuCF3 derived from fluoroform for the 

trifluoromethylation of aryl or heteroaryl halides, aryl boronic acids, arenediazonium salts and alkynes, (vi) 

difluoromethylation of alkynes, (vii) difluoromethylation of phenols, thiophenols and heterocyclic compounds, 

and (viii) difluoromethylation of nitriles. In most cases, the trifluoromethylated or difluoromethylated 

products were obtained in moderate to excellent yields. Compared with Umemoto’s reagents, NaSO2CF3 and 

Togni’s reagents, fluoroform is a non-toxic and harmless gas, and not easy to operate in the reactions. 

However, it can be converted to other stable CF3 reagents, such as CuCF3 and CF3SiMe3, which are relatively 
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easy to operate in industrial production of the trifluoromethylated or difluoromethylated compounds. In spite 

of this, we also expect that the application of fluoroform in trifluoromethylation and difluoromethylation 

reactions will continue. 
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