A simple and non-conventional method for the synthesis of selected β-arylalkylchalcogeno substituted alcohols, amines and carboxylic acids

Patrícia C. Silva, ${ }^{\text {a }}$ Elton L. Borges, ${ }^{\text {b }}$ David B. Lima, ${ }^{\text {b }}$ Raquel G. Jacob, ${ }^{\text {b }}$ Eder J. Lenardão, ${ }^{\text {b }}$ Gelson Perin, ${ }^{\text {b,* }}$ Márcio S. Silva ${ }^{\text {a,* }}$
${ }^{a}$ Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André, SP, Brazil.
${ }^{b}$ LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354-96010-900, Pelotas, RS, Brazil.
E-mail: s.marcio@ufabc.edu.br; gelson_perin@ufpel.edu.br

DOI: https://doi.org/10.24820/ark.5550190.p009.906

Abstract

A simple and mild procedure for the reaction of nucleophilic chalcogenium species (Se and Te) with lactones, epoxides or aziridines to prepare chalcogen-containing acids, alcohols and amines in non-conventional media is described. The chalcogenolate nucleophiles were generated in situ from the respective diorganyl dichalcogenide using $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ under solvent-free conditions (to prepare the chalcogen-containing acids and alcohols) or a $\mathrm{NaBH}_{4} / \mathrm{PEG}-400$ system (for the synthesis of chalcogen-containing amines) at $50^{\circ} \mathrm{C}$. The functionalized organochalcogenides were prepared in short reaction times and good yields.

Keywords: organochalcogen compounds; lactone; epoxide; aziridine; ring opening reaction.

Introduction

The development and applications of organoselenium and organotellurium compounds are well known. ${ }^{1-3}$ Organochalcogen compounds, when associated with other functionalities, are versatile
reagents in organic synthesis. ${ }^{4}$ Additionally, recently they have been applied in materials science, ${ }^{5}$ biological and pharmacological studies ${ }^{6}$ and organic synthesis. In view of these features, the search for greener reaction conditions and efficient methodologies to reduce wastes in the synthesis of new organochalcogen compounds has received much attention. ${ }^{7-11}$

On the other hand, the ring opening reaction by nucleophilic selenium and tellurium species is a very useful method to incorporate these elements into organic molecules, due to their soft nucleophilicity and low basicity. The use of cleaner procedures for producing nucleophilic species of organochalcogen has been an efficient strategy. Among the alternative methods employed for generation in situ of chalcogenolate anions for ring opening reactions of epoxides, aziridines and lactones \quad are: $\quad \mathrm{Zn} / \mathrm{HCl} /$ biphasic, ${ }^{12} \quad \mathrm{Zn} / \mathrm{THF} /$ reflux, ${ }^{13} \quad \mathrm{Zn} / \mathrm{HCl} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right],{ }^{14}$ $\mathrm{KOH} / \mathrm{CuO} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]^{15}$ and $\mathrm{Zn} / \mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{CN} / 70{ }^{\circ} \mathrm{C}$. ${ }^{16}$ In most cases, these methods employ strong base or acid, high temperatures and volatile organic compounds (VOCs), limiting their use to a few functional groups.

Recently, we developed a new method to the in situ generation of chalcogenolate anions by using the $(\mathrm{RY})_{2} / \mathrm{NaBH}_{4} / \mathrm{PEG}-400$ system. This protocol was successfully used to prepare vinyl chalcogenides, ${ }^{17}$ bis-chalcogen alkenes ${ }^{18}$ and β-chalcogen esters, ketones and carboxylic acids. ${ }^{19,20}$ By this procedure, the use of odoriferoous, unstable compounds and drastic reaction conditions are avoided, enabling us to explore the soft nucleophilicity of organochalcogen (Se and Te) compounds under mild conditions.

In this work, we describe the ring-opening reaction of lactones, epoxides and non-activated aziridines by chalcogenolate anions using solvent-free $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{NaBH}_{4} /$ PEG- 400 systems at $50^{\circ} \mathrm{C}$ to prepare chalcogen-functionalized carboxylic acids, alcohols and amines (Scheme 1).

Scheme 1. Synthesis of chalcogen-containing acids, alcohols and amines under mild conditions.

Discussion

In the initial experiments, we chose diphenyl ditelluride $\mathbf{1 a}$ as the chalcogen source and β-methyl-β-propiolactone 2a, propylene oxide $\mathbf{2 b}$ and 2-methylaziridine $\mathbf{2 c}$ as the electrophiles to evaluate the best conditions for the nucleophilic ring-opening reaction (Table 1). In the optimization study, we examined the influence of the amount of electrophile, the temperature and the use of solvent or solid-supported reducing agent. It was observed that the presence of solid support or solvent is essential for the success of the ring-opening of the three electrophiles (Table 1, entries 1,17 and 22). As can be seen in Table 1, the use of 50.0 mg of solid support or $50 \mu \mathrm{~L}$ of solvent and an excess of electrophile (1.5 mmol) provided the best results (entries 5,13 and 20). The reactions were monitored by thin layer chromatography (TLC) and gas chromatography (GC).

Among the conditions that were tested for the ring-opening of lactone 2a to obtain the tellurium-containing acid 3a, the most effective approach was that using $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ at $50{ }^{\circ} \mathrm{C}$, which afforded the product in 76% yield (Table 1, entry 3). A decrease in the yield of $\mathbf{3 a}$ was observed when the reaction was performed either at room temperature or at $80^{\circ} \mathrm{C}$ (Table 1, entries 2 and 4), while 83% of the product was obtained using an excess of $\mathbf{2 a}$ (1.5 equiv) with respect to the ditelluride 1a (Table 1, entry 5). We also tested alternative solvents in the reaction, such as PEG-400, glycerol and ethanol. A satisfactory yield of $\mathbf{3 a}$ was obtained only when $\mathrm{NaBH}_{4} / \mathrm{PEG}-$ 400 was used (Table 1, entries 9-10). Ethanol delivered 3a in only 34% yield, while using glycerol caused the formation of a solid in the reaction vessel, thus preventing mixing of reagents (Table 1, entries 11-12). When propylene oxide $\mathbf{2 b}$ was used as the electrophile, the profile of the reaction remained the same, with the $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ system, affording the desired tellurium-containing alcohol 4a in 88% yield after 2 h at $50^{\circ} \mathrm{C}$ (Table 1, entry 13). The $\mathrm{NaBH}_{4} / \mathrm{PEG}-400$ system afforded the alcohol $4 \mathbf{4 a}$ in 80% yield (Table 1, entry 15). We observed that SiO_{2} is not as good as $\mathrm{Al}_{2} \mathrm{O}_{3}$ as the solid support and the ring-opening was less efficient for both lactone $\mathbf{2 a}$ and epoxide $\mathbf{2 b}$ (Table 1, entries 8 and 14). Ethanol was not a good solvent to prepare $\mathbf{4 a}$, which was obtained in only 41% yield after 2 h (Table 1, entry 16). A longer reaction time did not improve the yield.

In striking contrast to these results, $\mathrm{NaBH}_{4} / \mathrm{PEG}-400$ system gave the best result in the ringopening of 2-methylaziridine 2c, affording the tellurium-containing amine $\mathbf{5 a}$ in 76% yield (Table 1, entry 20). Clearly, to produce chalcogen amines the presence of a hydrogen source is essential for success. These results are corroborated by those using conventional methodologies. ${ }^{21,22}$ However, when the reaction was carried out in ethanol, the yield of $\mathbf{5 a}$ decreased to 57% (Table 1, entry 21). The use of additional ethanol ($2.0,5.0$ and 10.0 mL) did not change the outcome. Neither increasing the temperature (80 and $100{ }^{\circ} \mathrm{C}$) nor using a larger excess of aziridine $\mathbf{2 c}(2.0,3.0$ and 5.0 equiv) improved the yield of $\mathbf{5 a}$ using the $\mathrm{NaBH}_{4} /$ PEG- 400 system.

Table 1. Optimization of the ring-opening reactions of lactone, epoxide and aziridine by phenyltellurolate anion ${ }^{\text {a }}$

Entry	Conditions (mg or $\square \mathrm{L}$)	Electrophile (mmol)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$
1	--		25	22
2	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	2a (1.0)	25	53
3	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	2a (1.0)	50	76
4	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	2a (1.0)	80	55
5	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	2a (1.5)	50	83
6	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (100)	2a (1.5)	50	73
7	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	2a (2.0)	50	80
8	SiO_{2} (50)	2a (1.5)	50	63
9	PEG-400 (50)	2a (1.5)	50	78
10	PEG-400 (100)	2a (1.5)	50	67
11	ethanol (50)	2a (1.5)	50	34
12	glycerol (50)	2a (1.5)	50	----
13	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	$\stackrel{i}{2 b}^{(1.5)}$	50	88
14	SiO_{2} (50)	2b (1.5)	50	71
15	PEG-400 (50)	2b (1.5)	50	80
16	ethanol (50)	2b (1.5)	50	41
17	----	2b (1.5)	50	32
18	$\mathrm{Al}_{2} \mathrm{O}_{3}(50)$	$\begin{equation*} \underbrace{\stackrel{H}{N}}_{2 c} \tag{1.5} \end{equation*}$	50	48
19	SiO_{2} (50)	2c (1.5)	50	25
20	PEG-400 (50)	2c (1.5)	50	76
21	ethanol (50)	2c (1.5)	50	57
22	----	2c (1.5)	50	18

${ }^{\text {a }}$ Reaction performed in the presence of 0.5 mmol of diphenyl ditelluride $\mathbf{1 a}$ and 1 mmol of NaBH_{4} for $2 \mathrm{~h} .{ }^{\mathrm{b}}$ Yields are given for isolated products 3a, $\mathbf{4 a}$ or 5a.

With the standard reaction conditions defined, we next investigated the scope of our methodology by employing a variety of chalcogenolate anions and electrophiles. To establish the generality for the lactone 2a ring-opening reaction, various diorganyl dichalcogenides $\mathbf{1}$ were used in the presence of $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ system at $50{ }^{\circ} \mathrm{C}$. The reactions proceeded with good yields employing diaryl and dialkyl dichalcogenides and they are not sensitive to electronic effects in the aromatic ring of the diaryl ditellurides (Scheme 2). This approach was successfully extended to diphenyl diselenide $\mathbf{1 e}$ and the respective β-phenylselanyl carboxylic acid $\mathbf{3 e}$ was obtained in 85% yield (Scheme 2). A good result was obtained when γ-butyrolactone 2d was reacted with diphenyl diselenide $\mathbf{1 e}$ in the presence of $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$, yielding the γ-phenylselanyl acid $\mathbf{3 f}$ in 79% yield (Scheme 3).

Scheme 2. Synthesis of β-organylchalcogenyl acids 3a-e by the ring-opening reaction of β -methyl- β-propiolactone 2a.

Scheme 3. Synthesis of the γ-phenylselanyl acid 3f by the ring opening reaction of γ-butyrolactone 2d.

Excellent results were obtained in the reaction of the chalcogenolate anions generated in situ with epoxides (Scheme 4). As can be seen in Scheme 4, β-chalcogen alcohols 4a-k were obtained in good to excellent yields from different epoxides and a variety of ditellurides and diselenides. For instance, 2-benzyloxirane $\mathbf{2 e}$ reacted with diphenyl ditelluride $\mathbf{1 a}$ and diphenyl diselenide $\mathbf{1 e}$ in the presence of $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ to afford, after 2 h , the respective phenyltelluro alcohol $\mathbf{4 j}$ and
phenylseleno alcohol $\mathbf{4 k}$ in 77 and 86% yields respectively (Scheme 4). An excellent result was obtained with 2-(phenoxymethyl)oxirane 2f, which afforded the respective phenyltelluteluro and phenylseleno alcohols in 82 and 93% yields (Scheme 4, $\mathbf{4 h}$ and $\mathbf{4 i}$). In the reaction of propylene oxide $\mathbf{2 b}$ with dibutyl dichalcogenides $\mathbf{1 d}$ and $\mathbf{1 g}$, it was necessary 3.0 equiv of the dichalcogenide to obtain satisfactory yields of the respective alcohols in 2 h (Scheme $4,4 \mathbf{d}$ and $\mathbf{4 c}$).

Scheme 4. Synthesis of chalcogen-containing alcohols $\mathbf{4 a}-\mathbf{k}$ by ring opening reactions of epoxides.

Next, we explored our protocol using $\mathrm{NaBH}_{4} /$ PEG-400 in the ring-opening of 2methylaziridine 2c, aiming to prepare β-chalcogen-containing amines 5a-h (Scheme 5). We found that the ring-opening of aziridine $\mathbf{2 c}$ is more efficient when nucleophilic selenium is used, producing the respective selenium-containing amines in better yields that the telluro-products. As in the ring-opening of lactone and epoxides (Schemes 2 and 4), the presence of electronwithdrawing or electron-releasing groups in the aromatic ring of the ditelluride and diselenide did not influence the yields of products in a predictable way. The yields of tellurium-containing aziridines ranged from 58 to 76%, while the selenium-containing aziridines were obtained with yields from 69 to 85% (Scheme 5). Because of the basicity of the chalcogen-containing amines, in these reactions aqueous NaCl was used instead $\mathrm{NH}_{4} \mathrm{Cl}$ in the work up, to avoid product loss.

Regarding the stability of the obtained chalcogen compounds, we have observed the following order: chalcogen-containing amines $>$ chalcogen-containing alcohols $>$ chalcogen-containing acids. In the presence of solvent, light or at high temperatures, the chalcogen-containing acids are decomposed. Thus, work-up and purification steps must be performed rapidly. The same care should be taken when working with the chalcogen-containing alcohols, but the degradation rate is lower. In contrast, the chalcogen-containing amines are very stable and do not require the same attention.

Scheme 5. Synthesis of chalcogen-containing amines 5a-h by ring opening reactions of 2methylaziridine.

Conclusions

In conclusion, we have shown that the use of $\mathrm{NaBH}_{4} /$ PEG- 400 and $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ as reducing systems to prepare chalcogenolate anions can be successfully applied in the synthesis of telluriumand selenium-functionalized acids, alcohols and amines. This atom-economic strategy involves the ring-opening of lactones, epoxides and aziridines and is general for dialkyl and diaryl ditellurides and diselenides. Moreover, this simple procedure does not involve harsh reaction conditions and is not time consuming, with good-to-excellent yields of products being obtained in only a twohour reaction.

Experimental Section

Analytical thin-layer chromatography (TLC) was performed by using aluminum-backed silica plates coated with a 0.25 mm thickness of silica gel 60 F254 (Merck), visualized with an ultraviolet light ($\lambda=254 \mathrm{~nm}$). Either 300 MHz or 500 MHz acquired the NMR spectra. The ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) peak ($\delta 0.0 \mathrm{ppm}$). The data are reported in chemical shift (δ), multiplicity, coupling constant (J) in Hertz and integrated intensity. The ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported at either 75 or 125 MHz in ppm relative to CDCl_{3} signal ($\delta 77.0 \mathrm{ppm}$). The ${ }^{77} \mathrm{Se}$ NMR chemical shifts are reported in ppm relative to internal standard $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeSeC}_{6} \mathrm{H}_{5}(\delta 467 \mathrm{ppm})$. The ${ }^{125} \mathrm{Te}$ NMR chemical shifts are reported in ppm relative to internal standard $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}(\delta 422 \mathrm{ppm})$. High-resolution mass spectra (HRMS) were acquired using a Bruker Daltonics MicroTOF instrument, operating electrospray ionization (ESI) mode with ion mass/charge (m / z) ratios as values in atomic mass units.
General procedure: To a 5 mL vial equipped with magnetic stirrer and a rubber septum under nitrogen, was added dialkyl or diaryl dichalcogenide (0.5 mmol) and the electrophile (1.5 mmol) followed by the catalyst system. To synthesize the chalcogen-containing acids and alcohols a $\mathrm{NaBH}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}(1 \mathrm{mmol} / 50 \mathrm{mg})$ system was employed and to prepare chalcogen-containing amines a $\mathrm{NaBH}_{4} / \mathrm{PEG}-400(1 \mathrm{mmol} / 50 \mu \mathrm{~L})$ system was used. The mixture was then stirred for 120 min at $50{ }^{\circ} \mathrm{C}$. The reaction progress was monitored by thin layer chromatography (TLC) and gas chromatography (GC). After 1 h at rt the reaction medium was diluted with $\mathrm{AcOEt}(20 \mathrm{~mL})$ and washed with saturated aq solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ for acids and alcohols and $\mathrm{NaCl}(15 \mathrm{~mL})$ for amines. The phases were separated and the aq phase was extracted with AcOEt $(2 \times 20 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvents were evaporated under reduced pressure. The product was purified by flash column chromatography eluting first with hexane to remove alkyl or aryl chalcogen byproducts and then with hexane/AcOEt (8:2) to remove the acids or alcohols and AcOEt only to remove the amine.

3-(phenyltellanyl)butanoic acid (3a). Red oil, 83% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}): 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}) ; 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}) ; 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}) ; 3.65(\mathrm{sex}, J 7.1 \mathrm{~Hz}, 1 \mathrm{H})$; $2.86(\mathrm{dd}, J 6.7 \mathrm{~Hz}$ and $16.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.82(\mathrm{dd}, J 7.7 \mathrm{~Hz}$ and $16.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.64(\mathrm{~d}, J 7.15 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 178.0, 140.8, 129.2, 128.4, 111.2, 44.5, 24.2, 14.2. ${ }^{125} \mathrm{Te}$ NMR ($94.74 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeH}_{5} \mathrm{C}_{6}$ standard $\delta \mathrm{ppm} 422$): 709.4. IR v $\left(\mathrm{cm}^{-1}\right): 3064,1708,1573,1433,1297,1222,734,693,455$. HR-MS: Calculated value $[\mathrm{M}+1]^{+}$ 294.9899; Found value $[\mathrm{M}+\mathrm{H}]^{+} 294.9912$.

3-(m-tolyltellanyl)butanoic acid (3b). Red oil, 92% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $7.81(\mathrm{~d}, J 7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.20-7.29(\mathrm{~m}, 2 \mathrm{H}) ; 7.02(\mathrm{dt}, J 1.4 \mathrm{~Hz}$, and $7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.70$ (sex, J $7.14 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.85(\mathrm{~m}, 1 \mathrm{H}) ; 2.83(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.51(\mathrm{~s}, 3 \mathrm{H}) ; 1.64(\mathrm{~d}, J 7.11 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 178.3, 143.8, 140.6, 129.0, 128.9, 126.6, 116.3, 44.5, 27.6, 24.0, 14.0. IR $v\left(\mathrm{~cm}^{-1}\right): 3053,2862,2731,2627,1565,1341,1075,1049,989,931,909$,

796, 705, 648, 603, 539, 477, 403. HR-MS: Calculated value $[\mathrm{M}+1]^{+} 309.0086$; Found value $[\mathrm{M}$ $+\mathrm{H}]^{+} 309.011$.
3-((4-methoxyphenyl)tellanyl)butanoic acid (3c). Red crystals, 61% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 7.74(\mathrm{dd}, J 2.0 \mathrm{~Hz}$ and $6.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.78(\mathrm{dd}, J 2.0 \mathrm{~Hz}$ and 6.6 Hz , $2 \mathrm{H}) ; 3.80(\mathrm{~s}, 3 \mathrm{H}) ; 3.56(\mathrm{sex}, J 7.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.80(\mathrm{~d}, J 0.6 \mathrm{~Hz}$ and $1.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.59(\mathrm{~d}, J 7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): $178.1,160.2,143.0,115.1,100.3,55.1$, 44.5, 24.1, 13.9. IR (cm^{-1}): 3433, 3016, 2857, 2732, 2066, 1967, 1835, 1563, 1461, 1397, 1340, 1133, 1102, 1064, 997, 911, 886, 789, 622, 588, 496, 418. HR-MS: Calculated value $[\mathrm{M}+1]^{+}$ 325.0005 ; Found value $[\mathrm{M}+\mathrm{H}]^{+} 324.9996$

3-(butyltellanyl)butanoic acid (3d). Red oil, 64% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}): 3.48(\mathrm{sex}, J 7.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.86(\mathrm{t}, J 6.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.73(\mathrm{dt}, J 7.4$ and $3.1 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.78$ (qt, $J 7.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.68(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.38(\mathrm{sex}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 0.92(\mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 178.3, 45.4, 34.4, 25.3, 24.9, 13.4, 8.5, 3.5. IR (cm^{-1}): 2926, 2730, 1164, 1105, 1074, 990, 889, 769, 604, 496. HR-MS: Calculated value $[\mathrm{M}+1]^{+}$ 275.0212; Found value $[\mathrm{M}+\mathrm{H}]^{+} 275.0194$.

3-(phenylselanyl)butanoic acid (3e). Yellow oil, 85% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$, TMS, $\delta \mathrm{ppm}$): 7.57-7.59 (m, 2H); 7.25-7.31 (m, 3H); 3.62 (sex, $J 6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.73$ (dd, J 6.3 Hz and $16.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.61(\mathrm{dd}, J 4.0 \mathrm{~Hz}$ and $16.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.46(\mathrm{~d}, J 6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\left.\delta \mathrm{ppm}\right): 177.5,135.7,129.1,128.1,127.8,42.4,33.2,21.8$. IR ($\left.\mathrm{cm}^{-1}\right): 3071$, 2731, 1952, 1880, 1605, 1595, 1499, 1377, 1110, 931, 813, 671, 471. HR-MS: Calculated value $[\mathrm{M}+1]^{+}$245.0002; Found value $[\mathrm{M}+\mathrm{H}]^{+} 244.9987$.
4-(phenylselanyl)butanoic acid (3f). Yellow oil, 79% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 1.99 (quin, $(J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, J8.5 $\mathrm{Hz}, 2 \mathrm{H}$), 7.43 (d, $J 8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 11.50 (br s, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}): 24.8,27.1,33.5,127.7,129.3,133.3,134.2,179.3 \mathrm{ppm}$.
1-(phenyltellanyl)propan-2-ol (4a). Red oil, 88% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm})$: 7.73-7.75 (m, 2H), 7.25-7.29 (m, 1H), 7.18-7.21 (m, 2H), 3.91 (sex, J 5.8 Hz, 1H), 3.13 (dd, $J 4.5$ and $12.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dd, $J 7.6$ and $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J 6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): 138.4, 129.3, 127.8, 111.1, 67.3, 23.7, 21.6. ${ }^{125} \mathrm{Te}$ NMR ($94.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}$): 365.8. HR-MS: Calculated value [M + 23] ${ }^{+}$ 288.9950; Found value [M + Na] ${ }^{+} 288.9937$.

1-(phenylselanyl)propan-2-ol (4b). Yellow oil, 81% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$, TMS, $\delta \mathrm{ppm}$): 7.50-753 (m, 2H), 7.24-7.26 (m, 3H), $3.85(\mathrm{sex}, J 3.48 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J 4.0$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J 8.2$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J 6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $132.9,129.2,129.1,127.2,66.0,38.3,22.3 .{ }^{77} \mathrm{Se}$ NMR ($57 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeSeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}\right): 239.9$ HR-MS: Calculated value $[\mathrm{M}+1]^{+} 217.0053$; Found value [$[\mathrm{M}$ $+\mathrm{H}]^{+} 217.0062$.
1-(butylselanyl)propan-2-ol (4c). Yellow oil, 74% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $3.84(\mathrm{sex}, J 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J 3.9$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58(\mathrm{dt}$, $J 3.4$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{dd}, J 8.4 \mathrm{and} 12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{qt}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{sex}, J 7.45$
$\mathrm{Hz}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J 7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \square \mathrm{ppm}): 65.9,34.6,32.7,24.2,22.9,22.4,13.5$. HR-MS: Calculated value $[\mathrm{M}+1]^{+} 197.0366$; Found value $[\mathrm{M}+\mathrm{H}]^{+} 197.0372$.
1-(butyltellanyl)propan-2-ol (4d). Red oil, 58% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}): 3.62(\mathrm{sex}, J 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J 4.9$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J 7.1$ and 12.0 Hz , $1 \mathrm{H}), 2.37$ (dt, $J 3.8$ and $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{qt}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{sex}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J 7.35 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): 68.0, 35.0, $25.6,24.3,16.4,13.9,3.32$. HR-MS: Calculated value $[\mathrm{M}+23]^{+} 269.0263$; Found value $[\mathrm{M}+$ $\mathrm{Na}]^{+} 269.0262$.
1-((4-methoxyphenyl)selanyl)propan-2-ol (4e). Yellow oil, 73\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 7.47(\mathrm{~d}, J 8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.84(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J 3.9$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J 8.4$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.24 (d, J 6.1 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 159.4, 135.8, 118.6, $114.8,65.8,55.2,39.4,22.2 .{ }^{77} \mathrm{Se} \operatorname{NMR}\left(57 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeSeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}\right): 227.8$. CG-MS - m / z^{+}(relative intensity): 246 (88); 229 (30); 186 (100); 107 (28); 59 (17). HR-MS: Calculated value $[\mathrm{M}+1]^{+} 247.0159$; Found value $[\mathrm{M}+\mathrm{H}]^{+} 247.0102$.
1-((4-methoxyphenyl)tellanyl)propan-2-ol (4f). Yellow oil, 69% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 7.68(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J 4.5$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J 7.6$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.27 (d, J6.1 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 159.7; 140.9; 115.2; 99.9; $67.2 ; 55.0 ; 23.5 ; 21.7 .{ }^{125} \mathrm{Te} \operatorname{NMR}\left(94.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}\right): 350.3$. CGMS - m / z^{+}(relative intensity): 296 (94); 237 (48); 108 (100); 78 (15); 59 (11). HR-MS: Calculated value $[\mathrm{M}+1]^{+}$297.0056; Found value $[\mathrm{M}+\mathrm{H}]^{+} 297.0089$.
1-((4-fluorophenyl)tellanyl)propan-2-ol (4g). Yellow oil, 76\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $7.23(\mathrm{dd}, J 4.3 \mathrm{~Hz}$ and $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J 6.69 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.93$ $(\mathrm{m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J 4.6$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J 7.5$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.29$ $(\mathrm{d}, J 6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): 162 (d, $J_{\mathrm{C}-\mathrm{F}} 246.6 \mathrm{~Hz}$); 140.8 $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}} 7.5 \mathrm{~Hz}\right) ; 116.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}} 20.8 \mathrm{~Hz}\right) ; 104.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}} 3.7 \mathrm{~Hz}\right) ; 67.3 ; 23.7 ; 21.9 .{ }^{125} \mathrm{Te}$ NMR (94.7 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}$): 369.6 (d, $J_{\mathrm{Te}-\mathrm{F}} 9.5 \mathrm{~Hz}$). CG-MS - m / z^{+}(relative intensity): 283 (100); 242 (55); 95 (53); 59 (28). HR-MS: Calculated value [M + 1] ${ }^{+}$284.9856; Found value $[\mathrm{M}+\mathrm{H}]^{+} 284.9832$.
1-phenoxy-3-(phenyltellanyl)propan-2-ol (4h). Yellow oil, 82\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 7.72-7.75 (m, 2H), 7.22-7.27 (m, 3H); 7.14-7.19 (m, 2H); 6.91-6.96 $(\mathrm{m}, 1 \mathrm{H}) ; 6.82-6.85(\mathrm{~m}, 2 \mathrm{H}) ; 4.11-4.18(\mathrm{~m}, 1 \mathrm{H}) ; 4.02(\mathrm{dd}, J 7.2$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.96(\mathrm{dd}, J 9.0$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.16(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.78(\mathrm{br} \mathrm{d}, J 4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ ${ }^{\circ} \mathrm{C}$, TMS, $\left.\delta \square \mathrm{ppm}\right): 158.2 ; 138.3 ; 129.4 ; 129.2 ; 127.8 ; 121.1 ; 114.4 ; 111.4 ; 71.4 ; 70.0 ; 13.6 .{ }^{125} \mathrm{Te}$ NMR ($94.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}$): 389.3. CG-MS $-m / z$ (relative intensity): 356 (100); 207 (46); 133 (71); 107 (48); 91 (25); 77 (63). HR-MS: Calculated value [M + 1] ${ }^{+}$ 359.0213; Found value $[\mathrm{M}+\mathrm{H}]^{+} 359.0191$.

1-phenoxy-3-(phenylselanyl)propan-2-ol (4i). Yellow oil, 93\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\left.\delta \mathrm{ppm}\right): 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}) ; 7.21-7.28(\mathrm{~m}, 5 \mathrm{H}) ; 6.91-6.97(\mathrm{~m}, 1 \mathrm{H}) ; 6.83-6.86$ $(\mathrm{m}, 2 \mathrm{H}) ; 4.05-4.14(\mathrm{~m}, 1 \mathrm{H}) ; 4.03(\mathrm{dd}, J 4.1$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.99$ (dd, $J 5.8$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.21$ (dd, $J 5.6$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}$); 3.12 (dd, $J 6.8$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}$); 2.78 (br d, $J 4.4 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 158.2; 132.8; 129.4; 129.2; 129.1; 127.2; 121.1; 114.4; 70.3; 69.0; 31.7. ${ }^{77} \mathrm{Se}$ NMR ($94.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeSeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}$): 242.5. CG-MS m / z (relative intensity): 307 (96); 215 (100); 183 (28); 134 (59); 91 (30); 77 (42). HR-MS: Calculated value $[\mathrm{M}+1]^{+} 309.0316$; Found value $[\mathrm{M}+\mathrm{H}]^{+} 309.0351$.
1-phenyl-3-(phenyltellanyl)propan-2-ol (4j). Yellow oil, 77\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 7.65-7.68(\mathrm{~m}, 2 \mathrm{H}) ; 7.11-7.27(\mathrm{~m}, 8 \mathrm{H}) ; 3.92-3.97(\mathrm{~m}, 1 \mathrm{H}) ; 3.08$ (dd, $J 4.5$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.97$ (dd, J 7.4 and $12.1 \mathrm{~Hz}, 1 \mathrm{H}$); 2.86 (dd, J 5.4 and $13.5 \mathrm{~Hz}, 1 \mathrm{H}$); 2.78 (dd, $J 7.2$ and $13.5 \mathrm{~Hz}, 1 \mathrm{H}$); 2.37 (br d, $J 3.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ ppm): $138.1 ; 137.8 ; 129.2 ; 129.1 ; 128.4 ; 127.6 ; 126.4 ; 111.4 ; 72.2 ; 44.0 ; 18.4 .{ }^{125} \mathrm{Te}$ NMR (94.7 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{TeTeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}\right): 377.4$. CG-MS - m / z (relative intensity): 340 (55); 207 (43); 91 (100); 77 (25). HR-MS: Calculated value $[\mathrm{M}+\mathrm{H}]^{+} 343.0263$; Found value $\left[\mathrm{M}^{+}+1\right]$: 343.0211 .

1-phenyl-3-(phenylselanyl)propan-2-ol (4k). Yellow oil, 86\% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 7.42-7.46 (m, 2H); 7.12-7.27 (m, 8H); 3.86-3.94 (m, 1H); 3.07 (dd, $J 4.2$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.90(\mathrm{dd}, J 7.9$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.85(\mathrm{dd}, J 5.8$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.75$ (dd, J 6.9 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}$); 2.49 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): $137.7 ; 132.6 ; 129.4 ; 129.3 ; 129.0 ; 128.4 ; 127.0 ; 126.4 ; 71.0 ; 42.7 ; 35.6 .{ }^{77} \mathrm{Se}$ NMR (94.7 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeSeC}_{6} \mathrm{H}_{5}, \delta \mathrm{ppm}\right): 240.7$. CG-MS - m/z(relative intensity): 291 (31); 200 (61); 183 (74); 157 (56); 115 (95); 91 (100); 77 (18). HR-MS: Calculated value [$\mathrm{M}+1]^{+}$293.0366; Found value $[\mathrm{M}+\mathrm{H}]^{+} 293.0315$.
1-(phenyltellanyl)propan-2-amine (5a). Red oil, 76% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \square \mathrm{ppm}$): 7.74 (dd, $J 1.0$ and $11.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J 7.55 \mathrm{~Hz}, 2 \mathrm{H}), 3.21$ (sex, J $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J 6.0$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, J 6.7 and $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.26 (d, J $6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 138.4, 129.3, 127.8, 111.4, 48.2, 23.4, 19.6. IR $v\left(\mathrm{~cm}^{-1}\right): 3314 ; 3104 ; 2934 ; 2870 ; 1556 ; 1445 ; 1088 ; 698$. CG-MS $-\mathrm{m} / z^{+}$(relative intensity \%): 265 (1); 222 (16); 57 (13); 44 (100). HR-MS: Calculated value [M + 1] ${ }^{+}$266.0110; Found value $[\mathrm{M}+\mathrm{H}]^{+} 266.0118$.
1-(o-tolylselanyl)propan-2-amine (5b). Yellow oil, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 7.43(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{sex}, J 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J 4.7$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, J 8.2 and 12.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): 139.3, 131.7, 131.0, 129.9, 126.7, 126.4, 46.9, 37.9, 23.5, 22.4. IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 3351 ; 3058 ;$ 2964; 2868; 1590; 1466; 1036; 749. CG-MS - m/z (relative intensity \%): 229 (3); 186 (18); 91 (20); 44 (100). HR-MS: Calculated value [M + 1] ${ }^{+} 230.0369$; Found value [M + H] ${ }^{+} 230.0358$.
1-(phenylselanyl)propan-2-amine (5c). Yellow oil, 79% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 7.51-752 (m, 2H), 7.23-7.26 (m, 3H), $3.09(\mathrm{sex}, J 4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J 4.9$
and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J 7.8$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\left.\delta \mathrm{ppm}\right): 132.7,129.9,129.0,126.9,46.6,38.8,23.2$ IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3367$; 3049; 2941; 2870; 1604; 1420; 1012; 776. CG-MS - m / z^{+}(relative intensity \%): 215 (2); 172 (22); 57 (9); 44 (100). HR-MS: Calculated value $[\mathrm{M}+1]^{+} 216.0213$; Found value $[\mathrm{M}+\mathrm{H}]^{+} 216.0221$. 1-((4-methoxyphenyl)selanyl)propan-2-amine (5d). Yellow oil, 69\% yield. ${ }^{1}$ HNMR (300 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $7.48(\mathrm{~d}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J 8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (s, 3H), 3.02 (sex, $J 4.6 \mathrm{~Hz}, 1 \mathrm{H}) 2.93(\mathrm{dd}, J 4.5$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J 8.8$ and $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J 6.27$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 159.3, 135.6, 119.7, 114.7, 55.2, 46.5, 40.1, 23.2. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3351 ; 3282 ; 2961 ; 2836 ; 1590 ; 1491 ; 1348 ; 1029 ; 825 ; 519$. CG-MS $-m / z^{+}$(relative intensity \%): 245 (12); 202 (32); 187 (17); 58 (17); 44 (100). HR-MS: Calculated value $[\mathrm{M}+1]^{+} 246.0318$; Found value $[\mathrm{M}+\mathrm{H}]^{+} 246.0284$.
1-((4-methoxyphenyl)tellanyl)propan-2-amine (5e). Yellow oil, 58\% yield. ${ }^{1}$ H NMR (500 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $7.68(\mathrm{~d}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J 6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (sex, $J 6.2 \mathrm{~Hz}, 1 \mathrm{H}) 2.99(\mathrm{dd}, J 5.1$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J 7.2$ and $11.90 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 1.17 (d, J $6.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): 159.6, 140.8, 115.1, $100.3,55.0,47.5,24.2,22.2$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3354 ; 3275 ; 2943 ; 2835 ; 1597 ; 1456 ; 1332 ; 1029 ;$ 811; 533. CG-MS - m / z^{+}(relative intensity \%): 295 (5); 252 (44); 237 (11); 58 (10); 44 (100). HRMS: Calculated value $[\mathrm{M}+23]^{+} 318.0215$; Found value $[\mathrm{M}+\mathrm{Na}]^{+} 318.0180$.
1-((3-(trifluoromethyl)phenyl)selanyl)propan-2-amine (5f). Yellow oil, 72% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): 7.75 (s, 1H); 7.68 (d, J $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (d, J 7.8 Hz , $1 \mathrm{H}), 7.36(\mathrm{t}, J 7.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{sex}, J 4.9 \mathrm{~Hz}, 1 \mathrm{H}) 3.07(\mathrm{dd}, J 4.7$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J$ 7.6 and $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56 (br s, 2H), $1.18(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}): 135.5\left(J_{\mathrm{C}-\mathrm{F} 3} 1.2 \mathrm{~Hz}\right), 131.5,131.2\left(J_{\mathrm{C}-\mathrm{F} 3} 32.5 \mathrm{~Hz}\right), 129.2,128.8\left(J_{\mathrm{C}-\mathrm{F} 3} 3.7 \mathrm{~Hz}\right), 123.6$ $\left(J_{\mathrm{C}-\mathrm{F} 3} 271.3 \mathrm{~Hz}\right), 123.5\left(J_{\mathrm{C}-\mathrm{F} 3} 3.7 \mathrm{~Hz}\right) . \mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3352 ; 3284 ; 2966 ; 2872 ; 1579 ; 1328 ;$ 1166; 959; 795; 695. CG-MS - m/z (relative intensity \%): 283 (1); 240 (20); 57 (8); 44 (100). HRMS: Calculated value $[\mathrm{M}+1]^{+}$284.0087; Found value $[\mathrm{M}+\mathrm{H}]^{+} 284.0112$.
1-((3-(trifluoromethyl)phenyl)tellanyl)propan-2-amine (5g). Yellow oil, 65% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, ~ \mathrm{TMS}, \delta \mathrm{ppm}$): $7.96(\mathrm{~s}, 1 \mathrm{H}) ; 7.88(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.4(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29 (t, J $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12-3.18 (m, 2H), 2.96 (dd, J 5.1 and $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.43 (br s, 2H), 1.19 $(\mathrm{d}, J 6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}\right): 141.2,134.6\left(J_{\mathrm{C}-\mathrm{F} 3} 3.7 \mathrm{~Hz}\right)$, $131.0\left(J_{\mathrm{C}-\mathrm{F} 3} 31.2 \mathrm{~Hz}\right), 129.2,124.2\left(J_{\mathrm{C}-\mathrm{F3}} 3.7 \mathrm{~Hz}\right), 123.5\left(J_{\mathrm{C}-\mathrm{F} 3} 271.2 \mathrm{~Hz}\right), 112.7$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 3351; 3279; 2953; 2881; 1591; 1302; 1196; 949; 778; 667. CG-MS - $\mathrm{m} / \mathrm{z}^{+}$(relative intensity $\%$): 332 (1); 290 (25); 57 (16); 44 (100). HR-MS: Calculated value [M + 23] ${ }^{+} 355.9984$; Found value $[\mathrm{M}+\mathrm{Na}]^{+} 355.9923$.
1-((4-fluorophenyl)selanyl)propan-2-amine (5h). Yellow oil, 73\% yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, $\delta \mathrm{ppm}$): $7.50(\mathrm{dd}, J 8.7$ and $5.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.96(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{sex}, J$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J 12.0$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J 7.8$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $1.15(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta \mathrm{ppm}$): $162.7\left(J_{\mathrm{C}-\mathrm{F}} 981.5 \mathrm{~Hz}\right)$, $135.2\left(J_{\mathrm{C}-\mathrm{F}} 31.5 \mathrm{~Hz}\right), 124.2\left(J_{\mathrm{C}-\mathrm{F}} 13.7 \mathrm{~Hz}\right), 116.1\left(J_{\mathrm{C}-\mathrm{F}} 85.3 \mathrm{~Hz}\right), 46.5,39.8,23.2$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$): $3351 ; 3281 ; 2964 ; 2870 ; 1584 ; 1487 ; 1226 ; 1157 ; 826 ; 591$. CG-MS - m / z^{+}(relative intensity
\%): 233 (1); 190 (25); 109 (7); 44 (100). HR-MS: Calculated value $[M+23]^{+} 256.0119$; Found value $[\mathrm{M}+\mathrm{Na}]^{+} 256.0095$.

Acknowledgements

We thank the CNPq, CAPES, FAPERGS and FAPESP 2014/23362-8 project for financial support. We thank the Central Multiusuário - CEM/UFABC for NMR analyses. CNPq is also acknowledged for the fellowship for R.G.J., E.J.L. and G.P.

References

1. Devillanova, F. A. in Handbook of Chalcogen Chemistry, Ed. RSC Publishing, Cambridge, UK, 2007.
2. Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320-2354. https://doi.org/10.1021/cr050530j
3. Javier, L-F.; Marcos, F. P-B.; Antônio, A. S-P.; Augusto, C. G.; Bruno, A. S.; Princival, C.; Dos Santos, A. A. Dyes Pigments 2014, 110, 28-48. https://doi.org/10.1016/j.dyepig.2014.04.044
4. Wendler, E. P.; Dos Santos, A. A. Synlett 2009, 1034-1040.
5. Freudedahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409-8411. https://doi.org/10.1002/anie. 200903893
6. Cunha, R. L. O. R.; Gouvêa, I. E.; Feitosa, G. P. V.; Alves, M. F. M.; Brömme, D.; Comasseto, J. V.; Tersariol, I. L. S.; Juliano, L. Biol. Chem. 2009, 390, 1205-1212.
7. Perin, G.; Alves, D.; Jacob, R. G.; Barcellos, A. M.; Soares, L. K.; Lenardão, E. J. ChemistrySelect 2016, 2, 205-258. https://doi.org/10.1002/slct. 201500031
8. Monti, B.; Santi, C.; Bagnoli, L.; Marini, F.; Sancineto, L. Curr. Green Chem. 2016, 3, 68-75. https://doi.org/10.2174/2213346103666160127003716
9. Gusarova, N. K.; Chernysheva, N. A.; Yas'ko, S. V.; Trofimov, B. A. J. Sulfur Chem. 2015, 36, 526-534.
https://doi.org/10.1080/17415993.2015.1066375
10. Gusarova, N. K.; Chernysheva, N. A.; Yas’ko, S. V.; Klyba, L. V.; Trofimov, B. A. J. Sulfur Chem. 2016, 37, 488-500.
https://doi.org/10.1080/17415993.2016.1191635
11. Chernysheva, N. A.; Yas'ko, S. V.; Gusarova, N. K.; Trofimov, B. A. Russian J. Org. Chem. 2016, 52, 1511-1513.
https://doi.org/10.1134/S1070428016100237
12. Santi, C.; Santoro, S.; Testaferri, L.; Tiecco, M. Synlett 2008, 1471-1474. https://doi.org/10.1055/s-2008-1078408
13. Santi, C.; Santoro, S.; Battisteli, B.; Testaferri, L.; Tiecco, M. Eur. J. Org. Chem. 2008, 32, 5387-5390.
https://doi.org/10.1002/ejoc. 200800869
14. Salman, S. M.; Schwab, R. S.; Alberto, E. E.; Vargas, J.; Dornelles, L.; Rodrigues, O. E. D.; Braga, A. L. Synlett 2011, 69-72.
15. Salman, S. M.; Narayanaperumal, S.; Schwab, R. S.; Bender, C. R.; Dornelles, L.; Rodrigues, O. E. D. $R S C$ Adv. 2012, 2, 8478-8482. https://doi.org/10.1039/c2ra21488a
16. Nazari, M.; Movassagh, B. Tetrahedron Lett. 2009, 50, 438-441. https://doi.org/10.1016/j.tetlet.2008.11.036
17. Lenardão, E. J.; Silva, M. S.; Sachini, M.; Lara, R. G.; Jacob, R. G.; Perin, G. ARKIVOC 2009, xi, 221-227.
18. Perin, G.; Borges, E. L.; Alves, D. Tetrahedron Lett. 2012, 53, 2066-2069. https://doi.org/10.1016/j.tetlet.2012.02.028
19. Perin, G.; Borges, E. L.; Peglow, T. J.; Lenardão, E. J. Tetrahedron Lett. 2014, 55, 5652-5655. https://doi.org/10.1016/j.tetlet.2014.08.101
20. Perin, G.; Borges, E. L.; Rosa, P. C.; Carvalho, P. N.; Lenardão, E. J. Tetrahedron Lett. 2013, 54, 1718-1721.
https://doi.org/10.1016/j.tetlet.2013.01.071
21. Vargas, F.; Comasseto, J. V. J. Organomet. Chem. 2009, 694, 122-126. https://doi.org/10.1016/j.jorganchem.2008.09.025
22. Silva, M. S.; Dos Santos, A. A.; Comasseto, J. V. Tetrahedron Lett. 2009, 50, 6498-6501. https://doi.org/10.1016/j.tetlet.2009.09.023
