Archive for
Organic Chemistry

The Free Internet Journal for Organic Chemistry

Paper

An easy synthesis of diversely functionalized $\mathbf{2 H}$-chromenes and amido amines by an enol-Ugi reaction

Ana G. Neo,* Teresa G. Castellano, and Carlos F. Marcos*
Laboratory of Bioorganic Chemistry \& Membrane Biophysics, School of Veterinary Sciences, University of Extremadura, 10071 Cáceres, Spain
Email: cfernan@unex.es, aneo@unex.es

Dedicated to Prof. Oleg Rakitin on the occasion of his $65^{\text {th }}$ birthday

Received 07-01-2016
Accepted 08-16-2016
Published on line 09-05-2016

Abstract

The first synthesis of methyl 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate is described. This compound has been successfully used in a multicomponent enol-Ugi condensation with imines and isocyanides affording 4-aminoacyl-coumarin enamines in a highly atom-economic and convergent process. Furthermore, the postcondensation transformation of these adducts allows the straightforward synthesis of both unprotected amino amides and as yet unknown 2-hydroxychromenyl enamines.

Keywords: Multicomponent reactions, enols, benzopyrans, coumarins, natural products, combinatorial chemistry

Introduction

The 2 H -chromene structure is the core motif of a large diversity of natural and synthetic compounds possessing important biological activities. ${ }^{1,2}$ In addition, many $2 H$-chromenes have utility as photochromic materials ${ }^{3-6}$ and as intermediates in the synthesis of more complex polycyclic heterocycles. ${ }^{7-11}$ These important applications have stimulated the development of diverse synthetic approaches to 2 H -chromenes; however, new efficient strategies leading to novel substitution patterns are still required. With this aim, we have effectively used multicomponent reactions of isocyanides for the one-pot synthesis of several chromene scaffolds. ${ }^{12-17}$ In particular, we have synthesized biologically interesting 4-amino-2 H -chromenes through the novel enol-Ugi reaction ${ }^{18}$ of electron-deficient 4-hydroxycoumarins. ${ }^{19}$

We reasoned that the introduction of a strongly electron-withdrawing α-ketoester group into the 3position of 4-hydroxycoumarin would have the double effect of facilitating the enol-Ugi reaction of this enol and opening the possibility of performing post-condensation transformations leading to new chromene scaffolds.

Here we report the enol-Ugi reactions of methyl 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate to give the corresponding 4-aminoacyl-coumarins, and their further transformation into 4-amino-2-hydroxy-2Hchromenes (8). Although 2-hydroxy-2H-chromenes can be synthesized from salicylaldehydes and dimethyl acetylenedicarboxylate in particular conditions, ${ }^{20-23}$ there is only one report in which a simple aromatic amine substituent is introduced on position 4 , with loss of the double bond. ${ }^{24}$ Chromene-substituted amino amides are privileged structures, as combine the possibility of forming conformationally diverse peptides with the ability of the heterocycle to bind to biological targets. The direct introduction of complex aminoacyl substituents in a combinatorial way would provide a powerful strategy to modulate the biological or physical properties of these chromene derivatives.

Results and Discussion

It is known that 3-acyl-4-hydroxycoumarins can be prepared by the reaction of 4-hydroxycoumarin with different acylating agents. ${ }^{25}$ Basing on these precedents, we could readily synthesize the hitherto unknown 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate, in a 90% yield, by the acylation of 4-hydroxy-2H-chromen-2-one with methyl 2-chloro-2-oxoacetate, followed by a Fries rearrangement (Scheme 1).

Scheme 1. Synthesis of 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate.
We then performed the enol-Ugi reaction of 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate with $\mathrm{N}, 1$ diphenylmethanimine and cyclohexyl isocyanide in methanol, the usual solvent for this type of reaction. Unfortunately, although the formation of a main product was detected by tlc, only a complex mixture of products was obtained after the workup. We thus explored the use of other solvents (Table 1). Successfully,
when the reaction was performed in isopropanol at room temperature (Table 1, entry 7), the expected adduct 6a precipitated from the reaction medium and could be isolated by simple filtration in 64% yield (Scheme 2).

Table 1. Effect of the solvent in the enol-Ugi reaction of enol 3

Entry	Solvent	\% Yield
1	Methanol	Complex mixture
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	44%
3	Toluene	No reaction
4	Hexane	No reaction
5	$\mathrm{CH}_{3} \mathrm{CN}$	30%
7	Isopropanol	64%

Scheme 2. Enol-Ugi reaction with hydroxycoumarin 3.

In order to explore the scope of the reaction, enol $\mathbf{3}$ was reacted in isopropanol with different imines (4) and isocyanides (5). In all the cases a stable precipitate corresponding to the adduct $\mathbf{6 b}$-f is formed in moderate to good yields (Table 2).

4-Aminocoumarins 6a-f were always obtained as stable solids, which were characterized by the usual spectroscopic techniques. However tlc analysis showed that these adducts slowly decompose in solution. Thus, when a CDCl_{3} solution of $\mathbf{6 a}$ was measured by NMR at different times (Figure 1), a gradual decrease of the signal at $5.6 \mathrm{ppm}(\mathbf{A})$, corresponding to $\mathrm{H} \alpha$ to the amide group, was observed and a new peak at 4.7 ppm (B) simultaneously emerged. Variation of the aromatic and methoxide signals was also apparent. This instability of $\mathbf{6 a}$ in solution can be explained due to the highly electrophilic character of coumarin carbon 4, which is prone to the addition of nucleophiles. Thus, nucleophilic attack of a water molecule would cause breakage of the C4-N bond with release of aminoamide 7a (Scheme 3). Comparison of the NMR spectra of 6a and $\mathbf{7 a}$ allowed to unequivocally identify one of the products in which $\mathbf{6 a}$ is transformed in CDCl_{3} solution as $\mathbf{7 a}$ (Figure 1). Other adducts of 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate showed a similar behaviour. The instability of enol-Ugi adducts 6, explains that complex mixtures are obtained when their synthesis is attempted in solvents such as dichloromethane or methanol, and the better results obtained in isopropanol, in which these products are scarcely soluble.

Table 2. Enol-Ugi reaction with hydroxycoumarin 3

	 3		$\mathrm{R}^{2}{ }^{\wedge} \mathrm{N}^{-R^{1}}$ 4	$\mathrm{R}^{3} \mathrm{NC} \stackrel{\text { iPrOH }}{\stackrel{y}{2}}$ 5	
Entry	R^{1}	R^{2}	R^{3}	6 (\% Yield)	
1	Ph	Ph	$c_{6} \mathrm{H}_{11}$	6a (64)	
2	Ph	Ph	$t \mathrm{Bu}$	6b (39)	
3	Ph	$p \mathrm{MePh}$	$\mathrm{CC}_{6} \mathrm{H}_{11}$	6c (60)	
4	Ph	$p \mathrm{MePh}$	$\mathrm{CH}_{2} \mathrm{Ph}$	6d (87)	
5	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	$\mathrm{CC}_{6} \mathrm{H}_{11}$	6e (63)	
6	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	$t \mathrm{Bu}$	6 f (49)	
7	$3,4-\left(\mathrm{OCH}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3}$	Ph	$\mathrm{cC}_{6} \mathrm{H}_{11}$	$6 \mathrm{~g}(61)^{\text {a }}$	

${ }^{\text {a }}$ The reaction was performed in dichloromethane.

Figure 1. NMR spectra of $\mathbf{6 a}$ recently dissolved and after 15 days in solution, and comparison with spectrum of $7 a$.

This behaviour of enol-Ugi adducts (6) is in sharp contrast with the lack of reactivity of the products of the Ugi four-component condensation. In fact, although this classical reaction is a powerful strategy for the synthesis of α-amido amides, deacylation of Ugi adducts usually requires harsh conditions that lead to
mixtures of products. ${ }^{26}$ Aminoamides are interesting synthetic targets, since they possess useful therapeutic properties. ${ }^{13,27}$ Thus, development of simple straightforward and flexible syntheses of unprotected α-amino amides is still a challenging task. We believe that the apparently simple hydrolysis of enol-Ugi adducts 6 could provide a useful method for the synthesis of unprotected α-amino amides. With this idea, we treated adduct $\mathbf{6 c}$ with a slight excess of acetic acid in methanol. Under these conditions amino amide $\mathbf{7 c}$ is readily formed, and can be isolated in a 62% yield after 4 days of reaction. Surprisingly, the same product is formed in a comparable yield in methanol solution, with no need of adding acid (Scheme 3). Other enol-Ugi adducts (6) showed a similar behaviour, readily giving the corresponding amino amides (7) either in acid, basic or neutral media (results not shown).

Scheme 3. Solvolysis of enol-Ugi adduct 6c.

Importantly, when adduct $6 \mathbf{c}$ was treated with 1 equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in methanol, a new product, different from the fragmentation products previously obtained in acidic and neutral solutions, was formed. After chromatographic purification this compound was characterized as the dimethyl ester 8c (Table 3; entry $3)$.

Table 3. Addition of methanol to enol-Ugi adducts 6

Entry	R^{1}	R^{2}	R^{3}	$\mathbf{7}$ (\% Yield)	$\mathbf{8}$ (\% Yield)
1	Ph	Ph	$c \mathrm{C}_{6} \mathrm{H}_{11}$	$\mathbf{7 a}(8)$	$\mathbf{8 a}(40)$
2	Ph	Ph	$t \mathrm{Bu}$	7b (36)	$\mathbf{8 b}(38)$
3	Ph	$p \mathrm{MePh}$	$c \mathrm{C}_{6} \mathrm{H}_{11}$	7c (traces)	$\mathbf{8 c}(55)$

A plausible mechanism for this transformation is shown in Scheme 4. We hypothesize that the nucleophilic attack of a methanol molecule to coumarin C2 carbonyl would lead to the opening of the pyran ring, affording phenol intermediate 9 . Then an isomerisation of the double bond must take place, in order to
allow the addition of the phenol group onto the carbonyl of the oxoester. This is only possible when both phenol and oxoester groups are in a cis configuration.

Scheme 4. Proposed mechanism for the synthesis of 2-hydroxychromenes 8.

Interestingly, Maiti and co-workers reported the formation of 2-oxo-2-(2-oxo-2H-chromen-3yl)acetates by the reaction of relatively electron-rich salicylaldehydes with acetylenic diesters, while they obtain 2-hydroxy- 2 H -chromene-2,3-dicarboxylates when electron-deficient salicylaldehydes are used. ${ }^{21}$ These authors do no postulate the mechanism for these transformations, suggesting that the two types of products should be formed through separated mechanistic pathways. In the view of our results, it is conceivable that 2-oxo-2-(2-oxo- 2 H -chromen-3-yl)acetates are formed in all the cases, but the electrophilic coumarins obtained from electron-deficient salicylaldehydes further react with methanol byproduct to give the observed 2-hydroxy-2H-chromenes.

The reaction of 4-amino-chromones (6) with methanol seems to be general, as other adducts 6 also suffered addition of methanol to give the corresponding diesters (8), together with variable amounts of amino amides (7; Table 3).

Conclusions

In conclusion, methyl 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate has proved to be a suitable acidic component in the enol-Ugi multicomponent condensation with imines and isocyanides. The reaction takes place readily in isopropanol at room temperature, affording 4-coumarin enamines in a highly convergent manner. In contrast with other previously reported coumarin enamines, these adducts show a unique reactivity that permits their easy transformation in the corresponding 2-hydroxychromenil enamines by the addition of methanol in basic conditions. On the other hand, the labile bond between coumarin C4 and nitrogen permits the solvolysis of enamines 6 in mild neutral conditions. This makes the enol-Ugi reaction of methyl 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate a feasible method for the straightforward synthesis of unprotected α-amino amides.

Experimental Section

General. Melting points are uncorrected. IR spectra were recorded as KBr pellets. Proton and carbon-13 nuclear magnetic resonance (${ }^{1} \mathrm{H} N \mathrm{NR}$ or ${ }^{13} \mathrm{C} \mathrm{NMR}$) spectra were obtained on a 400 or 500 MHz spectrometer. The assignments of signals in ${ }^{13} \mathrm{C}$ NMR were made using DEPT. Mass spectra (MS) and High Resolution Mass

Spectra (HRMS) were recorded using Chemical Ionization (CI) with CH_{4} or ESI-qTOF. Liquid reagents were measured using positive-displacement micropipettes with disposable tips and pistons.

Synthesis of 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate. It was prepared according to the method described by Eisenhauer for the synthesis of 3-acyl-4-hydroxycoumarins. ${ }^{25}$
Methyl 2-chloro-2-oxoacetate (2) (5 mmol) was slowly added to a cooled (ice bath) solution of 4hydroxycoumarin (1) ($486 \mathrm{mg}, 3 \mathrm{mmol}$) in anhydrous pyridine (4 mL). A drop of piperidine was then added, and the resulting mixture was stirred 48 h at $37^{\circ} \mathrm{C}$ under nitrogen atmosphere. Then it was poured on icewater and acidified with $10 \% \mathrm{HCl}$ up to pH 2 . The resulting light brown precipitate was filtered under vacuum and washed with cold water to give enol 3 ($671 \mathrm{mg}, 90 \%$).
Obtained as a light brown solid. m.p.: $148-150{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3340,1755,1728,1609,1556,1491,1455,1272$, $1225,1090,999,772 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{dd}, \mathrm{J} 7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J} 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J} 7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.38 (d, J $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.30$ (C), 177.69 (C), 163.17 (C), 159.30 (C), 155.74 (C), 137.41 (CH), 125.69 (CH), 125.19 (CH), 117.72 (CH), 114.29 (C), 99.17 (C), $53.31\left(\mathrm{CH}_{3}\right)$; MS (qTOF) $m / z(\%) 249\left(M^{+}+1,100\right), 189(22)$; HRMS (qTOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{6}$: 249.0399. Found: 249.0399.

Synthesis of the Ugi adducts. The imine 4 (0.5 mmol) was suspended in 0.5 mL of $i \mathrm{PrOH}$ and 0.5 mmol of isocyanide 5 and 0.5 mmol of methyl 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoacetate $\mathbf{3}$ were successively added. After $48-96$ hours stirring at room temperature, a precipitate was formed, which was filtered and washed with $i-\operatorname{Pr}_{2} \mathrm{O}$ and hexane, yielding 6 as an almost pure solid.
Methyl 2-(4-((2-(cyclohexylamino)-2-oxo-1-phenylethyl)(phenyl)amino)-2-oxo-2H-chromen-3-yl)-2oxoacetate (6a). Obtained as a red solid (64\%); m.p.: $144-146{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3305,2932,2855,1757,1714$, $1654,1604,1555,1499,1373,1260,1313,1004,762 ;{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.66(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{t}, \mathrm{J} 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~m}, 3 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.71(\mathrm{~m}$, 1H), $1.96-1.01(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 184.17$ (C), 168.49 (C), 162.83 (C), 160.81 (C), 160.54 (C), 154.43 (C), 145.37 (C), 134.62 (CH), 133.25 (C), 130.09 (CH), 129.70 (CH), 129.29 (CH), 128.70 (CH), $128.58(\mathrm{CH}), 122.62(\mathrm{CH}), 121.69(\mathrm{C}), 119.67(\mathrm{C}), 117.75(\mathrm{CH}), 117.52(\mathrm{CH}), 114.07(\mathrm{CH}), 71.19(\mathrm{CH}), 53.42$ $\left(\mathrm{CH}_{3}\right), 48.81(\mathrm{CH}), 32.79\left(\mathrm{CH}_{2}\right), 32.54\left(\mathrm{CH}_{2}\right), 25.54\left(\mathrm{CH}_{2}\right), 24.99\left(\mathrm{CH}_{2}\right), 24.89\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}(\%) 539\left(\mathrm{M}^{+}+1,<\right.$ 5), 396 (33), 411 (49), 328 (18), 364 (100), 181 (43), 83 (83); HRMS (CI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$: 539.2182. Found: 539.2177.

Methyl 2-(4-((2-(tert-butylamino)-2-oxo-1-phenylethyl)(phenyl)amino)-2-oxo-2H-chromen-3-yl)-2oxoacetate (6b). Obtained as a red solid (39\%); m.p.: $138-140^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3557,2970,1762,1713,1669$, $1604,1556,1493,1454,1213,1009,760 ;{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.71-6.89(\mathrm{~m}, 15 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 184.05$ (C), 168.43 (C), 163.05 (C), 161.09 (C), 160.63 (C), 154.39 (C), 145.39 (C), 134.53 (CH), 133.49 (C), 130.09 (CH), 129.91 (CH), 129.66 (CH), 129.25 (CH), $128.65(\mathrm{CH}), 128.59(\mathrm{CH}), 124.97(\mathrm{CH}), 122.82(\mathrm{CH}), 119.73$ (C), $118.23(\mathrm{CH}), 117.50(\mathrm{CH}), 71.88(\mathrm{CH}), 53.39$ (CH_{3}), 51.88 (C), $28.52\left(\mathrm{CH}_{3}\right)$; MS (CI) m/z (\%) $513\left(\mathrm{M}^{+}+1,<5\right), 364$ (16), 189 (49), 162 (67), 57 (100).
Methyl 2-(4-((2-(cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl)(phenyl)amino)-2-oxo-2H-chromen-3-yl)-2oxoacetate (6c). Obtained as a red solid (60\%); m.p.: 152-154 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3377,2931,2855,1728,1692,1667$, 1603, 1552, 1366, 1309, 1213, 1010, 755 ; ${ }^{1} \mathrm{H}$ RMN ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.64(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.92-0.97(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 184.11$ (C), 168.70 (C), 162.85 (C), 160.91 (C), 160.60 (C), 154.45 (C), 145.49 (C), 139.21 (C), 134.56 (CH), 130.18 (C), 129.99 (CH), 129.69 (CH), 129.30 (CH), 128.63 (CH), 125.03 (CH), 122.49 (CH), 119.77 (C), 117.63 (CH), 117.52
$(\mathrm{CH}), 70.99(\mathrm{CH}), 53.38\left(\mathrm{CH}_{3}\right), 48.78(\mathrm{CH}), 32.81\left(\mathrm{CH}_{2}\right), 32.56\left(\mathrm{CH}_{2}\right), 27.12\left(\mathrm{CH}_{2}\right), 25.00\left(\mathrm{CH}_{2}\right), 24.91\left(\mathrm{CH}_{2}\right), 21.27$ $\left(\mathrm{CH}_{3}\right)$; MS (CI) m / z (\%) 553 ($\mathrm{M}^{+.}+1,<5$), 378 (12), 189 (19), 83 (100); HRMS (qTOF) Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$: 553.2339. Found: 553.2344 .

Methyl 2-(4-((2-(benzylamino)-2-oxo-1-(p-tolyl)ethyl)(phenyl)amino)-2-oxo-2H-chromen-3-yl)-2-oxoacetate (6d). Obtained as a red solid (87\%); m.p.: 119-121 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3296,3062,3024,2945,2926,1757,1717$, $1662,1604,1555,1499,1376,1259,1003,756,697 ;{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.78(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, \mathrm{~J} 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J} 9.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J} 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (d, J $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.88(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (s, 3H); ${ }^{13} \mathrm{C}$ RMN ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 184.13$ (C), 169.97 (C), 162.70 (C), 160.98 (C), 160.60 (C), 154.42 (C), 145.41 (C), 139.37 (C), 138.02 (C), 134.62 (CH), 130.05 (CH), 129.76 (CH), 129.69 (C), 129.33 (CH), 128.73 $(\mathrm{CH}), 128.69(\mathrm{CH}), 127.81(\mathrm{CH}), 127.47(\mathrm{CH}), 125.07(\mathrm{CH}), 122.60(\mathrm{CH}), 119.85(\mathrm{C}), 117.89(\mathrm{CH}), 117.48(\mathrm{CH})$, $70.77(\mathrm{CH}), 53.35\left(\mathrm{CH}_{3}\right), 43.82\left(\mathrm{CH}_{2}\right), 21.28\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}(\%) 576\left(\mathrm{M}^{+}+\mathrm{CH}_{4},<5\right), 561\left(\mathrm{M}^{+}+1,<5\right), 501(12)$, 433 (100), 378 (11), 194 (77).; HRMS (qTOF) Calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$: 561.2026. Found: 561.2021.
Methyl 2-(4-(benzyl(2-(cyclohexylamino)-2-oxo-1-phenylethyl)amino)-2-oxo-2H-chromen-3-yl)-2-oxoacetate (6e). Obtained as a yellow solid (63\%); m.p.: 160-161 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3382,2927,2852,1746,1690,1594,1542$, 1407, 1298, 1269, 1214, 1073, 1042, 761; ${ }^{1} \mathrm{H}$ RMN ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.98$ (d, J $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55(\mathrm{t}, \mathrm{J}$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.17$ (m, 10H), 7.09 (d, J $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J 14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J} 14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.03(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 184.57$ (C), 168.15 (C), 162.96 (C), 162.70 (C), 161.70 (C), 154.14 (C), 135.19 (C), 134.93 (C), $134.05(\mathrm{CH}), 129.21(\mathrm{CH}), 129.18(\mathrm{CH}), 129.03(\mathrm{CH}), 128.80(\mathrm{CH}), 128.76(\mathrm{CH}), 128.50(\mathrm{CH}), 124.50$ $(\mathrm{CH}), 119.33(\mathrm{C}), 117.88(\mathrm{CH}), 111.55(\mathrm{C}), 71.48(\mathrm{CH}), 58.86\left(\mathrm{CH}_{2}\right), 53.07\left(\mathrm{CH}_{3}\right), 49.05(\mathrm{CH}), 32.79\left(\mathrm{CH}_{2}\right), 32.70$ $\left(\mathrm{CH}_{2}\right), 27.13\left(\mathrm{CH}_{2}\right), 25.55\left(\mathrm{CH}_{2}\right), 25.00\left(\mathrm{CH}_{2}\right), 24.90\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}(\%) 553\left(\mathrm{M}^{+}+1,<5\right), 321$ (9), 196 (26), 173 (79), 59 (100); HRMS (CI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$: 553.2339. Found: 553.2338.
Methyl 2-(4-(benzyl(2-(tert-butylamino)-2-oxo-1-phenylethyl)amino)-2-oxo-2H-chromen-3-yl)-2-oxoacetate (6f). Obtained as a yellow solid (49\%); m.p.: $165-167^{\circ} \mathrm{C}$; IR (cm^{-1}) 3382, 2972, 1747, 1696, 1607, 1535, 1455, $1406,1266,1214,1074,760 ;{ }^{1} \mathrm{H}$ RMN ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.02(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.20(\mathrm{~m}, 12 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J} 14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.28$ (s, 9H); ${ }^{13} \mathrm{C}$ RMN ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.92$ (C), 167.98 (C), 162.88 (C), 162.78 (C), 161.52 (C), 153.87 (C), 135.04 (C), 134.59 (C), 133.78 (CH), 128.93 (CH), 128.86 (CH), 128.77 (CH), $128.58(\mathrm{CH}), 128.41(\mathrm{CH}), 128.25(\mathrm{CH}), 124.28(\mathrm{CH}), 119.11(\mathrm{C}), 117.73(\mathrm{CH}), 110.45(\mathrm{C}), 71.81(\mathrm{CH}), 58.53$ $\left(\mathrm{CH}_{2}\right), 52.80\left(\mathrm{CH}_{3}\right), 51.91(\mathrm{C}), 28.39\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}(\%) 527\left(\mathrm{M}^{+}+1,13\right), 426(14), 367(37), 321(14), 173$ (33), 162 (80), 91 (100); HRMS (CI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$: 527.2182. Found: 527.2172.

Methyl 2-(4-((benzo[d][1,3]dioxol-5-ylmethyl)(2-(cyclohexylamino)-2-oxo-1-phenylethyl)amino)-2-oxo-2H-chromen-3-yl)-2-oxoacetate (6 g). Obtained as a yellow solid (61%); m.p.: $166-168{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3445,3370$, 2923, 2856, 1745, 1702, 1680, 1607, 1408, 1298, 1239, 1040, 757; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, J 7.9 $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 7 \mathrm{H}), 6.67(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J 7.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J 6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J 14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J 14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.63(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.04(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.37$ (C), 168.14 (C), 161.58 (C), 154.08 (C), 148.02 (C), 147.77 (C), 134.91 (C), $133.97(\mathrm{CH}), 129.12(\mathrm{CH}), 128.98(\mathrm{CH}), 128.95(\mathrm{CH}), 128.78(\mathrm{C}), 128.61(\mathrm{CH}), 124.49(\mathrm{CH}), 123.00$ $(\mathrm{CH}), 119.21(\mathrm{C}), 117.82(\mathrm{CH}), 111.61(\mathrm{C}), 109.32(\mathrm{CH}), 108.23(\mathrm{CH}), 101.28\left(\mathrm{CH}_{2}\right), 71.37(\mathrm{CH}), 58.25\left(\mathrm{CH}_{2}\right), 52.98$ $\left(\mathrm{CH}_{3}\right), 48.99(\mathrm{CH}), 32.75\left(\mathrm{CH}_{2}\right), 32.66\left(\mathrm{CH}_{2}\right), 25.47\left(\mathrm{CH}_{2}\right), 24.93\left(\mathrm{CH}_{2}\right), 24.83\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{qTOF}) \mathrm{m} / \mathrm{z}(\%) 597\left(\mathrm{M}^{+}\right.$. $+1,100$), 566 (6), 463 (20), 282 (22); HRMS (qTOF) Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8}$: 597.2237. Found: 597.2225.

Addition of methanol to the enol-Ugi adducts. Enol-Ugi adduct 6 (0.1 mmol) was suspended in a solution of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. After 1-5 hours stirring at room temperature, the reaction was diluted with ethyl acetate (10 mL), washed with $10 \% \mathrm{HCl}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by flash column chromatography (hexane to hexane-EtOAc 7:3) to afford the corresponding aducts $\mathbf{8 a}-\mathbf{c}$ and amido amides $\mathbf{7 a} \mathbf{- c}$.

Dimethyl 4-\{[2-(cyclohexylamino)-2-oxo-1-phenylethyl](phenyl)amino\}-2-hydroxy-2H-chromene-2,3-dicarboxylate (8a). Obtained as a yellow solid (49\%); m.p.: 107-109 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 33001,2928,2853,1768,1714$, 1655, 1599, 1542, 1498, 1454, 1254, 1144, 758, 698; ${ }^{1} \mathrm{H} \mathrm{RMN} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.03(\mathrm{~d}, J 6.1 \mathrm{~Hz}$, 0.6 H), 8.29 (bs, 0.14 H$), 7.36-6.67(\mathrm{~m}, 14 \mathrm{H}), 5.62$ (bs, 0.2 H$), 5.23$ (s, 0.6 H$), 4.82$ (bs, 0.6 H$), 3.91$ (s, 3H), $4.00-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.46-0.77(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CRMN}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 170.03$ (C), 169.40 (C), 163.40 (C), 152.13 (C), 147.89 (C), 146.20 (C), 133.81 (C), 132.24 (CH), 130.19 (CH), 129.51 (CH), 129.21 (CH), 128.32 (CH), $127.55(\mathrm{CH}), 126.97(\mathrm{CH}), 122.28(\mathrm{CH}), 120.11(\mathrm{CH}), 119.98(\mathrm{C}), 117.31(\mathrm{CH}), 117.12$ $(\mathrm{CH}), 114.06(\mathrm{CH}), 94.81(\mathrm{C}), 77.23(\mathrm{CH}), 71.20(\mathrm{CH}), 53.96\left(\mathrm{CH}_{3}\right), 53.88\left(\mathrm{CH}_{3}\right), 52.11\left(\mathrm{CH}_{3}\right), 51.93\left(\mathrm{CH}_{3}\right), 48.14$ $(\mathrm{CH}), 32.58\left(\mathrm{CH}_{2}\right), 32.33\left(\mathrm{CH}_{2}\right), 25.57\left(\mathrm{CH}_{2}\right), 25.50\left(\mathrm{CH}_{2}\right), 24.90\left(\mathrm{CH}_{2}\right), 24.72\left(\mathrm{CH}_{2}\right)$; MS (qTOF) $\mathrm{m} / \mathrm{z}(\%) 571\left(\mathrm{M}^{+}\right.$ $+1,100$), 553 (74), 282 (7); HRMS (qTOF) Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}$: 571.2444. Found: 571.2465.
Dimethyl 4-((2-(tert-butylamino)-2-oxo-1-phenylethyl)(phenyl)amino)-2-hydroxy-2H-chromene-2,3dicarboxylate (8b). Obtained as a yellow solid (38\%); m.p.: $165-166^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3450,2920,1765,1718,1663$, $1498,1253,1143,1118,761,699 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.88$ (bs, 0.6 H), 8.19 (bs, 0.1 H$), 7.35-6.69(\mathrm{~m}$, $14 \mathrm{H}), 5.50(\mathrm{bs}, 0.2 \mathrm{H}), 5.11(\mathrm{~s}, 0.7 \mathrm{H}), 4.80(\mathrm{bs}, 0.5 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.18$ (C), 169.40 (C), 163.23 (C), 152.10 (C), 147.83 (C), 146.29 (C), 133.98 (C), 132.19 $(\mathrm{CH}), 130.21(\mathrm{CH}), 129.47(\mathrm{CH}), 128.27(\mathrm{CH}), 127.54(\mathrm{CH}), 126.98(\mathrm{CH}), 122.30(\mathrm{CH}), 120.08(\mathrm{C}), 119.98(\mathrm{C})$, $117.29(\mathrm{CH}), 117.12(\mathrm{CH}), 114.13(\mathrm{CH}), 94.78(\mathrm{C}), 77.23(\mathrm{CH}), 72.01(\mathrm{CH}), 53.97\left(\mathrm{CH}_{3}\right), 52.00\left(\mathrm{CH}_{3}\right), 51.05(\mathrm{C})$, $28.29\left(\mathrm{CH}_{3}\right)$; MS (qTOF) m / z (\%) $545\left(\mathrm{M}^{+}+1,100\right)$, 527 (70), 356 (5); HRMS (qTOF) Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}$: 545.2288. Found: 545.2298.

Dimethyl 4-((2-(cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl)(phenyl)amino)-2-hydroxy-2H-chromene-2,3dicarboxylate (8c). Obtained as a yellow solid (55\%); m.p.: $114-116^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3431,2929,1756,1715,1655$, 1604, 1499, 1454, 1254, 1143, 1107, 753; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99$ (d, J $7.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 8.26 (bs, 0.22 H), $7.38-6.62(\mathrm{~m}, 13 \mathrm{H}), 5.58(\mathrm{bs}, 0.3 \mathrm{H}), 5.20(\mathrm{~s}, 0.6 \mathrm{H}), 4.84(\mathrm{bs}, .5 \mathrm{H}), 4.06-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 2 \mathrm{H}), 1.98-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.42-0.87(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.21(\mathrm{C})$, 169.47 (C), 163.40 (C), 152.13 (C), 147.98 (C), 146.25 (C), 137.88 (C), 132.19 (CH), 129.47 (CH), 129.19 (CH), $128.31(\mathrm{CH}), 126.99(\mathrm{CH}), 122.23(\mathrm{CH}), 120.03(\mathrm{CH}), 117.32(\mathrm{CH}), 117.06(\mathrm{CH}), 114.09(\mathrm{CH}), 94.80(\mathrm{C}), 77.23$ $(\mathrm{CH}), 70.85(\mathrm{CH}), 53.88\left(\mathrm{CH}_{3}\right), 52.09\left(\mathrm{CH}_{3}\right), 51.95\left(\mathrm{CH}_{3}\right), 48.08(\mathrm{CH}), 47.95(\mathrm{CH}), 32.84\left(\mathrm{CH}_{2}\right), 32.58\left(\mathrm{CH}_{2}\right), 32.33$ $\left(\mathrm{CH}_{2}\right), 25.57\left(\mathrm{CH}_{2}\right), 25.50\left(\mathrm{CH}_{2}\right), 24.90\left(\mathrm{CH}_{2}\right), 24.71\left(\mathrm{CH}_{2}\right), 21.19\left(\mathrm{CH}_{3}\right), 21.16\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{qTOF}) \mathrm{m} / \mathrm{z}(\%) 585\left(\mathrm{M}^{+}\right.$ $+1,100$), 567 (65), 398 (34), 282 (32); HRMS (qTOF) Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7}$: 585.2601. Found: 585.2629.
N-cyclohexyl-2-phenyl-2-(phenylamino)acetamide (7a). Obtained as a white solid (10\%); m.p.: 174-176 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3404,3321,2930,2852,1650,1603,1542,1504,1450,1315,748,693 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ (d, J $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{t}, J 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J} 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{bs}, 1 \mathrm{H}), 3.89-3.78(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.42-$ $1.00(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta 170.02(\mathrm{C}), 146.78$ (C), $139.10(\mathrm{C}), 129.29(\mathrm{CH}), 129.19(\mathrm{CH}), 128.51$ $(\mathrm{CH}), 127.39,119.11(\mathrm{CH}), 113.90(\mathrm{CH}), 64.40(\mathrm{CH}), 48.12(\mathrm{CH}), 33.00\left(\mathrm{CH}_{2}\right), 32.75\left(\mathrm{CH}_{2}\right), 25.44\left(\mathrm{CH}_{2}\right), 24.76$ $\left(\mathrm{CH}_{2}\right), 24.63\left(\mathrm{CH}_{2}\right)$; HRMS (qTOF) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 309.1967$. Found: 309.1967.
\mathbf{N}-(tert-butyl)-2-phenyl-2-(phenylamino)acetamide (7b). Obtained as a white solid (36\%); m.p.: $114-118{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3409,3290,2963,2920,2847,1721,1646,1602,1558,1508,1225,745,693 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.47-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J} 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.66$ (dd, J 8.6, 1.0 Hz, 2H), $6.54(\mathrm{bs}, 1 \mathrm{H})$, $4.63(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{bs}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.25(\mathrm{C}), 146.81(\mathrm{C}), 139.30(\mathrm{C}), 129.29$ (CH), 129.22 (CH), 128.46 (CH), 127.33 (CH), 119.09 (CH), 113.91 (CH), 64.91 (CH), $51.20(\mathrm{C}), 28.56\left(\mathrm{CH}_{3}\right)$; MS (qTOF) $m / z(\%) 283(M+.+1,100), 182$ (<5); HRMS (qtoF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 283.1810$. Found: 283.1810.
\boldsymbol{N}-cyclohexyl-2-(phenylamino)-2-(p-tolyl)acetamide (7c). Obtained as a white solid (64\%); m.p.: 101-103 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3387,2927,2853,1647,4604,1505,1259,1178,748,691 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}$, 2 H), $7.23-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{bs}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{bs}, 1 \mathrm{H})$, $3.87-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.00(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta 170.23$ (C), 146.85 (C), $138.30(\mathrm{C}), 136.10(\mathrm{C}), 129.84(\mathrm{CH}), 129.27(\mathrm{CH}), 127.26(\mathrm{CH}), 119.04(\mathrm{CH}), 113.88(\mathrm{CH}), 64.12$ $(\mathrm{CH}), 48.08(\mathrm{CH}), 33.02\left(\mathrm{CH}_{2}\right), 32.77\left(\mathrm{CH}_{2}\right), 25.45\left(\mathrm{CH}_{2}\right), 24.79\left(\mathrm{CH}_{2}\right), 24.66\left(\mathrm{CH}_{2}\right), 21.16\left(\mathrm{CH}_{3}\right)$; HRMS (qTOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}$: 323.2123. Found: 323.2118.

Acknowledgements

We thank the financial support from Junta de Extremadura and FEDER.

References

1. Majumdar, N.; Paul, N. D.; Mandal, S.; de Bruin, B.; Wulff, W. D. ACS Catal. 2015, 5, 2329. http://dx.doi.org/10.1021/acscatal.5b00026
2. Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476. http://dx.doi.org/10.1021/cr500075s
3. Ranjith, C.; Vijayan, K. K.; Praveen, V. K.; Kumar, N. S.Spectrochim. Acta. Part A 2010, 75, 1610. http://dx.doi.org/10.1016/j.saa.2010.02.027
4. Sousa, C. M.; Pina, J.; Seixas de Melo, J.; Berthet, J.; Delbaere, S.; Coelho, P. J. Eur. J. Org. Chem. 2012, 2012, 1768. http://dx.doi.org/10.1002/ejoc. 201101702
5. Ko, K. C.; Wu, J.-S.; Kim, H. J.; Kwon, P. S.; Kim, J. W.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. Chem. Commun. 2011, 47, 3165.
http://dx.doi.org/10.1039/COCC05421F
6. Li, L.; Dang, Y.-Q.; Li, H.-W.; Wang, B.; Wu, Y. Tetrahedron Lett. 2010, 51, 618. http://dx.doi.org/10.1016/j.tetlet.2009.11.070
7. Peng, S.; Wang, L.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Adv. Synth. Catal. 2013, 355, 2550. http://dx.doi.org/10.1002/adsc.201300512
8. Lin, C.-H.; Yang, D.-Y. Org. Lett. 2013, 15, 2802.
http://dx.doi.org/10.1021/ol401138q
9. Iaroshenko, V. O.; Erben, F.; Mkrtchyan, S.; Hakobyan, A.; Vilches-Herrera, M.; Dudkin, S.; Bunescu, A.; Villinger, A.; Sosnovskikh, V. Y.; Langer, P. Tetrahedron 2011, 67, 7946.
http://dx.doi.org/10.1016/j.tet.2011.08.030
10. Liao, Y.-X.; Kuo, P.-Y.; Yang, D.-Y. Tetrahedron Lett. 2003, 44, 1599. http://dx.doi.org/10.1016/S0040-4039(03)00012-1
11. Trkovnik, M.; Kalaj, V.; Kitan, D. Org. Prep. Proced. Int. 1987, 19, 450.
http://dx.doi.org/10.1080/00304948709356209
12. Bornadiego, A.; Díaz, J.; Marcos, C. F. J. Org. Chem. 2015, 80, 6165.
http://dx.doi.org/10.1021/acs.joc.5b00658
13. Neo, A. G.; López-García, L.; Marcos, C. F. RSC Advances 2014, 4, 40044.
http://dx.doi.org/10.1039/c4ra05719h
14. Bornadiego, A.; Diaz, J.; Marcos, C. F. Adv. Synth. Catal. 2014, 356, 718.
http://dx.doi.org/10.1002/adsc. 201300750
15. Neo, A. G.; Garrido, L.; Díaz, J.; Marcaccini, S.; Marcos, C. F. Synlett 2012, 23, 2227. http://dx.doi.org/10.1055/s-0032-1317032
16. Neo, A. G.; Díaz, J.; Marcaccini, S.; Marcos, C. F. Org. Biomol. Chem. 2012, 10, 3406. http://dx.doi.org/10.1039/C2OB07011A
17. Marcaccini, S.; Neo, A. G.; Marcos, C. F. J. Org. Chem. 2009, 74, 6888.
http://dx.doi.org/10.1021/jo900992w
18. Castellano, T. G.; Neo, A. G.; Marcaccini, S.; Marcos, C. F. Org. Lett. 2012, 14, 6218. http://dx.doi.org/10.1021/ol302976g
19. Neo, A. G.; Castellano, T. G.; Marcos, C. F. Synthesis 2015, 47, 2431. http://dx.doi.org/10.1055/s-0034-1380436
20. Valizadeh, H.; Dinparast, L.; Noorshargh, S.; Heravi, M. M. Compt. Rend., Chim. 2016, 19, 394. http://dx.doi.org/10.1016/j.crci.2015.11.010
21. Maiti, G.; Karmakar, R.; Kayal, U.; Bhattacharya, R. N. Tetrahedron 2012, 68, 8817. http://dx.doi.org/10.1016/j.tet.2012.07.092
22. Noshiranzadeh, N.; Ramazani, A. Synth. Commun. 2007, 37, 3181. http://dx.doi.org/10.1080/00397910701545486
23. Guo, Y.-W.; Shi, Y.-L.; Li, H.-B.; Shi, M. Tetrahedron 2006, 62, 5875. http://dx.doi.org/10.1016/j.tet.2006.04.011
24. Yang, J.; Tan, J.-N.; Gu, Y. Green Chem. 2012, 14, 3304.
http://dx.doi.org/10.1039/c2gc36083g
25. Eisenhauer, H. R.; Link, K. P. J. Am. Chem. Soc. 1953, 75, 2044.
http://dx.doi.org/10.1021/ia01105a006
26. Neo, A. G.; Bornadiego, A.; Díaz, J.; Marcaccini, S.; Marcos, C. F. Org. Biomol. Chem. 2013, 11, 6546; and references cited therein.
http://dx.doi.org/10.1039/c3ob41411f
27. Zhang, M.; Imm, S.; Bähn, S.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 11197. http://dx.doi.org/10.1002/anie.201104309
