Enantioselective synthesis of the side-chain acid of homoharringtonine and harringtonine from the same γ-butyrolactone intermediate

Moran Sun, Yinchao Li, Xiufang Shi, Changling Niu, and Hua Yang*
School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, China
E-mail: vanghua@zzu.edu.cn

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.388

Abstract

A versatile intermediate γ-butyrolactone 7 was prepared from L-alanine with 96% ee value, which could be used as a common intermediate for the preparation of the side-chain acid of homoharringtonine and harringtonine in 26.6% and 27% overall yield respectively. The key steps involved [2, 3]-Meisenheimer rearrangement, allylic bromination, and Barbier reaction. Some interesting experimental phenomena and effective solutions to these issues are reported herein.

Keywords: homoharringtonine, harringtonine, [2,3]-Meisenheimer rearrangement, allylic bromination, γ-butyrolactone

Introduction

Homoharringtonine (HHT) and its homologue harringtonine (HT) have potent antileukemic activities. In particular, HHT has reached phase III clinical trials in the United States against chronic myelogenous leukemia, while in China, it is used as a front-line therapy for acute myeloid leukemia and shows activity against the chloroquinine-resistant Plasmodium falciparum malaria parasite in vitro. ${ }^{1}$ Because the inactive cephalotaxine (Figure 1) can compose as much as ca. 50% of total alkaloid extracts, the most practical path for obtaining large quantities of HHT and HT at the present time is through semi-synthesis by coupling the carboxyl group of the respective ester side chain to the C-3 hydroxyl group of cephalotaxine. Several groups have reported enantioselective synthesis of the side-chains of HHT and HT. ${ }^{1-8}$ We have also developed an efficient strategy to construct chiral tertiary alcohol via [2,3]-Meisenheimer rearrangement. Through this strategy, the (\boldsymbol{R})-20, side-chain acid of homoharringtonine, and (\boldsymbol{R})30, side-chain acid of harringtonine, were enantioselectively prepared from L-aspartic acid and L-threonine respectively. ${ }^{9}$ Obviously, the linear and parallel synthesis of (\boldsymbol{R})-20 and (\boldsymbol{R})-30 require two different α-amino acids as starting materials and two sets of different reagents
(Figure 1). Considering the economic cost and manpower cost in future laboratory preparation and possible industrial-scale production, we explore a divergent synthesis for (\boldsymbol{R})-20 and (\boldsymbol{R})-30 from the same intermediate γ-butyrolactone 7.

Cephalotaxine

$\mathrm{n}=1$ Harringtonine (HT)
$\mathrm{n}=2$ Homoharringtonine (HHT)

Results and Discussion

The first step towards key intermediate 7 (Scheme 1) commenced with the reduction of N-Boc- L alanine methyl ester $\mathbf{1}$, which was derived from L-alanine. ${ }^{10} \mathrm{~N}$-Boc- L-ala-OH 2 was delivered under $\mathrm{NaBH}_{4}-\mathrm{CaCl}_{2}$-THF-EtOH condition ${ }^{11}$ in excellent yield and optical purity $\left(96 \%,[\alpha]^{20}{ }_{\mathrm{D}}-\right.$ 11.4 (c $0.99, \mathrm{CHCl}_{3}$); lit. ${ }^{12}[\alpha]^{20} \mathrm{D}-11.6$ (c $\left.0.6, \mathrm{CHCl}_{3}\right)$). 2 were originally subjected to Swern condition ${ }^{13}$ and N -Boc-alaninal $\mathbf{3}$ was readily obtained as white solid. For the obtained aldehyde 3 an $[\alpha]^{20}{ }_{\mathrm{D}}=-4.3$ (c $0.8, \mathrm{MeOH}$) was measured, which is lower than that record of literature $[\alpha]^{20}{ }_{\mathrm{D}}=35.2(\mathrm{c} 1, \mathrm{MeOH}){ }^{14}$. This result revealed that serious racemization had occurred during Swern oxidation or subsequent flash column chromatography. To avoid the undesired decomposition and racemization of aldehyde 3, the obtained crude product were used immediately to couple with 1-butyrolactonylidene triphenylphosphorane in dry dichloromethane, delivering (E)-olefin 4 as the only isolated product (95% yield for the two-step sequence). Unexpectedly, (E)-olefin 4 had only 34% ee. After several trials, we observed that careful manipulation under rigorous conditions had a crucial influence on the $e e$ value, which fluctuate between 30% and $80 \% .{ }^{15}$ Furthermore, it was verified by us that the corresponding aldehyde of Boc- L-Leu-OH and Boc- $L-\mathrm{Val-OH}$ don't racemize under the same Swern conditions. Accordingly, we have to sough to Parikh-Doering oxidization, which was reported to oxidize N -Boc-L-ala-OH 2 to $\mathbf{3}$ with no racemization ${ }^{16}$. Eventually, aldehyde $\mathbf{3}$ was acquired with 99% ee
and applied into Wittig reaction without purification by column chromatography. It is worth of note that (E)-olefin 4 was obtained as white solid under Parikh-Doering conditions while under Swern conditions as colorless liquid.

Removal of the Boc protecting group followed by doubly benzylated ${ }^{9}$ in $\mathrm{CH}_{3} \mathrm{CN}$ afforded (E)-olefin $\mathbf{5}^{17}(99 \% \mathrm{ee})$ in 85% yield over two steps. Treatment of $\mathbf{5}$ with m-CPBA at $5{ }^{\circ} \mathrm{C}$ immediately provide unstable [2,3]-Meisenheimer rearrangement product 5a. ${ }^{9}$ Cleavage of N-O bond appear to be a challenge due to the instability of $\mathbf{5 a}$. Common used methods such as Al $(\mathrm{Hg}),{ }^{18} \mathrm{Na}$ (liq. $\left.\mathrm{NH}_{3}\right),{ }^{19} \mathrm{CuSO}_{4}{ }^{20}$, TMSI^{21} and $\mathrm{Zn}(\mathrm{HOAc})^{22}$ proved fruitlessness at room temperature, and Zn (aq. $\mathrm{HCl}-\mathrm{MeOH})^{23}$ provided $3 \%-5 \%$ racemized 6. The troublesome racemization was finally circumvented by addition of HOAc to Zn (aq. $\mathrm{HCl}-\mathrm{MeOH}$) reduction system, which reduced the acidity of reductive system and so the risk of racemization was depressed. 6 could be obtained in 86% yield with 96.3% ee and only about 1.5% level of racemization occurred.

During Wohl-Ziegler bromination ${ }^{24}$ of compound 6, routine monitoring technique did not work because that $\mathbf{6}$ and $\mathbf{7}$ had identical R_{f} values, and moreover, product 7 was visualized under 254 nm violet lamp while $\mathbf{6}$ were not. One simple technique has been developed to monitor such reactions. While the reaction proceed, just take a small quantity of solution, concentrate under reduced pressure, add $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ and aqueous $\mathrm{AgNO}_{3}(10 \%)$ sucessively, shake violently for a few minutes, then monitor the produced solution by TLC. Since bromide 7 can be completely transformed into other compounds by AgNO_{3} and these compounds have different R_{f} values with 6 and 7, we can determine whether starting material $\mathbf{6}$ was present after spraying phosphomolybdic acid solution (5% in EtOH) on TLC plate. By this simple technique, WohlZiegler bromination can been quenched appropriately and intermediate 7 was obtained in 82% yields. The total yield from L-alanine to 7 was 51.8%.

Scheme 1. Synthesis of key intermediate 7.

With bromide 7 in hand, Barbier-type coupling with acetone was investigated (Scheme 2). A variety of coupling reagents $\left(\mathrm{Zn}, \mathrm{Mg}, \mathrm{Sn}, \mathrm{Al}^{25}\right.$ with additives such as saturated $\mathrm{NH}_{4} \mathrm{Cl}$, ${ }^{26}$ saturated $\mathrm{NH}_{4} \mathrm{OAc},{ }^{27} \mathrm{DMF}^{28}$ and formamide ${ }^{29}$) were examined and none lead to satisfactory
result. With THF, THF- $\mathrm{H}_{2} \mathrm{O}$ or saturated $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ as solvents, Barbier-type coupling was very sluggish, giving only a trace of $\mathbf{8}$ after 12 h and the main byproduct was allyl-metal protonolysis product 6 . With DMF as solvents and solid $\mathrm{NH}_{4} \mathrm{Cl}$ as additives, ${ }^{30}$ compound $\mathbf{7}$ was transformed into 8 in 60% yield, together with dehydroxylation material 9 in 20% yield. Generally, excessive bromide ought to be employed for increasing the yield, in our present work, however, acetone was used in two-fold excess. Further increasing loading of acetone will decrease the isolated yield. Next, (R)-20 was smoothly obtained from $\mathbf{8}$ via the sequential step of catalytic hydrogenation and lactone oxidation. The total yield from $\mathbf{7}$ to ($\boldsymbol{R} \mathbf{)}$-20 was 51.3%.

7
8
9
$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$
r.t, 95%.
r.t, 95\%;

Scheme 2. Synthesis of said-chain acid of $\mathrm{HHT},(R)-20$
Direct oxidation of $\mathbf{6}$ using $\mathrm{SeO}_{2}{ }^{31}$ to obtain enal $\mathbf{1 1}$ was proved to lead to decomposed products, the easily available intermediate $\mathbf{7}$ was inevitably employed to prepare unstable $\mathbf{1 1}$ by IBX oxidation ${ }^{32}$, which is the first step for the elaboration of side-chain acid of HT, (\boldsymbol{R})-30 (Scheme 3). The addition of MeMgBr to enal 11 produced $\mathbf{1 2},{ }^{33}$ further oxidation of $\mathbf{1 5}$ with IBX furnished enone 13. ${ }^{34}$ Subsequent MeMgBr addition to enone $\mathbf{1 3},{ }^{33}$ double bond hydrogenation and TEMPO-mediated lactone oxidation furnished (\boldsymbol{R})- $\mathbf{3 0}$ in 71.8% yield over three steps. ${ }^{9}$ The total yield from 7 to (\boldsymbol{R})-30 was 52.2%.

Scheme 3. Synthesis of said-chain acid of HT, (R)-30.

Conclusions

The common used intermediate 7 for the synthesis of side-chain acids of HHT and HT was conveniently prepared from L-alanine in 51.8% yield over eight steps with more than $96 \% \mathrm{ee}$.

Meanwhile, Parikh-Doering oxidization was confirmed to be suitable for the oxidation of N-Boc-L-Ala-OH into N-Boc- L-Alaninal with no racemization. The introduced technique for monitoring Wohl-Ziegler bromination by TLC could be widely used. In the respect of conciseness and yield, this second-generation route is superior to the reported one (overall yield: 26.6% vs 25% for (\boldsymbol{R})$\mathbf{2 0}, 27.0 \%$ vs $\mathbf{1 8 \%}$ for ($\boldsymbol{R} \mathbf{)} \mathbf{- 3 0}$). In addition, the key intermediate 7 was a versatile synthon, which can couple with isopropyl bromide to produce deoxyhomoharringtonine skeleton or couple with 2,2-dimethyloxirane to produce bishomoharringtonine skeleton ${ }^{35}$.

Experimental Section

General. For product purification by flash column chromatography, silica gel ($200 \sim 300$ mesh) and petroleum ether (b.p. $60 \sim 90^{\circ} \mathrm{C}$) are used. All solvents were purified and dried by standard techniques, and distilled prior to use. All organic extracts were dried over MgSO_{4}, unless otherwise noted. IR spectra were recorded using KBr disks in the $400-4000 \mathrm{~cm}^{-1}$ region. Optical rotations were measured using a polarimeter. HR-MS was obtained by ESI (positive ion mode) on TOF mass analyzer. Melting points were determined without correction. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with TMS as an internal standard and CDCl_{3} or $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ as solvent. The enantiomeric excess (e.e.) of the products were determined by HPLC using a Chiralpak IC $(250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$ and UV detector at $25^{\circ} \mathrm{C}$ and detected at 205 nm . The mobile phase used was n-hexane - isopropanol (70:30) at a flow rate of $0.8 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.
((S)-2-Hydroxy-1-methylethyl)carbamic acid tert-butyl ester (2). To a solution of $\mathbf{1}$ (5 g, 24.606 mmol) in THF/ethanol ($12 \mathrm{~mL} / 22 \mathrm{~mL}$) was added $\mathrm{CaCl}_{2}(5.462 \mathrm{~g}, 49.212 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(3.724 \mathrm{~g}, 98.425 \mathrm{mmol})$ successively at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to reach room temperature and stirred for 6 h . Then the solution was poured into citric acid/ice (80 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined extracts were washed with brine, dried and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc, 2.5:1) to afford $2(4.311 \mathrm{~g}, 96 \%)$ as a colourless crystalline solid. mp $59.5-60.5^{\circ} \mathrm{C}$ (petroleum ether - EtOAc); $[\alpha]^{20}{ }_{\mathrm{D}}-11.4\left(\mathrm{c} 0.99, \mathrm{CHCl}_{3}\right)$.
($\boldsymbol{S}, \boldsymbol{E}$)-tert-Butyl(1-(2-oxodihydrofuran-3(2H)-ylidene)propan-2-yl)carbamate (4). To a solution of $2(1.500 \mathrm{~g}, 8.560 \mathrm{mmol})$ and TEA (3.58 mL , 25.680 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added a solution of $\mathrm{Py}^{2} \mathrm{SO}_{3}(4.087 \mathrm{~g}, 25.680 \mathrm{mmol})$ in dry DMSO $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then the reaction mixture was allowed to reach room temperature and stirred for 35 min , quenched with water/ice (30 mL). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$ and washed successively with 10% citric acid $(2 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, brine (20 mL), dried over MgSO_{4}, and concentrated under reduced pressure to afford crude $\mathbf{3}$ as a white solid, which was used immediately for the next step without further purification. $[\alpha]^{20}{ }_{D}$ -28.0 (c $0.72, \mathrm{CHCl}_{3}$); IR (KBr) $1526,1696,2814,2938,2981,3331 \mathrm{~cm}^{-1}$.

To a solution of crude aldehyde 3 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 1-butyrolactonylidene triphenylphosphorane $(3.344 \mathrm{~g}, 9.654 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h. Then solvent was removed under reduced pressure and the residue was purified by chromatography (petroleum ether/ EtOAc, 3:1) to yield olefin $4(1.859 \mathrm{~g}, 90 \%, 99 \% e e)$ as a white crystal: mp $101.5-103.0^{\circ} \mathrm{C}$ (petroleum ether-EtOAc); IR (KBr) $3397,1752 \mathrm{~cm}^{-1}$; $[\alpha]^{20}{ }_{\mathrm{D}}$ $-28.0\left(\mathrm{c} 0.72, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J 5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J 7.2,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5(\mathrm{C}), 155.0(\mathrm{C}), 140.62(\mathrm{CH}), 125.7(\mathrm{C}), 79.8(\mathrm{C}), 65.7\left(\mathrm{CH}_{2}\right)$, $46.0(\mathrm{CH}), 28.4\left(3 \mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}$, 264.1212; found 264.1213;
(S, \boldsymbol{E})-3-(2-(Dibenzylamino)propylidene)dihydrofuran-2(3H)-one (5). To a solution of N-Boc olefin $4(3.2 \mathrm{~g}, 13.263 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added trifluoroacetic acid (7.561 g , 66.313 mmol), and the reaction was refluxed for 3 h . Then, it was evaporated to give a white solid. To a solution of the white solid in dry acetonitrile (40 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5.499 \mathrm{~g}$, $39.795 \mathrm{mmol})$, followed by $\operatorname{BnBr}(4.991 \mathrm{~g}, 29.183 \mathrm{mmol})$. The reaction mixture was stirred at reflux for 3 h , at which point most of the solvent was evaporated under reduced pressure. The residue was diluted with water, and extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined extracts were washed with brine, dried, and concentrated under reduced pressure. The residue was recrystallized from petroleum ether and EtOAc to give N, N-dibenzyl olefin $5(3.624 \mathrm{~g}, 85 \%$, 99% ee) as white crystals: $\mathrm{mp} 101.5-103.0^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}) 3056,3028,1751 \mathrm{~cm}^{-1} ;[\alpha]^{20} \mathrm{D}+3.6$ (c $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dt}, J$ $6.0,9.6,1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J 13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 2 \mathrm{H})$, $1.63(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J 6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1$ (C), 140.7 (C), 139.8 $(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{C}), 65.5\left(\mathrm{CH}_{2}\right), 54.0\left(\mathrm{CH}_{2}\right), 53.0(\mathrm{CH}), 25.1$ $\left.\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}, 344.1626$; found 344.1628.
(S, \boldsymbol{E})-3-Hydroxy-3-(prop-1-en-1-yl) dihydrofuran-2(3H)-one (6). To a solution of 5 (500 mg , $1.556 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added m-CPBA (80% pure, $369 \mathrm{mg}, 1.711 \mathrm{mmol}$) at $5{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 10 min . After the suspension was filtered, the filtrate was washed with $10 \% \mathrm{NaOH}(3 \times 5 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(2 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated at $40{ }^{\circ} \mathrm{C}$ under reduced pressure to give an oily residue (crude 5a), which was used in the next step without further purification. To a solution of crude $\mathbf{5 a}(1.556 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added glacial acetic acid ($0.6 \mathrm{~mL}, 10.892 \mathrm{mmol}$), hydrochloric acid ($0.9 \mathrm{~mL}, 10.892 \mathrm{mmol}, 37 \% \mathrm{HCl}$) and zinc powder $(1.017 \mathrm{~g}, 15.56 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 10 min . Then the suspension was filtered and washed with EtOAc, and the filtrate was neutralized with 25% ammonium hydroxide solution to pH 8 . The mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined extracts were washed with brine, dried, concentrated. The residue was purified by chromatography (petroleum ether/EtOAc, 2:1) to afford $\mathbf{6}(190 \mathrm{mg}, 86 \%$, $96.3 \% \mathrm{ee}$) as a colorless oil: $\mathrm{IR}(\mathrm{KBr}) 3445,1770 \mathrm{~cm}^{-1}, 1667 \mathrm{~cm}^{-1} ;[\alpha]^{20} \mathrm{D}+74.5\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86(\mathrm{dq}, J 15.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J 15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (td, $J 8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{brs}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H})$, $1.76(\mathrm{dd}, J 6.5,1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH})$, $75.0(\mathrm{C}), 65.0\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 17.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}, 165.0528$; found 165.0526 .
($\boldsymbol{S}, \boldsymbol{E}$)-3-(3-Bromoprop-1-en-1-yl)-3-hydroxydihydrofuran-2(3H)-one (7). To a solution of $\mathbf{6}$ $(1.2 \mathrm{~g}, 8.442 \mathrm{mmol})$ in dry $\mathrm{CCl}_{4}(12 \mathrm{~mL})$ was added N-bromosuccinimide $(1.803 \mathrm{~g}, 10.110 \mathrm{mmol})$ and benzoyl peroxide ($102 \mathrm{mg}, 0.442 \mathrm{mmol}$). The reaction was stirred under reflux and monitored by TLC using the method described in the text. After the reaction was complete, the suspension was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography (petroleum ether/EtOAc, 3: 1) to give $7(1.530 \mathrm{mg}, 82 \%)$ as pale-yellow sticky oil. $[\alpha]^{20}{ }_{\mathrm{D}}+46.0$ (c 1.06, CHCl_{3}); IR (KBr) $3426,1770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.12-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J 15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.23$ (td, J 9.0, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J 7.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42$ (ddd, J 13.1, $6.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9(\mathrm{C}), 131.9(\mathrm{CH}), 129.1(\mathrm{CH}), 74.6(\mathrm{C})$, $65.1\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrO}_{3} \mathrm{Na}$, 242.9633; found 242.9634 .
($\boldsymbol{S}, \boldsymbol{E}$)-3-Hydroxy-3-(4-hydroxy-4-methylpent-1-en-1-yl) dihydrofuran-2(3H)-one (8). To a solution of bromide $7(685 \mathrm{mg}, 3.099 \mathrm{mmol})$ and acetone ($540 \mathrm{mg}, 9.297 \mathrm{mmol}$) in DMF (5 mL) was added zinc dust ($304 \mathrm{mg}, 4.649 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{Cl}(166 \mathrm{mg}, 3.099 \mathrm{mmol})$ in one portion at room temperature. The reaction mixture was stirred at this temperature for 1.5 h , then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), washed with saturated brine $(2 \times 10 \mathrm{~mL})$, dried and concentrated. The residue was purified by chromatography (petroleum ether/EtOAc, 1:3) to afford diol $\mathbf{8}(373 \mathrm{mg}$, 60%) as a colorless oil and conjugated olefin $9(77 \mathrm{mg}, 20 \%)$ as a colorless oil. Diol 8: $[\alpha]^{25}{ }^{\mathrm{D}}+$ 30.1 (c $0.98, \mathrm{EtOH})$; IR (KBr) :3419, $1770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.97-5.89$ (m, $1 \mathrm{H}), 5.69$ (d, $J 15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (brs, 1H), 4.41 (td, $J 8.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.22-4.16$ (m, 1H), 2.85 (brs, 1H), 2.51-2.43 (m, 1H), 2.40-2.35 (m, 1H), $2.24(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.23$ (d, J5.2 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1(\mathrm{C}), 131.4(\mathrm{CH}), 129.5(\mathrm{CH}), 75.1(\mathrm{C}), 70.9(\mathrm{C}), 65.2$ $\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}, 223.0946$; found 223.0948; conjugated olefin 9: IR (KBr): 3446, 1748, 1656 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dt}, J 16.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J 16.9,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{td}, J 7.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6(\mathrm{C}), 135.8(\mathrm{CH}), 132.2(\mathrm{CH}), 126.7\left(\mathrm{CH}_{2}\right), 125.3(\mathrm{C}), 65.4\left(\mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Na}, 147.0422$; found 147.0420 .
(R)-3-Hydroxy-3-(4-hydroxy-4-methylpentyl) dihydrofuran-2(3H)-one (10). To a solution of $8(516 \mathrm{mg}, 2.577 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(52 \mathrm{mg})$. The mixture was stirred under hydrogen atmosphere (60 psi) at room temperature for 2 h . Then catalyst was removed by filtration over Celite and washed with $\mathrm{MeOH}(3 \times 5 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by chromatography (petroleum ether/EtOAc, 1:2.5) to afford $\mathbf{1 0}(495 \mathrm{mg}, 95 \%)$ as a white solid. $[\alpha]^{25}{ }_{\mathrm{D}}+14.4(\mathrm{c} 0.8, \mathrm{EtOH}) ; \mathrm{mp}$
97.8-98.9 ${ }^{\circ} \mathrm{C}$ (EtOAc); IR (KBr): 3500, 3280, $1769 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 4.42-4.37 (m, 1H), 4.26-4.20 (m, 1H), 3.72-3.67 (m, 1H), 2.54 (brs, 1H), 2.38-2.25 (m, 2H), $1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.2(\mathrm{C}), \quad 74.7(\mathrm{C}), \quad 71.1(\mathrm{C}), \quad 65.5\left(\mathrm{CH}_{2}\right), \quad 43.4\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$ 225.1103, found 225.1103.
(R)-2-Hydroxy-2-(4-hydroxy-4-methylpentyl)succinic acid (20). Saturated diol $\mathbf{1 0}$ (857 mg , 4.237 mmol) was stirred for 20 min with $5 \mathrm{M} \mathrm{NaOH}(1.6 \mathrm{~mL})$. Sodium phosphate buffer (18 ml , $0.67 \mathrm{M})$ was added and the pH was adjusted to $6.8(5 \mathrm{M} \mathrm{HCl})$. Then, acetonitrile $(16.5 \mathrm{ml})$ and TEMPO ($232 \mathrm{mg}, 1.483 \mathrm{mmol}$) were added and the mixture was heated to $35^{\circ} \mathrm{C}$. Over a period of 3 h sodium hypochlorite solution (5.38 mL in $29.82 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 0.24 \mathrm{M}$) and $\mathrm{NaClO}_{2}(978 \mathrm{mg}$, $80 \%, 8.65 \mathrm{mmol}$ in $4.24 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) were added dropwise from separate syringes at $35^{\circ} \mathrm{C}$ while stirring (Caution: do not mix sodium hypochlorite solution and NaClO_{2} before adding to the reaction!). At room temperature, the pH was adjusted to 8.5 with 5 M NaOH . The mixture was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(9.92 \mathrm{~mL}, 1.923 \mathrm{~g}\right.$ in 15 mL water) at $0{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred at room temperature for $1 \mathrm{~h}(\mathrm{pH} 8.5-9.0)$. After acidification to pH 1 , most of the water was removed using rotary evaporator. Then the mixture was extracted with EtOAc ($6 \times 30 \mathrm{~mL}$), washed with saturated brine ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography (petroleum ether /EtOAc, 1:6) to afford 20 (893 mg, 90%) as a white crystalline solid. $[\alpha]^{25}{ }^{\mathrm{D}}-10.2$ (c 1.08, MeOH); mp $112.1-112.9^{\circ} \mathrm{C}$ (EtOAc); IR (KBr) 3569, 3456, $1709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , d 6 -acetone) $\delta 2.95$ (d, J 16.3 Hz , $1 \mathrm{H}), 2.67$ (d, $J 16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ - 1.55 (m, 3H), 1.45 (dd, $J 9.3,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.29$ (m, 1 H), 1.17 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-acetone) $\delta 175.8$ (C), 171.7 (C), 74.7 (C), 69.5 (C), $43.8\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI -TOF) m / z : calcd for $[\mathrm{M}+\mathrm{Na}-2 \mathrm{H}]^{+}, 255.0845$, found 255.0847 .
($\boldsymbol{S}, \boldsymbol{E}$)-3-(3-Hydroxy-2-oxotetrahydrofuran-3-yl)acrylaldehyde (11). A solution of bromide 7 $(609 \mathrm{mg}, 2.755 \mathrm{mmol})$ in DMSO $(8 \mathrm{~mL})$ was added IBX $(1.543 \mathrm{~g}, 5.510 \mathrm{mmol})$. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 1.5 h . Then the mixture was diluted with EtOAc (100 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$, brine (10 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography (petroleum ether /EtOAc, 1:1) to afford $\mathbf{1 1}(383 \mathrm{mg}, 89 \%)$ as a colorless oil. IR (KBr) 3420, 2923, 2850, $1771,1690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J 15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{dd}, J 15.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.63-2.50(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8(\mathrm{CH}), 175.9(\mathrm{C}), 151.3(\mathrm{CH}), 132.3(\mathrm{CH}), 75.2(\mathrm{C})$, $65.8\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Na}, 179.0320$, found 179.0322 .
(3S)-3-Hydroxy-3-((E)-3-hydroxybut-1-en-1-yl) dihydrofuran-2(3H)-one (12). A solution of methylmagnesium bromide in ether ($4 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}(653 \mathrm{mg}$, $4.182 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature. After further stirred at room temperature for 30 min , water (10 ml) was added. The
mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined extracts were washed with brine, dried, and concentrated under reduced pressure. The residue was purified by chromatography (petroleum ether/ EtOAc, 1:3) to afford $\mathbf{1 2}$ as colorless oil ($628 \mathrm{mg}, 87 \%$, dr 2:1). IR (KBr) 3405, $1767 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.83(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.39$ $(\mathrm{m}, 2 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{brs}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.40($ brs, 1 H$)$, 1.31 (d, J $6.4 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 177.6 (1C), 137.0 (1C), 136.9 (1 C), 126.8 (1C), $74.8(2 \mathrm{C}), 67.6(2 \mathrm{C}), 65.2(1 \mathrm{C}), 65.1$ (1C), 36.2 (2C), 23.1(2C); HRMS (ESI-TOF) $m / z:$ [M $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}$, 195.0633; found 195.0634.
(3S)-3-Hydroxy-3-(3-oxobut-1-en-1-yl) dihydrofuran-2(3H)-one(13). To a solution of diol 12 $(520 \mathrm{mg}, 3.020 \mathrm{mmol})$ in EtOAc (15 mL) was added IBX ($2.537 \mathrm{~g}, 9.060 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at reflux for 3 h . After cooling to room temperature, the insoluble material was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography (petroleum ether/EtOAc, 1:1) to afford $13(484 \mathrm{mg}$, 94%) as a colorless oil. $\operatorname{IR}(\mathrm{KBr}): 3475,1775,1715,1677,1629 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.1(\mathrm{c} 1.50$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{~d}, J 15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J 15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.54-4.48 (m, 1H), 4.36-4.30 (m, 1H), 4.15-4.08 (brm, 1H), 2.59-2.46 (m, 2H), 2.31 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,176.1,141.2,130.3,74.9,65.4,36.2,28.2$; HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Na}$ 193.0477, Found 193.0478 .
3-Hydroxy-3-(3-hydroxy-3-methylbut-1-en-1-yl) dihydrofuran-2(3H)-one (14). The procedure is similar to the preparation of compound 12. IR (KBr): $3421,1764,1708 \mathrm{~cm}^{-1} ;[\alpha]^{20} \mathrm{D}$ +18.2 (c, 0.85, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99(\mathrm{~d}, J 15.82 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J$ $15.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5,140.7,124.3,74.8,70.6,65.0,36.3,29.8$, 29.7; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na} 209.0790$,Found 209.0792.
(R)-3-Hydroxy-3-(3-hydroxy-3-methylbutyl) dihydrofuran-2(3H)-one (15). The procedure is similar to the preparation of compound 10. mp $98.0-98.6^{\circ} \mathrm{C}(\mathrm{EtOAc})$; IR (KBr) 3416, 3258, $1752 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}+18.7(\mathrm{c}, 1.09, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.93$ (brs, 1H), 4.43-4.37 $(\mathrm{m}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{brs}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{t}, J 6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.2$, 74.2, 70.7, 65.4, 36.9, 35.8, 31.2, 30.2, 28.3; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na} 211.0946$; Found 211.0947.
(R)-2-(3-Hydroxy-6, 6-dimethyl-2-oxotetrahydro-2H-pyran-3-yl) acetic acid (30). The compound $\mathbf{3 0}$ was obtained as a white solid, by the same procedure used for the preparation of diacid 20. mp 133.1-133.7 ${ }^{\circ} \mathrm{C}$ (EtOAc); IR (KBr) 3350-3000 (broad peak), $1715,1693 \mathrm{~cm}^{-1}$; $[\alpha]^{20}{ }_{\mathrm{D}}+25.5$ (c, 1.30, MeOH); ${ }^{1} \mathrm{H}$ NMR (400 MHz , d_{6}-acetone) $\delta 1.41$ (s, 3H), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.78$ (dt, $J 14.0,4.28,4.00 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87 (dt, $J 14.0,3.64,4.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{td}, J 13.44,3.32 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{td}, J 13.5,3.64 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J 16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J 16.56 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (100 MHz , d_{6}-acetone) $\delta 171.8,171.6,82.8,69.2,42.6,30.2,29.7,29.6,26.3$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na} 225.0739$, Found 225.0736.

Acknowledgements

The authors thank the National Natural Science Foundation $(21372205,21302175)$ for the financial support.

References

1. Ancliff, R. A.; Russell, A. T.; Sanderson, A. J. Chem. Commun. 2006, 3243. http://dx.doi.org/ 10.1039/b605339d
2. Berhal, F.; Tardy, S.; Pérard-Viret, J.; Royer, J. Eur. J. Org. Chem. 2009, 437. http://dx.doi.org/ 10.1002/ejoc. 200800935
3. Eckelbarger, J. E.; Wilmot, J. T.; Epperson, M. T.; Thakur, C. S.; Shum, D.; Antczak, C.; Tarassishin, L.; Djaballah, H.; Gin, D. Y. Chem. Eur. J. 2008, 14, 4293. http://dx.doi.org/ 10.1002/chem. 200701998
4. El Bialy, S. A. A.; Braun, H.; Tietze, L. F. Eur. J. Org. Chem. 2005, 2965. http://dx.doi.org/ 10.1002/ejoc. 200500065
5. Keller, L.; Dumas, F.; d'Angelo, J. Eur. J. Org. Chem. 2003, 2488.
http://dx.doi.org/ 10.1002/ejoc. 200300111
6. Keller, L.; Dumas, F.; d'Angelo, J. Tetrahedron Lett. 2001, 42, 1911. http://dx.doi.org/ 10.1016/S0040-4039(01)00086-7
7. Robin, J.-P.; Dhal, R.; Dujardin, G.; Girodier, L.; Mevellec, L.; Poutot, S. Tetrahedron Lett. 1999, 40, 2931.
http://dx.doi.org/ 10.1016/S0040-4039(99)00327-5
8. Hue,V. T.; Nhung, N. T. H.; Hung, M. D. Arkivoc 2014, 6, 206.
9. Yang, H.; Sun, M. R. ; Zhao, S. G.; Zhu, M.; Xie, Y.L.; Niu, C. L.; Li, C. L. J. Org. Chem. 2013, 78, 339.
http://dx.doi.org/ 10.1021/j0302203g
10. Rengasamy, R.; Curtis-Long, M. J.; Seo, W. D.; Jeong, S. H.; Jeong, I.; Park, K. J. Org. Chem. 2008, 73, 2898.
http://dx.doi.org/ 10.1021/jo702480y
11. Yang, X. M. ; Zou, X. M.; Fu, Y. Q.; Mou, K.; Fu, G.; Ma, C.; Xu, P. Synth. Commun. 2007, 37, 9 .
http://dx.doi.org/ 10.1080/00397910600977509
12. Soucek, M.; Urban, J.; Saman, D. Collect. Czech. Chem. Commun. 1990, 55, 761.
http://dx.doi.org/ 10.1135/cccc19900761
13. Dullin, A.; Dufrasne, F.; Gelbcke, M.; Gust, R. ChemMedChem 2006, 1, 644.
http://dx.doi.org/ 10.1002/cmdc. 200600032
14. Fujii, T.; Itaya, T.; Matsubara, S. Chem. Pharm. Bull. 1989, 37, 1758.
15. Yao, H.; Yamamoto, K. Chem. Asian J. 2012, 7, 1542.
http://dx.doi.org/ 10.1002/asia. 201200017
16. Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1982, 30, 1921.
17. Otto, A.; Ziemer, B.; Liebscher, J. Eur. J. Org. Chem. 1998, 2667. $\underline{\text { http://dx.doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2267::AID- }}$ EJOC2267 $\geq 3.0 . \mathrm{CO} ; 2-\mathrm{E}$
18. Keck, G. E.; Fleming, S.; Nickell, D.; Weider, P. Synth. Commun. 1979, 9, 281. http://dx.doi.org/ 10.1080/00397917908064153
19. Bui, T.; Candeias, N. R.; Barbas III, C. F. J. Am. Chem. Soc. 2010, 132, 5574. http://dx.doi.org/ 10.1021/ja101032j
20. Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 6038. http://dx.doi.org/ 10.1021/ja0296702
21. Peng, J.; Jiang, D.; Lina, W.; Chen, Y. Org. Biomol. Chem. 2007, 5, 1391. http://dx.doi.org/ 10.1039/b701509g
22. Jahn, U.; Hartmann, P.; Dix, I.; Jones, P. J. Eur. J. Org. Chem. 2002, 718. http://dx.doi.org/ 10.1002/1099-0690(200202)2002:4<718::AID-EJOC718>3.0.CO;2-6
23. Kumarn, S.; Shaw, D. M.; Longbottom, D. A.; Lev, S. V. Org. Lett., 2005, 7, 4189. http://dx.doi.org/ 10.1021/ol051577u
24. Davies, S. G.; Smyth, G. D. J. Chem. Soc., Perkin Trans. 1, 1996, 2467. http://dx.doi.org/ 10.1039/P19960002467
25. Li, C.-J. Chem. Rev. 2005, 105, 3095. http://dx.doi.org/ 10.1021/cr030009u
26. Petrier, C.; Luche, J.-L. J. Org. Chem. 1985, 50, 910. http://dx.doi.org/ 10.1021/jo00206a047
27. Wipf, P.; Furegati, M. Org. Lett. 2006, 8, 1901. http://dx.doi.org/ 10.1021/ol060455e
28. T. Shono, Ishifune, M.; Kashimura, S. Chem. Lett. 1990, 449. http://dx.doi.org/ 10.1246/cl.1990.449
29. Mistryukov, E. A.; Peresypkin, A. V.; Mgulin, V. A. Mendeleev Commun., 1993, 3, 242. http://dx.doi.org/ 10.1070/MC1993v003n06ABEH000311
30. Hodgson, D. M.; Talbot, E. P. A.; Clark, B. P. Org. Lett. 2011, 13, 2594. http://dx.doi.org/ 10.1021/ol200711f
31. Santangelo, E. M.; Ilme Liblikas, D. R.; Norin, T.; Unelius, C. R. J. Org. Chem. 2001, 66, 5384. http://dx.doi.org/ 10.1021/jo015592y
32. Sofiyev, V.; Navarro, G.; Trauner, D. Org. Lett. 2008, 10, 149. http://dx.doi.org/ 10.1021/ol702806v
33. Thamapipol, S.; Kundig, E. P. Org. Biomol. Chem., 2011, 9, 7564. http://dx.doi.org/ 10.1039/c1ob06121f
34. Fischer, D.; Nguyen, T. X.; Trzoss, L.; Dakanali, M.; Theodorakis, E. A. Tetrahedron Lett. 2011, 52, 4920.
http://dx.doi.org/ 10.1016/j.tetlet.2011.07.054
35. Cong, P. Z. Acta Pharmaceutica Sinica, 1983, 18, 215.
